Articles | Volume 7, issue 2
https://doi.org/10.5194/essd-7-275-2015
https://doi.org/10.5194/essd-7-275-2015
13 Oct 2015
 | 13 Oct 2015

A global satellite-assisted precipitation climatology

C. Funk, A. Verdin, J. Michaelsen, P. Peterson, D. Pedreros, and G. Husak

Related authors

Improving early warning of drought-driven food insecurity in southern Africa using operational hydrological monitoring and forecasting products
Shraddhanand Shukla, Kristi R. Arsenault, Abheera Hazra, Christa Peters-Lidard, Randal D. Koster, Frank Davenport, Tamuka Magadzire, Chris Funk, Sujay Kumar, Amy McNally, Augusto Getirana, Greg Husak, Ben Zaitchik, Jim Verdin, Faka Dieudonne Nsadisa, and Inbal Becker-Reshef
Nat. Hazards Earth Syst. Sci., 20, 1187–1201, https://doi.org/10.5194/nhess-20-1187-2020,https://doi.org/10.5194/nhess-20-1187-2020, 2020
Short summary

Related subject area

Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022,https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022,https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022,https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary

Cited articles

Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Daly, C., Neilson, R. P., and Phillips, D. L.: A statistical-topographic model for mapping climate logical precipitation over mountainous terrain, J. Appl. Meteorol., 33, 140–158, 1994.
Funk, C. and Michaelsen, J.: A simplified diagnostic model of orographic rainfall for enhancing satellite-based rainfall estimates in data-poor regions, J. Appl. Meteorol., 43, 1366–1378, 2004.
Funk, C., Michaelsen, J., Verdin, J., Artan, G., Husak, G., Senay, G., Gadain, H., and Magadazire, T.: The collaborative historical African rainfall model: description and evaluation, Int. J. Climatol., 23, 47–66, 2003.
Funk, C., Husak, G., Michaelsen, J., Love, T., and Pedreros, D.: Third Generation Rainfall Climatologies: Satellite Rainfall and Topography Provide a Basis for Smart Interpolation, in: Proceedings of the JRC – FAO Workshop, 27–29 March, Nairobi, Kenya, 283–296, 2007.
Download
Short summary
We derive a new global 0.05 degree precipitation climatology using satellite data, topography and climate normals via moving window regression. The resulting global 0.05° monthly precipitation climatology, the Climate Hazards Group’s Precipitation Climatology version 1 (CHPclim v.1.0, http://dx.doi.org/10.15780/G2159X), is shown to compare favorably with similar global climatology products, especially in areas with complex terrain and low station densities.
Altmetrics
Final-revised paper
Preprint