Review article 21 Jul 2017
Review article | 21 Jul 2017
Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables
Philip D. Jones et al.
Related authors
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-343, https://doi.org/10.5194/essd-2020-343, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series since 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change over the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Zoë A. Thomas, Richard T. Jones, Chris J. Fogwill, Jackie Hatton, Alan N. Williams, Alan Hogg, Scott Mooney, Philip Jones, David Lister, Paul Mayewski, and Chris S. M. Turney
Clim. Past, 14, 1727–1738, https://doi.org/10.5194/cp-14-1727-2018, https://doi.org/10.5194/cp-14-1727-2018, 2018
Short summary
Short summary
We report a high-resolution study of a 5000-year-long peat record from the Falkland Islands. This area sensitive to the dynamics of the Amundsen Sea Low, which plays a major role in modulating the Southern Ocean climate. We find wetter, colder conditions between 5.0 and 2.5 ka due to enhanced southerly airflow, with the establishment of drier and warmer conditions from 2.5 ka to present. This implies more westerly airflow and the increased projection of the ASL onto the South Atlantic.
Linden Ashcroft, Joan Ramon Coll, Alba Gilabert, Peter Domonkos, Manola Brunet, Enric Aguilar, Mercè Castella, Javier Sigro, Ian Harris, Per Unden, and Phil Jones
Earth Syst. Sci. Data, 10, 1613–1635, https://doi.org/10.5194/essd-10-1613-2018, https://doi.org/10.5194/essd-10-1613-2018, 2018
Short summary
Short summary
We present a dataset of 8.8 million sub-daily weather observations for Europe and the southern Mediterranean, compiled and digitised from historical and modern sources. We describe the methods used to digitise and quality control the data, and show that 3.5 % of the observations required correction or removal, similar to other data rescue projects. These newly recovered records will help to improve weather simulations over Europe.
Alberto Troccoli, Clare Goodess, Phil Jones, Lesley Penny, Steve Dorling, Colin Harpham, Laurent Dubus, Sylvie Parey, Sandra Claudel, Duc-Huy Khong, Philip E. Bett, Hazel Thornton, Thierry Ranchin, Lucien Wald, Yves-Marie Saint-Drenan, Matteo De Felice, David Brayshaw, Emma Suckling, Barbara Percy, and Jon Blower
Adv. Sci. Res., 15, 191–205, https://doi.org/10.5194/asr-15-191-2018, https://doi.org/10.5194/asr-15-191-2018, 2018
Short summary
Short summary
The European Climatic Energy Mixes, an EU Copernicus Climate Change Service project, has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. Its concept, methodology and some results are presented here.
K. M. Willett, R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr.
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, https://doi.org/10.5194/cp-10-1983-2014, 2014
Short summary
Short summary
We have developed HadISDH, a new gridded global land monthly mean climate montitoring product for humidity and temperature from 1973 to then end of 2013 (updated annually) based entirely on in situ observations. Uncertainty estimates are provided. Over the period of record significant warming and increases in water vapour have taken place. The specific humidity trends have slowed since a peak in 1998 concurrent with decreasing relative humidity from 2000 onwards.
T. J. Osborn and P. D. Jones
Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, https://doi.org/10.5194/essd-6-61-2014, 2014
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013, https://doi.org/10.5194/gi-2-305-2013, 2013
K. M. Willett, C. N. Williams Jr., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, P. D. Jones, and D. E. Parker
Clim. Past, 9, 657–677, https://doi.org/10.5194/cp-9-657-2013, https://doi.org/10.5194/cp-9-657-2013, 2013
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, and Philippe Blanc
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-480, https://doi.org/10.5194/amt-2020-480, 2021
Preprint under review for AMT
Short summary
Short summary
Solar radiation received by the Earth's surface is a valuable information for various fields like photovoltaic industry or else climate research. Pictures taken from satellites can be used to estimate the solar radiation by identifying cloud properties of reflection. Several issues exist though: satellite sensors are all different. Even two identical instruments looking over the same place see different things. We aim at estimating solar radiation from a wide variety of such satellite sensors.
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-343, https://doi.org/10.5194/essd-2020-343, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series since 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change over the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Leah Hayward, Malcolm Whitworth, Nick Pepin, and Steve Dorling
Nat. Hazards Earth Syst. Sci., 20, 2463–2482, https://doi.org/10.5194/nhess-20-2463-2020, https://doi.org/10.5194/nhess-20-2463-2020, 2020
Short summary
Short summary
This review article outlines the state of thunderstorm climatologies, which are underrepresented in the literature. Thunderstorms overlap with lightning and intense precipitation events, both of which create important hazards. This article compiles and evaluates information on datasets, research approaches and methodologies used in quantifying thunderstorm distribution, providing an introduction to the topic and signposting new and established researchers to research articles and datasets.
Mathilde Marchand, Yves-Marie Saint-Drenan, Laurent Saboret, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 17, 143–152, https://doi.org/10.5194/asr-17-143-2020, https://doi.org/10.5194/asr-17-143-2020, 2020
Short summary
Short summary
The present work deals with the spatial consistency of two well-known databases of solar radiation received at ground level: the CAMS Radiation Service database version 3.2, abbreviated as CAMS-Rad and the HelioClim-3 database version 5, abbreviated as HC3v5. Both databases are derived from satellite images. For both databases, there is no noticeable spatial trend in the standard deviation.
Claire Thomas, Stephen Dorling, William Wandji Nyamsi, Lucien Wald, Stéphane Rubino, Laurent Saboret, Mélodie Trolliet, and Etienne Wey
Adv. Sci. Res., 16, 229–240, https://doi.org/10.5194/asr-16-229-2019, https://doi.org/10.5194/asr-16-229-2019, 2019
Short summary
Short summary
Solar radiation is the second main important factors for plant growth after temperature. More precisely, PAR, which stands for Photosynthetically Active Radiation, is the portion of the solar spectrum that is efficient for photosynthesis. Due to the scarcity of ground measurements, researchers have developed methods to estimate this variable from satellite imagery. This paper compares several methods to assess satellite-derived PAR against measurements in the UK and in France.
Mathilde Marchand, Mireille Lefèvre, Laurent Saboret, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 16, 103–111, https://doi.org/10.5194/asr-16-103-2019, https://doi.org/10.5194/asr-16-103-2019, 2019
Short summary
Short summary
The present work deals with two well-known databases of hourly mean of solar irradiance that are derived from satellite imagery. The spatial consistency of the uncertainties of these databases is verified against measurements performed within a dense network of ground stations in The Netherlands from the Royal Meteorological Institute KNMI for the period 2014–2017.
The obtained results are presented for both databases. And a discussion is proposed.
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019, https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Short summary
The future Flexible Combined Imager (FCI) on board MeteoSat Third Generation is expected to improve the detection and the quantification of aerosols. The study assesses the potential of FCI/VIS04 channel for monitoring air pollution in Europe. An observing system simulation experiment in MOCAGE is developed, and they show a large positive impact of the assimilation over a 4-month period and particularly during a severe pollution episode. The added value of geostationary data is also assessed.
Zoë A. Thomas, Richard T. Jones, Chris J. Fogwill, Jackie Hatton, Alan N. Williams, Alan Hogg, Scott Mooney, Philip Jones, David Lister, Paul Mayewski, and Chris S. M. Turney
Clim. Past, 14, 1727–1738, https://doi.org/10.5194/cp-14-1727-2018, https://doi.org/10.5194/cp-14-1727-2018, 2018
Short summary
Short summary
We report a high-resolution study of a 5000-year-long peat record from the Falkland Islands. This area sensitive to the dynamics of the Amundsen Sea Low, which plays a major role in modulating the Southern Ocean climate. We find wetter, colder conditions between 5.0 and 2.5 ka due to enhanced southerly airflow, with the establishment of drier and warmer conditions from 2.5 ka to present. This implies more westerly airflow and the increased projection of the ASL onto the South Atlantic.
Mélodie Trolliet, Jakub P. Walawender, Bernard Bourlès, Alexandre Boilley, Jörg Trentmann, Philippe Blanc, Mireille Lefèvre, and Lucien Wald
Ocean Sci., 14, 1021–1056, https://doi.org/10.5194/os-14-1021-2018, https://doi.org/10.5194/os-14-1021-2018, 2018
Linden Ashcroft, Joan Ramon Coll, Alba Gilabert, Peter Domonkos, Manola Brunet, Enric Aguilar, Mercè Castella, Javier Sigro, Ian Harris, Per Unden, and Phil Jones
Earth Syst. Sci. Data, 10, 1613–1635, https://doi.org/10.5194/essd-10-1613-2018, https://doi.org/10.5194/essd-10-1613-2018, 2018
Short summary
Short summary
We present a dataset of 8.8 million sub-daily weather observations for Europe and the southern Mediterranean, compiled and digitised from historical and modern sources. We describe the methods used to digitise and quality control the data, and show that 3.5 % of the observations required correction or removal, similar to other data rescue projects. These newly recovered records will help to improve weather simulations over Europe.
Alberto Troccoli, Clare Goodess, Phil Jones, Lesley Penny, Steve Dorling, Colin Harpham, Laurent Dubus, Sylvie Parey, Sandra Claudel, Duc-Huy Khong, Philip E. Bett, Hazel Thornton, Thierry Ranchin, Lucien Wald, Yves-Marie Saint-Drenan, Matteo De Felice, David Brayshaw, Emma Suckling, Barbara Percy, and Jon Blower
Adv. Sci. Res., 15, 191–205, https://doi.org/10.5194/asr-15-191-2018, https://doi.org/10.5194/asr-15-191-2018, 2018
Short summary
Short summary
The European Climatic Energy Mixes, an EU Copernicus Climate Change Service project, has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. Its concept, methodology and some results are presented here.
Mélodie Trolliet and Lucien Wald
Adv. Sci. Res., 15, 127–136, https://doi.org/10.5194/asr-15-127-2018, https://doi.org/10.5194/asr-15-127-2018, 2018
Yves-Marie Saint-Drenan, Lucien Wald, Thierry Ranchin, Laurent Dubus, and Alberto Troccoli
Adv. Sci. Res., 15, 51–62, https://doi.org/10.5194/asr-15-51-2018, https://doi.org/10.5194/asr-15-51-2018, 2018
Short summary
Short summary
Our approach allows estimating the total photovoltaic (PV) power generation in different European countries from meteorological data. It is aimed at being easy to implement since it does not require any plant information or prior knowledge on the installed PV plants.
Marie Opálková, Martin Navrátil, Vladimír Špunda, Philippe Blanc, and Lucien Wald
Earth Syst. Sci. Data, 10, 837–846, https://doi.org/10.5194/essd-10-837-2018, https://doi.org/10.5194/essd-10-837-2018, 2018
Short summary
Short summary
Files with irradiances of a few spectral regions of incident solar radiation and some meteorological variables including concentrations of some air pollutants measured for 2.5 years at 3 stations in Ostrava (CZ) were prepared. Special attention was given to the data quality and the process of quality check was described. This database offers an ensemble of data with high temporal resolution and creates a source on radiation in relation with environment and vegetation in polluted areas of cities.
Mathilde Marchand, Abdellatif Ghennioui, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 15, 21–29, https://doi.org/10.5194/asr-15-21-2018, https://doi.org/10.5194/asr-15-21-2018, 2018
Marc Bengulescu, Philippe Blanc, and Lucien Wald
Nonlin. Processes Geophys., 25, 19–37, https://doi.org/10.5194/npg-25-19-2018, https://doi.org/10.5194/npg-25-19-2018, 2018
Short summary
Short summary
We employ the Hilbert–Huang transform to study the temporal variability in time series of daily means of the surface solar irradiance (SSI) at different locations around the world. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency "weather noise", irrespective of the geographical location or of the local climate. Our findings can improve models for estimating SSI from satellite images or forecasts of the SSI.
Philippe Blanc, Benoit Gschwind, Lionel Ménard, and Lucien Wald
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-141, https://doi.org/10.5194/essd-2017-141, 2018
Revised manuscript not accepted
Short summary
Short summary
The construction of worldwide maps of surface bidirectional reflectance distribution function (BRDF) parameters is presented. The original data stems from the NASA which is making available maps of BRDF parameters from the Moderate Resolution Imaging Spectroradiometer instrument. The original data has been averaged for each month for the period 2004–2011 and a spatial completion of data was performed. The dataset in NetCDF is referenced by doi:10.23646/85d2cd5f-ccaa-482e-a4c9-b6e0c59d966c.
William Wandji Nyamsi, Phillipe Blanc, John A. Augustine, Antti Arola, and Lucien Wald
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-512, https://doi.org/10.5194/bg-2017-512, 2018
Manuscript not accepted for further review
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating photosynthetically active radiation at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
William Wandji Nyamsi, Mikko R. A. Pitkänen, Youva Aoun, Philippe Blanc, Anu Heikkilä, Kaisa Lakkala, Germar Bernhard, Tapani Koskela, Anders V. Lindfors, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 10, 4965–4978, https://doi.org/10.5194/amt-10-4965-2017, https://doi.org/10.5194/amt-10-4965-2017, 2017
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating UV fluxes at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
Marc Bengulescu, Philippe Blanc, Alexandre Boilley, and Lucien Wald
Adv. Sci. Res., 14, 35–48, https://doi.org/10.5194/asr-14-35-2017, https://doi.org/10.5194/asr-14-35-2017, 2017
Short summary
Short summary
This study investigates the characteristic time-scales of variability found in long-term time-series of daily means of surface solar irradiance (SSI). Estimates of SSI from satellite-derived HelioClim-3 and radiation products from ERA-Interim and MERRA-2 re-analyses are compared to WRDC measurements. It is found that HelioClim-3 renders a more accurate picture of the variability found in ground measurements, not only globally, but also with respect to individual characteristic time-scales.
Mathilde Marchand, Nasser Al-Azri, Armel Ombe-Ndeffotsing, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 14, 7–15, https://doi.org/10.5194/asr-14-7-2017, https://doi.org/10.5194/asr-14-7-2017, 2017
Short summary
Short summary
The solar hourly irradiation received at ground level estimated by the databases HelioClim-3v4, HelioClim-3v5 and Copernicus Atmosphere Monitoring Service (CAMS) Radiation Service are compared to measurements made in stations in Oman and Abu Dhabi. The correlation coefficients are greater than 0.97. The relative bias is less than 5%. Each database captures accurately the temporal and spatial variability of the irradiance field. The three databases are reliable sources to assess solar radiation.
Alex C. Ruane, Claas Teichmann, Nigel W. Arnell, Timothy R. Carter, Kristie L. Ebi, Katja Frieler, Clare M. Goodess, Bruce Hewitson, Radley Horton, R. Sari Kovats, Heike K. Lotze, Linda O. Mearns, Antonio Navarra, Dennis S. Ojima, Keywan Riahi, Cynthia Rosenzweig, Matthias Themessl, and Katharine Vincent
Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, https://doi.org/10.5194/gmd-9-3493-2016, 2016
Short summary
Short summary
The Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) Advisory Board for CMIP6 was created to improve communications between communities that apply climate model output for societal benefit and the climate model centers. This manuscript describes the establishment of the VIACS Advisory Board as a coherent avenue for communication utilizing leading networks, experts, and programs; results of initial interactions during the development of CMIP6; and its potential next activities.
Claire Thomas, Laurent Saboret, Etienne Wey, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 129–136, https://doi.org/10.5194/asr-13-129-2016, https://doi.org/10.5194/asr-13-129-2016, 2016
Short summary
Short summary
HelioClim-3 (version 4) is a satellite-derived solar surface irradiance database available at d-1 until 2015. To fulfill the requirements of numerous users, a new service based on the principle of persistence has been developed; it provides solar data in real time and forecasts until the end of the current day. The service exhibits good performances for 15 min and 1 h ahead forecasts, and degrades as the temporal horizon increases. Several customers have so far purchased this service.
Marc Bengulescu, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 121–127, https://doi.org/10.5194/asr-13-121-2016, https://doi.org/10.5194/asr-13-121-2016, 2016
Short summary
Short summary
The continuous wavelet (CWT) and the Hilbert–Huang transforms (HHT) are compared for the analysis of the temporal variability on ten years of daily means of the surface solar irradiance. In both cases, the variability exhibits a plateau between scales of two days and three months that has decreasing power with increasing scale, a spectral peak corresponding to the annual cycle, and a low power regime in-between. The HHT is shown to be suitable for inspecting the variability of the measurements.
Claire Thomas, Etienne Wey, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 81–86, https://doi.org/10.5194/asr-13-81-2016, https://doi.org/10.5194/asr-13-81-2016, 2016
Short summary
Short summary
Several satellite-derived solar surface irradiance databases provide long-term and homogeneously distributed information on the solar potential at ground level. This paper presents the validation results of three of these databases: HelioClim-3 (versions 4 and 5) and the CAMS radiation service, versus the measurements of 42 stations in Brazil. Despite a slight overestimation of the CAMS radiation service, the three databases are suitable for studies of the solar resources in Brazil.
Mireille Lefèvre and Lucien Wald
Adv. Sci. Res., 13, 21–26, https://doi.org/10.5194/asr-13-21-2016, https://doi.org/10.5194/asr-13-21-2016, 2016
Short summary
Short summary
The new CAMS (Copernicus Atmosphere Monitoring Service) McClear service is a practical easy-to-use tool to estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any time. This article presents validation against 1 min measurements made at three very close stations in Israel in desert conditions. The good results demonstrate the accuracy of McClear and its ability to capture the temporal and spatial variability of the irradiance field.
Mohamed Korany, Mohamed Boraiy, Yehia Eissa, Youva Aoun, Magdy M. Abdel Wahab, Stéphane C. Alfaro, Philippe Blanc, Mossad El-Metwally, Hosni Ghedira, Katja Hungershoefer, and Lucien Wald
Earth Syst. Sci. Data, 8, 105–113, https://doi.org/10.5194/essd-8-105-2016, https://doi.org/10.5194/essd-8-105-2016, 2016
Short summary
Short summary
A database of global and diffuse components of the surface solar hourly irradiation measured from 2004 to 2010 at eight Egyptian meteorological stations is presented. At three sites, the direct component is also available. In addition, a series of meteorological variables is provided at the same hourly resolution. The measurements and quality checks applied to the data are detailed. Finally, 13500 to 29000 measurements of global and diffuse hourly irradiation are available at each site.
P. Blanc and L. Wald
Adv. Sci. Res., 13, 1–6, https://doi.org/10.5194/asr-13-1-2016, https://doi.org/10.5194/asr-13-1-2016, 2016
Short summary
Short summary
Time series of hourly measurements or modelled values of surface solar irradiation are increasingly available. Currently, no solar zenith and azimuth angles are associated to each measurement whereas such angles are necessary for handling the measured or modelled irradiations. A method is proposed to assess such angles with a great accuracy. It makes use of two modelled time-series that can be computed using the web site www.soda-pro.com for any site in the world.
Y. Eissa, P. Blanc, L. Wald, and H. Ghedira
Atmos. Meas. Tech., 8, 5099–5112, https://doi.org/10.5194/amt-8-5099-2015, https://doi.org/10.5194/amt-8-5099-2015, 2015
Short summary
Short summary
This study investigates whether the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic beam and circumsolar irradiances under cloud-free conditions in a desert environment. By comparing the modelled irradiances against reference ground measurements, the monochromatic beam and circumsolar irradiances may very well be modelled using a set of inputs extracted from the AERONET data.
W. Wandji Nyamsi, A. Arola, P. Blanc, A. V. Lindfors, V. Cesnulyte, M. R. A. Pitkänen, and L. Wald
Atmos. Chem. Phys., 15, 7449–7456, https://doi.org/10.5194/acp-15-7449-2015, https://doi.org/10.5194/acp-15-7449-2015, 2015
Short summary
Short summary
A novel model of the absorption of radiation by ozone in the UV bands [283, 307]nm and [307, 328]nm yields improvements in the modeling of the transmissivity in these bands. This model is faster than detailed spectral calculations and is as accurate with maximum errors of respectively 0.0006 and 0.0143. How to practically implement this new parameterization in a radiative transfer model is discussed for the case of libRadtran.
W. Wandji Nyamsi, B. Espinar, P. Blanc, and L. Wald
Adv. Sci. Res., 12, 5–10, https://doi.org/10.5194/asr-12-5-2015, https://doi.org/10.5194/asr-12-5-2015, 2015
Short summary
Short summary
We propose an innovative method to estimate the Photosynthetically Active Radiation (PAR) under clear sky conditions derived from the fast approach of Kato et al. (1999). It provides very good results better than the two state-of-the-art empirical methods computing the daily mean of PAR from the daily mean of total irradiance. In addition, this technique may be extended to be able to accurately estimate other spectral quantities taking into account absorption of plants photosynthetic pigments.
P. Blanc, C. Coulaud, and L. Wald
Adv. Sci. Res., 12, 1–4, https://doi.org/10.5194/asr-12-1-2015, https://doi.org/10.5194/asr-12-1-2015, 2015
Short summary
Short summary
New Caledonia experiences a decrease in surface solar irradiation since 2004, of order of 4% of the mean yearly irradiation, and amounts to 9 W m 2. The preeminent roles of the changes in cloud cover and to a lesser extent, those in aerosol optical depth on the decrease in yearly irradiation are evidenced. The study highlights the role of data sets offering a worldwide coverage in understanding changes in solar radiation and planning large solar energy plants.
Z. Qu, B. Gschwind, M. Lefevre, and L. Wald
Atmos. Meas. Tech., 7, 3927–3933, https://doi.org/10.5194/amt-7-3927-2014, https://doi.org/10.5194/amt-7-3927-2014, 2014
Short summary
Short summary
The HelioClim-3 database (HC3v3) provides records of surface solar irradiation every 15 min estimated by processing images from the geostationary meteorological Meteosat satellites using climatological data sets of atmospheric properties. A method is proposed to improve a posteriori HC3v3 by combining it with data records of advanced global aerosol property forecasts and physically consistent total column content in water vapour and ozone produced by the MACC projects.
K. M. Willett, R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr.
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, https://doi.org/10.5194/cp-10-1983-2014, 2014
Short summary
Short summary
We have developed HadISDH, a new gridded global land monthly mean climate montitoring product for humidity and temperature from 1973 to then end of 2013 (updated annually) based entirely on in situ observations. Uncertainty estimates are provided. Over the period of record significant warming and increases in water vapour have taken place. The specific humidity trends have slowed since a peak in 1998 concurrent with decreasing relative humidity from 2000 onwards.
A. Oumbe, Z. Qu, P. Blanc, M. Lefèvre, L. Wald, and S. Cros
Geosci. Model Dev., 7, 1661–1669, https://doi.org/10.5194/gmd-7-1661-2014, https://doi.org/10.5194/gmd-7-1661-2014, 2014
T. J. Osborn and P. D. Jones
Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, https://doi.org/10.5194/essd-6-61-2014, 2014
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013, https://doi.org/10.5194/gi-2-305-2013, 2013
M. Lefèvre, A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald, M. Schroedter-Homscheidt, C. Hoyer-Klick, A. Arola, A. Benedetti, J. W. Kaiser, and J.-J. Morcrette
Atmos. Meas. Tech., 6, 2403–2418, https://doi.org/10.5194/amt-6-2403-2013, https://doi.org/10.5194/amt-6-2403-2013, 2013
K. M. Willett, C. N. Williams Jr., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, P. D. Jones, and D. E. Parker
Clim. Past, 9, 657–677, https://doi.org/10.5194/cp-9-657-2013, https://doi.org/10.5194/cp-9-657-2013, 2013
Related subject area
Atmosphere – Meteorology
HydroGFD3.0 (Hydrological Global Forcing Data): a 25 km global precipitation and temperature data set updated in near-real time
Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC4A
Hydrometeorological data from a Remotely Operated Multi-Parameter Station network in Central Asia
WegenerNet high-resolution weather and climate data from 2007 to 2020
G2DC-PL+: a gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula and Odra basins
Meteorological observations collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April–June 2019
High-resolution in situ observations of atmospheric thermodynamics using dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign
Remote-sensing and radiosonde datasets collected in the San Luis Valley during the LAPSE-RATE campaign
Ten-year return levels of sub-daily extreme precipitation over Europe
Antarctic atmospheric boundary layer observations with the Small Unmanned Meteorological Observer (SUMO)
A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004–2017
Real-time WRF large-eddy simulations to support uncrewed aircraft system (UAS) flight planning and operations during 2018 LAPSE-RATE
Atmospheric radiative profiles during EUREC4A
Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign
Radar and ground-level measurements of precipitation collected by the École Polytechnique Fédérale de Lausanne during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic winter games
Climate benchmarks and input parameters representing locations in 68 countries for a stochastic weather generator, CLIGEN
A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018
Observations of the thermodynamic and kinematic state of the atmospheric boundary layer over the San Luis Valley, CO, using the CopterSonde 2 remotely piloted aircraft system in support of the LAPSE-RATE field campaign
Measurements from mobile surface vehicles during the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE)
Construction of homogenized daily surface air temperature for Tianjin city during 1887–2019
Sub-seasonal forecasts of demand, wind power and solar power generation for 28 European Countries
Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea)
Meteorological observations in tall masts for the mapping of atmospheric flow in Norwegian fjords
Data generated during the 2018 LAPSE-RATE campaign: an introduction and overview
University of Colorado and Black Swift Technologies RPAS-based measurements of the lower atmosphere during LAPSE-RATE
High-resolution global atmospheric moisture connections from evaporation to precipitation
BAYWRF: a high-resolution present-day climatological atmospheric dataset for Bavaria
A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau
Development of the HadISDH.marine humidity climate monitoring dataset
A long-term (2005–2019) eddy covariance data set of CO2 and H2O fluxes from the Tibetan alpine steppe
Tropical cyclones vertical structure from GNSS radio occultation: an archive covering the period 2001–2018
A dataset of microclimate and radiation and energy fluxes from the Lake Taihu eddy flux network
A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017
SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018
The fate of land evaporation – a global dataset
University of Kentucky measurements of wind, temperature, pressure and humidity in support of LAPSE-RATE using multisite fixed-wing and rotorcraft unmanned aerial systems
Rescue and quality control of sub-daily meteorological data collected at Montevergine Observatory (Southern Apennines), 1884–1963
High-resolution (1 km) Polar WRF output for 79° N Glacier and the northeast of Greenland from 2014 to 2018
Early instrumental meteorological observations in Switzerland: 1708–1873
In situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight
Disdrometer measurements under Sense-City rainfall simulator
A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard)
A pan-African high-resolution drought index dataset
Meteorological drought lacunarity around the world and its classification
The Tall Tower Dataset: a unique initiative to boost wind energy research
A dataset of tracer concentrations and meteorological observations from the Bolzano Tracer EXperiment (BTEX) to characterize pollutant dispersion processes in an Alpine valley
Statistical downscaling of water vapour satellite measurements from profiles of tropical ice clouds
Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia
1 km monthly temperature and precipitation dataset for China from 1901 to 2017
The Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD)
Peter Berg, Fredrik Almén, and Denica Bozhinova
Earth Syst. Sci. Data, 13, 1531–1545, https://doi.org/10.5194/essd-13-1531-2021, https://doi.org/10.5194/essd-13-1531-2021, 2021
Short summary
Short summary
HydroGFD3.0 (Hydrological Global Forcing Data) is a data set of daily precipitation and temperature intended for use in hydrological modelling. The method uses different observational data sources to correct the variables from a model estimation of precipitation and temperature. An openly available data set covers the years 1979–2019, and times after this are available by request.
Pierre Bosser, Olivier Bock, Cyrille Flamant, Sandrine Bony, and Sabrina Speich
Earth Syst. Sci. Data, 13, 1499–1517, https://doi.org/10.5194/essd-13-1499-2021, https://doi.org/10.5194/essd-13-1499-2021, 2021
Short summary
Short summary
In the framework of the EUREC4A campaign, water vapour measurements were retrieved over the tropical west Atlantic Ocean from GNSS data acquired from three research vessels (R/Vs Atalante, Maria S. Merian and Meteor). The retrievals from R/Vs Atalante and Meteor are shown to be of high quality unlike the results for the R/V Maria S. Merian. These ship-borne retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Mikołaj Piniewski, Mateusz Szcześniak, Ignacy Kardel, Somsubhra Chattopadhyay, and Tomasz Berezowski
Earth Syst. Sci. Data, 13, 1273–1288, https://doi.org/10.5194/essd-13-1273-2021, https://doi.org/10.5194/essd-13-1273-2021, 2021
Short summary
Short summary
High-resolution gridded climate data are a key component of earth-system and hydrology models. Here we have described how we updated and extended the previous version of the climate dataset covering Poland and parts of neighbouring countries. The new dataset includes new variables (wind speed and relative humidity), has a higher spatial resolution (2 km) and has been updated to cover the most recent years 2014–2019. Interpolation errors exhibited large spatial and temporal variability.
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, Selina Mitchell, Jeremy E. Morris, Charlie Hébert-Pinard, Peter Rodriguez, and Hadleigh D. Thompson
Earth Syst. Sci. Data, 13, 1233–1249, https://doi.org/10.5194/essd-13-1233-2021, https://doi.org/10.5194/essd-13-1233-2021, 2021
Short summary
Short summary
This article discusses the data that were collected during the Storms and Precipitation Across the continental Divide (SPADE) field campaign in spring 2019 in the Canadian Rockies, along the Alberta and British Columbia border. Various instruments were installed at five field sites to gather information about atmospheric conditions focussing on precipitation. Details about the field sites, the instrumentation used, the variables collected, and the collection methods and intervals are presented.
Holger Vömel, Mack Goodstein, Laura Tudor, Jacquelyn Witte, Željka Fuchs-Stone, Stipo Sentić, David Raymond, Jose Martinez-Claros, Ana Juračić, Vijit Maithel, and Justin W. Whitaker
Earth Syst. Sci. Data, 13, 1107–1117, https://doi.org/10.5194/essd-13-1107-2021, https://doi.org/10.5194/essd-13-1107-2021, 2021
Short summary
Short summary
We provide an extensive data set of in situ vertical profile observations for pressure, temperature, humidity, and winds from 648 NCAR NRD41 dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign. The measurements were taken during 22 flights of the NSF/NCAR G-V research aircraft in August and September 2019 over the eastern Pacific Ocean and the Caribbean Sea. The data allow a detailed study of atmospheric dynamics and convection over the tropical ocean.
Tyler M. Bell, Petra M. Klein, Julie K. Lundquist, and Sean Waugh
Earth Syst. Sci. Data, 13, 1041–1051, https://doi.org/10.5194/essd-13-1041-2021, https://doi.org/10.5194/essd-13-1041-2021, 2021
Short summary
Short summary
In July 2018, numerous weather sensing remotely piloted aircraft systems (RPASs) were flown in a flight week called Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). As part of LAPSE-RATE, ground-based remote and in situ systems were also deployed to supplement and enhance observations from the RPASs. These instruments include multiple Doppler lidars, thermodynamic profilers, and radiosondes. This paper describes data from these systems.
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021, https://doi.org/10.5194/essd-13-983-2021, 2021
Short summary
Short summary
This study provides a homogeneous data set of 10-year rainfall return levels based on 50 simulations of the Canadian Regional Climate Model v5 (CRCM5). In order to evaluate its quality, the return levels are compared to those of observation-based rainfall of 16 European countries from 32 different sources. The CRCM5 is able to capture the general spatial pattern of observed extreme precipitation, and also the intensity is reproduced in 77 % of the area for rainfall durations of 3 h and longer.
John J. Cassano, Melissa A. Nigro, Mark W. Seefeldt, Marwan Katurji, Kelly Guinn, Guy Williams, and Alice DuVivier
Earth Syst. Sci. Data, 13, 969–982, https://doi.org/10.5194/essd-13-969-2021, https://doi.org/10.5194/essd-13-969-2021, 2021
Short summary
Short summary
Between January 2012 and June 2017, a small unmanned aerial system (sUAS), or drone, known as the Small Unmanned Meteorological Observer (SUMO), was used to observe the lowest 1000 m of the Antarctic atmosphere. During six Antarctic field campaigns, 116 SUMO flights were completed. These flights took place during all seasons over both permanent ice and ice-free locations on the Antarctic continent and over sea ice in the western Ross Sea providing unique observations of the Antarctic atmosphere.
Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung
Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021, https://doi.org/10.5194/essd-13-827-2021, 2021
Short summary
Short summary
Deep convection has different properties at different scales. We develop a 4 km h−1 observational data product of mesoscale convective systems and isolated deep convection in the United States from 2004–2017. We find that both types of convective systems contribute significantly to precipitation east of the Rocky Mountains but with distinct spatiotemporal characteristics. The data product will be useful for observational analyses and model evaluations of convection events at different scales.
James O. Pinto, Anders A. Jensen, Pedro A. Jiménez, Tracy Hertneky, Domingo Muñoz-Esparza, Arnaud Dumont, and Matthias Steiner
Earth Syst. Sci. Data, 13, 697–711, https://doi.org/10.5194/essd-13-697-2021, https://doi.org/10.5194/essd-13-697-2021, 2021
Short summary
Short summary
The dataset produced here was generated as part of a real-time demonstration of a new capability to provide fine-scale weather guidance to support small UAS operations. The nested model configuration enabled us to resolve large turbulent eddies that developed in response to daytime heating and demonstrated the current state of the science in coupling mesoscale forcing with a large eddy simulation (LES) model. Output from these real-time simulations was used for planning IOPs during LAPSE-RATE.
Anna Lea Albright, Benjamin Fildier, Ludovic Touzé-Peiffer, Robert Pincus, Jessica Vial, and Caroline Muller
Earth Syst. Sci. Data, 13, 617–630, https://doi.org/10.5194/essd-13-617-2021, https://doi.org/10.5194/essd-13-617-2021, 2021
Short summary
Short summary
A number of climate mysteries are rooted in uncertainties in how clouds respond to their environment in the trades, the global belt of easterly winds. Differences in radiative heating play a role in the couplings between clouds and their environment. We calculate radiative profiles from 2580 dropsondes and radiosondes from the EUREC4A field campaign (downstream Atlantic trades, winter 2020). We describe the method, assess uncertainty, and discuss radiative heating variability on multiple scales.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Josué Gehring, Alfonso Ferrone, Anne-Claire Billault-Roux, Nikola Besic, Kwang Deuk Ahn, GyuWon Lee, and Alexis Berne
Earth Syst. Sci. Data, 13, 417–433, https://doi.org/10.5194/essd-13-417-2021, https://doi.org/10.5194/essd-13-417-2021, 2021
Short summary
Short summary
This article describes a dataset of precipitation and cloud measurements collected from November 2017 to March 2018 in Pyeongchang, South Korea. The dataset includes weather radar data and images of snowflakes. It allows for studying the snowfall intensity; wind conditions; and shape, size and fall speed of snowflakes. Classifications of the types of snowflakes show that aggregates of ice crystals were dominant. This dataset represents a unique opportunity to study snowfall in this region.
Andrew T. Fullhart, Mark A. Nearing, Gerardo Armendariz, and Mark A. Weltz
Earth Syst. Sci. Data, 13, 435–446, https://doi.org/10.5194/essd-13-435-2021, https://doi.org/10.5194/essd-13-435-2021, 2021
Short summary
Short summary
This dataset represents CLIGEN input parameters for locations in 68 countries. CLIGEN is a point-scale stochastic weather generator that produces long-term weather simulations with daily output. The input parameters are essentially monthly climate statistics that also serve as climate benchmarks. CLIGEN has various applications including being used to force soil erosion models. This dataset may reduce the effort needed in preparing climate inputs for such applications.
Qianfeng Wang, Jingyu Zeng, Junyu Qi, Xuesong Zhang, Yue Zeng, Wei Shui, Zhanghua Xu, Rongrong Zhang, Xiaoping Wu, and Jiang Cong
Earth Syst. Sci. Data, 13, 331–341, https://doi.org/10.5194/essd-13-331-2021, https://doi.org/10.5194/essd-13-331-2021, 2021
Short summary
Short summary
(1) The SPEI has been widely used to monitor and assess drought characteristics.
(2) A multi-scale daily SPEI dataset was developed across mainland China from 1961 to 2018.
(3) The daily SPEI dataset can identify the start and end days of a drought event.
(4) The daily SPEI dataset developed is free, open, and publicly available from this study.
Elizabeth A. Pillar-Little, Brian R. Greene, Francesca M. Lappin, Tyler M. Bell, Antonio R. Segales, Gustavo Britto Hupsel de Azevedo, William Doyle, Sai Teja Kanneganti, Daniel D. Tripp, and Phillip B. Chilson
Earth Syst. Sci. Data, 13, 269–280, https://doi.org/10.5194/essd-13-269-2021, https://doi.org/10.5194/essd-13-269-2021, 2021
Short summary
Short summary
During July 2018, researchers from OU participated in the LAPSE-RATE field campaign in San Luis Valley, Colorado. The OU team completed 180 flights using three RPASs over the course of 6 d of operation to collect vertical profiles of the thermodynamic and kinematic state of the ABL. This article describes sampling strategies, data collection, platform intercomparibility, data quality, and the dataset's possible applications to convective initiation, drainage flows, and ABL transitions.
Gijs de Boer, Sean Waugh, Alexander Erwin, Steven Borenstein, Cory Dixon, Wafa'a Shanti, Adam Houston, and Brian Argrow
Earth Syst. Sci. Data, 13, 155–169, https://doi.org/10.5194/essd-13-155-2021, https://doi.org/10.5194/essd-13-155-2021, 2021
Short summary
Short summary
This paper provides an overview of measurements collected in south-central Colorado (USA) during the 2018 LAPSE-RATE campaign. The measurements described in this article were collected by mobile surface vehicles, including cars, trucks, and vans, and include measurements of thermodynamic quantities (e.g., temperature, humidity, pressure) and winds. These measurements can be used to study the evolution of the atmospheric boundary layer at a high-elevation site under a variety of conditions.
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-343, https://doi.org/10.5194/essd-2020-343, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series since 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change over the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Hannah C. Bloomfield, David J. Brayshaw, Paula L. M. Gonzalez, and Andrew Charlton-Perez
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-312, https://doi.org/10.5194/essd-2020-312, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
Energy systems are becoming more exposed to weather as more renewable generation is built. This means access to high quality weather forecasts is becoming more important. This paper showcases past forecasts of electricity demand, wind power and solar power generation across 28 European countries. The timescale of interest is from 5 days out to 1 month ahead. This paper highlights the recent improvements in forecast skill and hopes to promote collaboration in the energy-meteorology community.
Marta Wenta, David Brus, Konstantinos Doulgeris, Ville Vakkari, and Agnieszka Herman
Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, https://doi.org/10.5194/essd-13-33-2021, 2021
Short summary
Short summary
Representations of the atmospheric boundary layer over sea ice are a challenge for numerical weather prediction models. To increase our understanding of the relevant processes, a field campaign was carried out over the sea ice in the Baltic Sea from 27 February to 2 March 2020. Observations included 27 unmanned aerial vehicle flights, four photogrammetry missions, and shore-based automatic weather station and lidar wind measurements. The dataset obtained is used to validate model results.
Birgitte Rugaard Furevik, Hálfdán Ágústsson, Anette Lauen Borg, Zakari Midjiyawa, Finn Nyhammer, and Magne Gausen
Earth Syst. Sci. Data, 12, 3621–3640, https://doi.org/10.5194/essd-12-3621-2020, https://doi.org/10.5194/essd-12-3621-2020, 2020
Short summary
Short summary
The Norwegian west coast is mountainous with narrow fjords. Local wind conditions at the shoreline of the fjords are often decoupled from the wind on the coast or in the mountains. Wind measurements are generally obtained at lighthouses or airports and thus do not represent the wind in the fjords. This paper describes wind, turbulence and other meteorological measurements from 11 masts in three fjords. The first masts were erected in 2014, and measurements will continue until at least 2024.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Gijs de Boer, Cory Dixon, Steven Borenstein, Dale A. Lawrence, Jack Elston, Daniel Hesselius, Maciej Stachura, Roger Laurence III, Sara Swenson, Christopher M. Choate, Abhiram Doddi, Aiden Sesnic, Katherine Glasheen, Zakariya Laouar, Flora Quinby, Eric Frew, and Brian M. Argrow
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-333, https://doi.org/10.5194/essd-2020-333, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes data collected by uncrewed aircraft operated by the University of Colorado Boulder and Black Swift Technologies during the Lower Atmospheric Profiling Studies at Elevation - A Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. This effort was conducted in the San Luis Valley of Colorado in July 2018, and included intensive observing of the atmospheric boundary layer. This manuscript describes data collected by four aircraft operated by these entities.
Obbe A. Tuinenburg, Jolanda J. E. Theeuwen, and Arie Staal
Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, https://doi.org/10.5194/essd-12-3177-2020, 2020
Short summary
Short summary
We provide a global database of moisture flows through the atmosphere using the most recent ERA5 atmospheric reanalysis. Using this database, it is possible to determine where evaporation will rain out again. However, the reverse is also possible, to determine where precipitation originated from as evaporation. This dataset can be used to determine atmospheric moisture recycling rates and therefore how much water is lost for a catchment through the atmosphere.
Emily Collier and Thomas Mölg
Earth Syst. Sci. Data, 12, 3097–3112, https://doi.org/10.5194/essd-12-3097-2020, https://doi.org/10.5194/essd-12-3097-2020, 2020
Short summary
Short summary
As part of a recent project that aims to investigate the impact of climate change on forest ecosystems in Bavaria, we developed a high-resolution atmospheric dataset, BAYWRF, for this region that covers the period of September 1987 to August 2018. The data reproduce observed variability in recent meteorological conditions well and provide a useful tool for linking large-scale climate change to local impacts on economic, societal, ecological, and agricultural processes.
Yaoming Ma, Zeyong Hu, Zhipeng Xie, Weiqiang Ma, Binbin Wang, Xuelong Chen, Maoshan Li, Lei Zhong, Fanglin Sun, Lianglei Gu, Cunbo Han, Lang Zhang, Xin Liu, Zhangwei Ding, Genhou Sun, Shujin Wang, Yongjie Wang, and Zhongyan Wang
Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, https://doi.org/10.5194/essd-12-2937-2020, 2020
Short summary
Short summary
In comparison with other terrestrial regions of the world, meteorological observations are scarce over the Tibetan Plateau.
This has limited our understanding of the mechanisms underlying complex interactions between the different earth spheres with heterogeneous land surface conditions.
The release of this continuous and long-term dataset with high temporal resolution is expected to facilitate broad multidisciplinary communities in understanding key processes on the
Third Pole of the world.
Kate M. Willett, Robert J. H. Dunn, John J. Kennedy, and David I. Berry
Earth Syst. Sci. Data, 12, 2853–2880, https://doi.org/10.5194/essd-12-2853-2020, https://doi.org/10.5194/essd-12-2853-2020, 2020
Short summary
Short summary
We describe the development and validation of a new near-global gridded marine humidity monitoring product, HadISDH.marine, from air temperature and dew point temperature reported by ships. Erroneous data, biases, and inhomogeneities have been removed where possible through checks for outliers, supersaturated values, repeated values, and adjustments for known biases in non-aspirated instruments and ship heights. We have also estimated uncertainty in the data at the grid box and regional level.
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020, https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
Elżbieta Lasota, Andrea K. Steiner, Gottfried Kirchengast, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 2679–2693, https://doi.org/10.5194/essd-12-2679-2020, https://doi.org/10.5194/essd-12-2679-2020, 2020
Short summary
Short summary
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the period 2001–2018. The tropical cyclone best tracks are co-located in time and space with high-vertical-resolution atmospheric profiles (temperature, pressure, humidity and refractivity) from radio occultations and with climatological profiles. This dataset can be used to analyze the inner vertical thermodynamic structure of tropical cyclones and the pre-cyclone environment.
Zhen Zhang, Mi Zhang, Chang Cao, Wei Wang, Wei Xiao, Chengyu Xie, Haoran Chu, Jiao Wang, Jiayu Zhao, Lei Jia, Qiang Liu, Wenjing Huang, Wenqing Zhang, Yang Lu, Yanhong Xie, Yi Wang, Yini Pu, Yongbo Hu, Zheng Chen, Zhihao Qin, and Xuhui Lee
Earth Syst. Sci. Data, 12, 2635–2645, https://doi.org/10.5194/essd-12-2635-2020, https://doi.org/10.5194/essd-12-2635-2020, 2020
Short summary
Short summary
Inland lakes play an important role in regulating local climate. In this paper, we describe a dataset on microclimate and eddy covariance variables measured at a network of sites across Lake Taihu. The dataset, which appears to be the first of its kind for lake systems, can be used for validation of lake–air flux parameterizations, investigation of climatic controls on lake evaporation, evaluation of remote-sensing surface data products and global synthesis on lake–air interactions.
Bing Zhao, Kebiao Mao, Yulin Cai, Jiancheng Shi, Zhaoliang Li, Zhihao Qin, Xiangjin Meng, Xinyi Shen, and Zhonghua Guo
Earth Syst. Sci. Data, 12, 2555–2577, https://doi.org/10.5194/essd-12-2555-2020, https://doi.org/10.5194/essd-12-2555-2020, 2020
Short summary
Short summary
Land surface temperature is a key variable for climate and ecological environment research. We reconstructed a land surface temperature dataset (2003–2017) to take advantage of the ground observation site through building a reconstruction model which overcomes the effects of cloud. The reconstructed dataset exhibited significant improvements and can be used for the spatiotemporal evaluation of land surface temperature and for high-temperature and drought-monitoring studies.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Andreas Link, Ruud van der Ent, Markus Berger, Stephanie Eisner, and Matthias Finkbeiner
Earth Syst. Sci. Data, 12, 1897–1912, https://doi.org/10.5194/essd-12-1897-2020, https://doi.org/10.5194/essd-12-1897-2020, 2020
Short summary
Short summary
This work provides a global dataset on the fate of land evaporation for a fine-meshed grid of source and receptor cells. The dataset was created through a global run of the numerical moisture-tracking model WAM-2layers. The dataset could be used for investigations into average annual, seasonal, and interannual sink and source regions of atmospheric moisture from land masses for most of the regions in the world and comes with example scripts for the readout and plotting of the data.
Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, L. Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. MacPhee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, and Suzanne Weaver Smith
Earth Syst. Sci. Data, 12, 1759–1773, https://doi.org/10.5194/essd-12-1759-2020, https://doi.org/10.5194/essd-12-1759-2020, 2020
Short summary
Short summary
This article describes the systems, processes and procedures used by researchers from the University of Kentucky (UK) for the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) in the San Luis Valley in Colorado, USA. Using unmanned aerial systems (UASs) as the primary data-gathering tool, UK supported multipoint, multisystem measurements of drainage flow, boundary layer transition, convection initiation and aerosol concentration.
Vincenzo Capozzi, Yuri Cotroneo, Pasquale Castagno, Carmela De Vivo, and Giorgio Budillon
Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, https://doi.org/10.5194/essd-12-1467-2020, 2020
Short summary
Short summary
This work describes the entire rescue process, from digitization to quality control, of a new historical dataset that includes sub-daily meteorological observations collected in Montevergine (southern Italy) since the late 19th century. These data enhance and supplement sub-daily datasets currently available in Mediterranean regions. Moreover, they offer a unique opportunity to investigate meteorological and climatological features of the mountainous environment prior to the 1950s.
Jenny V. Turton, Thomas Mölg, and Emily Collier
Earth Syst. Sci. Data, 12, 1191–1202, https://doi.org/10.5194/essd-12-1191-2020, https://doi.org/10.5194/essd-12-1191-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream drains approximately 12 % of the entire Greenland ice sheet and could contribute over 1 m of sea level rise if it were to completely disappear. However, this region is a relatively new research area. Here we provide an atmospheric modelling dataset from 2014 to 2018, which includes many meteorological and radiation variables. The model data have been compared to weather stations and show good agreement. This dataset has many future applications.
Yuri Brugnara, Lucas Pfister, Leonie Villiger, Christian Rohr, Francesco Alessandro Isotta, and Stefan Brönnimann
Earth Syst. Sci. Data, 12, 1179–1190, https://doi.org/10.5194/essd-12-1179-2020, https://doi.org/10.5194/essd-12-1179-2020, 2020
Short summary
Short summary
Early instrumental meteorological observations in Switzerland made before 1863, the year a national station network was created, were until recently largely unexplored. After a systematic compilation of the documents available in Swiss archives, we digitised a large part of the data so that they can be used in climate research. In this paper we give an overview of the development of meteorological observations in Switzerland and describe our approach to convert them into modern units.
Astrid Lampert, Konrad Bärfuss, Andreas Platis, Simon Siedersleben, Bughsin Djath, Beatriz Cañadillas, Robert Hunger, Rudolf Hankers, Mark Bitter, Thomas Feuerle, Helmut Schulz, Thomas Rausch, Maik Angermann, Alexander Schwithal, Jens Bange, Johannes Schulz-Stellenfleth, Thomas Neumann, and Stefan Emeis
Earth Syst. Sci. Data, 12, 935–946, https://doi.org/10.5194/essd-12-935-2020, https://doi.org/10.5194/essd-12-935-2020, 2020
Short summary
Short summary
With the research aircraft Do-128 of TU Braunschweig, meteorological measurements were performed in the wakes of offshore wind parks during the project WIPAFF. During stable atmospheric conditions, the areas of reduced wind speed and enhanced turbulence behind wind parks had an extension larger than 45 km downwind. The data set consisting of 41 measurement flights is presented. Parameters include wind vector, temperature, humidity and significant wave height.
Auguste Gires, Philippe Bruley, Anne Ruas, Daniel Schertzer, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 12, 835–845, https://doi.org/10.5194/essd-12-835-2020, https://doi.org/10.5194/essd-12-835-2020, 2020
Short summary
Short summary
The Hydrology, Meteorology and Complexity Laboratory of École des Ponts ParisTech (hmco.enpc.fr) and the Sense-City consortium (http://sense-city.ifsttar.fr/) make available a dataset of optical disdrometer measurements stemming from a campaign that took place in September 2017 under the rainfall simulator of the Sense-City climatic chamber, which is located near Paris.
Tomasz Wawrzyniak and Marzena Osuch
Earth Syst. Sci. Data, 12, 805–815, https://doi.org/10.5194/essd-12-805-2020, https://doi.org/10.5194/essd-12-805-2020, 2020
Short summary
Short summary
The article presents a climatological dataset from the Polish Polar Station Hornsund (SW Spitsbergen). With a positive trend of mean annual temperature of +1.14 °C per decade during 1979–2018,
the climate in Hornsund is warming over 6 times more than the global average. Due to a general lack of long-term in situ measurements and observations, the High Arctic remains one of the largest climate-data-deficient
regions on the Earth. Therefore, the described series is of unique value.
Jian Peng, Simon Dadson, Feyera Hirpa, Ellen Dyer, Thomas Lees, Diego G. Miralles, Sergio M. Vicente-Serrano, and Chris Funk
Earth Syst. Sci. Data, 12, 753–769, https://doi.org/10.5194/essd-12-753-2020, https://doi.org/10.5194/essd-12-753-2020, 2020
Short summary
Short summary
Africa has been severely influenced by intense drought events, which has led to crop failure, food shortages, famine, epidemics and even mass migration. The current study developed a high spatial resolution drought dataset entirely from satellite-based products. The dataset has been comprehensively inter-compared with other drought indicators and may contribute to an improved characterization of drought risk and vulnerability and minimize drought's impact on water and food security in Africa.
Robert Monjo, Dominic Royé, and Javier Martin-Vide
Earth Syst. Sci. Data, 12, 741–752, https://doi.org/10.5194/essd-12-741-2020, https://doi.org/10.5194/essd-12-741-2020, 2020
Jaume Ramon, Llorenç Lledó, Núria Pérez-Zanón, Albert Soret, and Francisco J. Doblas-Reyes
Earth Syst. Sci. Data, 12, 429–439, https://doi.org/10.5194/essd-12-429-2020, https://doi.org/10.5194/essd-12-429-2020, 2020
Short summary
Short summary
A dataset containing quality-controlled wind observations from 222 tall towers has been created. Wind speed and wind direction records have been collected from existing tall towers in an effort to boost the utilization of these non-standard atmospheric datasets. Observations are compiled in a unique collection with a common format, access, documentation and quality control (QC). For the latter, a total of 18 QC checks have been considered to ensure the high quality of the wind data.
Marco Falocchi, Werner Tirler, Lorenzo Giovannini, Elena Tomasi, Gianluca Antonacci, and Dino Zardi
Earth Syst. Sci. Data, 12, 277–291, https://doi.org/10.5194/essd-12-277-2020, https://doi.org/10.5194/essd-12-277-2020, 2020
Short summary
Short summary
This paper describes a dataset of tracer concentrations and meteorological measurements collected during the Bolzano Tracer EXperiment (BTEX) to evaluate the pollutant dispersion from a waste incinerator close to Bolzano (Italian Alps).
BTEX represents one of the few experiments available in the literature performed over complex mountainous terrain to evaluate dispersion processes by means of controlled tracer releases. This dataset represents a useful benchmark for testing dispersion models.
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020, https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary
Short summary
Observations of relative humidity for ice clouds over the tropical oceans from a passive microwave sounder are downscaled by incorporating the high-resolution variability derived from simultaneous co-located cloud profiles from a lidar. By providing a method to generate pseudo-observations of relative humidity at high spatial resolution, this work will help revisit some of the current key barriers in atmospheric science.
Sixto Herrera, Rita Margarida Cardoso, Pedro Matos Soares, Fátima Espírito-Santo, Pedro Viterbo, and José Manuel Gutiérrez
Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019, https://doi.org/10.5194/essd-11-1947-2019, 2019
Short summary
Short summary
A new observational dataset of daily precipitation and temperatures for the Iberian Peninsula and the Balearic Islands has been developed and made publicly available for the community. In this work the capabilities of the new dataset to reproduce the mean and extreme regimes of precipitation and temperature are assessed and compared with the E-OBS dataset (including the ensemble version for observational uncertainty assessment).
Shouzhang Peng, Yongxia Ding, Wenzhao Liu, and Zhi Li
Earth Syst. Sci. Data, 11, 1931–1946, https://doi.org/10.5194/essd-11-1931-2019, https://doi.org/10.5194/essd-11-1931-2019, 2019
Short summary
Short summary
This study describes a 1 km monthly minimum, maximum, and mean temperatures and precipitation dataset for the mainland area of China during 1901–2017. It is the first dataset developed with such a high spatiotemporal resolution over such a long time period for China. The dataset is well evaluated by the observations using 496 national weather stations, and the evaluation indicated the dataset is sufficiently reliable for use in investigation of climate change across China.
Grégory Cesana, Anthony D. Del Genio, and Hélène Chepfer
Earth Syst. Sci. Data, 11, 1745–1764, https://doi.org/10.5194/essd-11-1745-2019, https://doi.org/10.5194/essd-11-1745-2019, 2019
Short summary
Short summary
Low clouds (cloud top below 3 km) drive most of the uncertainty in future climate projections. Here we create a new dataset, the Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD), which identifies the different types of low clouds – stratocumulus and cumulus – based on their morphology. CASCCAD provides a basis to evaluate climate models and potentially improve our understanding of the cloud response to climate warming, as well as reduce the uncertainty in future climate projection.
Cited articles
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Blanc, P., Gschwind, B., Lefèvre, M., and Wald, L.: The HelioClim project: Surface solar irradiance data for climate applications, Remote Sensing, 3, 343–361, https://doi.org/10.3390/rs3020343, 2011.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The concept of essential climate variables in support of climate research, applications, and policy, B. Am. Meteor. Soc., 95, 1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Boilley, A. and Wald, L.: Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface, Renew. Energ., 75, 135–143, https://doi.org/10.1016/j.renene.2014.09.042, 2015.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason Jr., B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The twentieth century reanalysis project, Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Marshall, C., Sheffield, J., Duan, Q., Luo, L., Wayne Higgins, R., Pinker, R. T., Dan Tarpley, J., and Meng, J.: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project, J. Geophys. Res., 108, 8842, https://doi.org/10.1029/2002JD003118, 2003.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073, 26 pp, 2011.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dekens, L., Parey, S., Grandjacques, M., and Dacunha-Castelle, D.: Multivariate distribution correction of climate model outputs: a generalisation of quantile mapping approaches, Environmetrics, https://doi.org/10.1002/env.2454, online first, 2017.
Dunn, R. J. H., Willett, K. M., Thorne, P. W., Woolley, E. V., Durre, I., Dai, A., Parker, D. E., and Vose, R. S.: HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011, Clim. Past, 8, 1649–1679, https://doi.org/10.5194/cp-8-1649-2012, 2012.
Dunn, R. J. H., Willett, K. M., Morice, C. P., and Parker, D. E.: Pairwise homogeneity assessment of HadISD, Clim. Past, 10, 1501–1522, https://doi.org/10.5194/cp-10-1501-2014, 2014.
Eissa, Y., Korany, M., Aoun, Y., Boraiy, M., Abdel Wahab, M., Alfaro, S., Blanc, P., El-Metwally, M., Ghedira, H., and Wald, L.: Validation of the surface downwelling solar irradiance estimates of the HelioClim-3 database in Egypt, Remote Sensing, 7, 9269–9291, https://doi.org/10.3390/rs70709269, 2015.
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012.
Harpham, C., Troccoli, A., Jones, P., Ranchin, T., and Wald, L.: Comparing monthly statistical distributions of wind speed measured at wind towers and estimated from ERA-Interim, 16th EMS Annual Meeting, 12–16 September 2016, Trieste, Italy, EMS Annual Meeting Abstracts, 13, EMS2016-336, 2016.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution monthly grids of monthly climatic observations: the CRU TS 3.10 dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded dataset of surface temperature and precipitation, J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Hersbach, H., Peubey, C., Simmons, A., Berrisford, P., Poli, P., and Dee, D.: ERA-20CM: a twentieth-century atmospheric model ensemble, Q. J. Roy. Meteor. Soc., 141, 2350–2375, https://doi.org/10.1002/qj.2528, 2015.
Horton, E. B., Folland, C. K., and Parker, D. E.: The changing incidence of extremes in worldwide and Central England temperatures to the end of the twentieth century, Climatic Change, 50, 267–295, 2001.
Jones, P. D.: The Reliability of Global and Hemispheric Surface Temperature Records, Adv. Atmos. Sci., 33, 269–282, https://doi.org/10.1007/s00376-015-5194-4, 2016.
Maraun, D.: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums, Geophys. Res. Lett., 39, L06706, https://doi.org/10.1029/2012GL051210, 2012.
Maraun, D.: Bias correction, quantile mapping, and downscaling: revisiting the inflation issue, J. Climate, 26, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, M., Themeßl, T., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Marchand, M., Al-Azri, N., Ombe-Ndeffotsing, A., Wey, E., and Wald, L.: Evaluating meso-scale change in performance of several databases of hourly surface irradiation in South–eastern Arabic Pensinsula, Adv. Sci. Res., 14, 7–15, https://doi.org/10.5194/asr-14-7-2017, 2017.
Orth, R. and Seneviratne, S.I.: Introduction of a simple-model-based land surface dataset for Europe, Environ. Res. Lett., 10, 044012, https://doi.org/10.1088/1748-9326/10/4/044012, 2015.
Oyerinde, G. T., Hountondji, F. C. C., Lawin, A. E., Odofin, A. J., Afouda, A., and Diekkrüger, B.: Improving hydro-climate projections with bias-correction in Sahelian Niger basin, West Africa, Climate, 5, 8, https://doi.org/10.3390/cli5010008, 2017.
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for daily precipitation in regional climate models over Europe, Theor. Appl. Climatol., 99, 187–192, 2010a.
Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., and Haerter, J.: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models, J. Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010b.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rigollier, C., Lefèvre, M., and Wald, L.: The method Heliosat-2 for deriving shortwave solar radiation from satellite images, Sol. Energy, 77, 159–169, https://doi.org/10.1016/j.solener.2004.04.017, 2004.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling, J. Climate, 19, 3088–3111, 2006.
Simmons, A. J., Berrisford, P., Dee, D. P., Hersbach, H., Hirahara, S., and Thépaut, J.-N.: A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets, Q. J. Roy. Meteor. Soc., 143: 101–119, https://doi.org/10.1002/qj.2949, 2017.
Smith, A., Lott, N., and Vose, R.: The Integrated Surface Database: Recent Developments and Partnerships, B. Am. Meteorol. Soc., 92, 704–708, https://doi.org/10.1175/2011BAMS3015.1, 2011.
Themeßl, M. J., Gobiet, A., and Leuprecht, A.: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models, Int. J. Climatol., 31, 1530–1544, https://doi.org/10.1002/joc.2168, 2011.
Themeßl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal, Climatic Change, 112, 449–468, https://doi.org/10.1007/s10584-011-0224-4, 2012.
Thomas, C., Wey, E., Blanc, P., and Wald, L.: Validation of three satellite-derived databases of surface solar radiation using measurements performed at 42 stations in Brazil, Adv. Sci. Res., 13, 129–136, https://doi.org/10.5194/asr-13-129-2016, 2016a.
Thomas, C., Wey, E., Blanc, P., Wald, L., and Lefèvre, M.: Validation of HelioClim-3 version 4, HelioClim-3 version 5 and MACC-RAD using 14 BSRN stations, 2015 Solar Heating and Cooling, Energy Procedia, 91, 1059–1069, 2016b.
Tye, M. R., Stephenson, D. B., Holland, G. J., and Katz, R. W.: A Weibull approach for improving climate model projections of tropical cyclone wind-speed distributions, J. Climate, 27, 6119–6133, https://doi.org/10.1175/JCLI-D-14-00121.1, 2014.
Vrac, M. and Friederichs, P.: Multivariate–intervariable, spatial, and temporal–bias correction, J. Climate, 28, 218–237, https://doi.org/10.1175/JCLI-D-14-00059.1, 2015.
Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., and Somot, S.: Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment, Nat. Hazards Earth Syst. Sci., 12, 2769–2784, https://doi.org/10.5194/nhess-12-2769-2012, 2012.
Weedon, G. P., Gomes, S., Viterbo, P., Österle, H., Adam, J.C., Bellouin, N., Boucher, O. and M. Best, M.: The WATCH forcing data 1958–2001: A meteorological forcing dataset for land surface and hydrological models, Technical Report No. 22, 41 pp., available at: http://www.eu-watch.org/media/default.aspx/emma/org/10376311/, last access: 3 July 2017, 2010
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Osterle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century, J. Hydrometeorol., 12, 823–848, https://doi.org/10.1175/2011JHM1369.1, 2011.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Wilcke, R., Mendlik, T., and Gobiet, A.: Multi-variable error correction of regional climate models, Climatic Change, 120, 871–887, https://doi.org/10.1007/s10584-013-0845-x, 2013
Wilks, D. S.: tatistical Methods in Atmospheric Sciences, Academic, New York, 467 pp., 1995.
Yang, W., Andreasson, J., Graham, L. P., Olsson, J., Rosberg, J., and Wetterhall, D.: Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies, Hydrol. Res., 41, 3–4, https://doi.org/10.2166/nh.2010.004, 2010.
Short summary
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity.The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S), and can be accessed at present from ftp://ecem.climate.copernicus.eu.
The construction of a bias-adjusted dataset of climate variables at the near surface using...