Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-607-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-607-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Annual hydrographic variability in Antarctic coastal waters infused with glacial inflow
Maria Osińska
Institute of Oceanography, University of Gdańsk, Piłsudskiego
46, 81-378 Gdynia, Poland
Kornelia A. Wójcik-Długoborska
Institute of Biochemistry and Biophysics, Polish Academy of Sciences,Pawińskiego 5a, 02-106 Warsaw, Poland
Institute of Biochemistry and Biophysics, Polish Academy of Sciences,Pawińskiego 5a, 02-106 Warsaw, Poland
Related subject area
Domain: ESSD – Ocean | Subject: Physical oceanography
Argo salinity: bias and uncertainty evaluation
Improved global sea surface height and current maps from remote sensing and in situ observations
Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011–2020)
SDUST2020 MSS: a global 1′ × 1′ mean sea surface model determined from multi-satellite altimetry data
Synoptic observations of sediment transport and exchange mechanisms in the turbid Ems Estuary: the EDoM campaign
A compilation of global bio-optical in situ data for ocean colour satellite applications – version three
Deep-water hydrodynamic observations of two moorings sites on the continental slope of the southern Adriatic Sea (Mediterranean Sea)
Hydrodynamic and hydrological processes within a variety of coral reef lagoons: field observations during six cyclonic seasons in New Caledonia
Reconstructing ocean subsurface salinity at high resolution using a machine learning approach
The HYPERMAQ dataset: bio-optical properties of moderately to extremely turbid waters
Mesoscale observations of temperature and salinity in the Arctic Transpolar Drift: a high-resolution dataset from the MOSAiC Distributed Network
SDUST2021GRA: global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data
Southern Europe and Western Asia Marine Heat Waves (SEWA-MHWs): a dataset based on macro events
Reanalyses of Maskelyne's tidal data at St. Helena in 1761
Twenty-one years of hydrological data acquisition in the Mediterranean Sea: quality, availability, and research
A new operational Mediterranean diurnal optimally interpolated sea surface temperature product within the Copernicus Marine Service
Wind waves in the North Atlantic from ship navigational radar: SeaVision development and its validation with the Spotter wave buoy and WaveWatch III
An evaluation of long-term physical and hydrochemical measurements at the Sylt Roads Marine Observatory (1973–2019), Wadden Sea, North Sea
Annie P. S. Wong, John Gilson, and Cécile Cabanes
Earth Syst. Sci. Data, 15, 383–393, https://doi.org/10.5194/essd-15-383-2023, https://doi.org/10.5194/essd-15-383-2023, 2023
Short summary
Short summary
This article describes the instrument bias in the raw Argo salinity data from 2000 to 2021. The main cause of this bias is sensor drift. Using Argo data without filtering out this instrument bias has been shown to lead to spurious results in various scientific applications. We describe the Argo delayed-mode process that evaluates and adjusts such instrument bias, and we estimate the uncertainty of the Argo delayed-mode salinity dataset. The best ways to use Argo data are illustrated.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023, https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
Short summary
This paper presents a new satellite-derived gridded dataset, including 10 years of sea surface height and geostrophic velocity at monthly resolution, over the Arctic ice-covered and ice-free regions, up to 88° N. We assess the dataset by comparison to independent satellite and mooring data. Results correlate well with independent satellite data at monthly timescales, and the geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km.
Jiajia Yuan, Jinyun Guo, Chengcheng Zhu, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 15, 155–169, https://doi.org/10.5194/essd-15-155-2023, https://doi.org/10.5194/essd-15-155-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is a relative steady-state sea level within a finite period with important applications in geodesy, oceanography, and other disciplines. In this study, the Shandong University of Science and Technology 2020 (SDUST2020), a new global MSS model, was established with a 19-year moving average method from multi-satellite altimetry data. Its global coverage is from 80 °S to 84 °N, the grid size is 1'×1', and the reference period is from January 1993 to December 2019.
Dirk S. van Maren, Christian Maushake, Jan-Willem Mol, Daan van Keulen, Jens Jürges, Julia Vroom, Henk Schuttelaars, Theo Gerkema, Kirstin Schulz, Thomas H. Badewien, Michaela Gerriets, Andreas Engels, Andreas Wurpts, Dennis Oberrecht, Andrew J. Manning, Taylor Bailey, Lauren Ross, Volker Mohrholz, Dante M. L. Horemans, Marius Becker, Dirk Post, Charlotte Schmidt, and Petra J. T. Dankers
Earth Syst. Sci. Data, 15, 53–73, https://doi.org/10.5194/essd-15-53-2023, https://doi.org/10.5194/essd-15-53-2023, 2023
Short summary
Short summary
This paper reports on the main findings of a large measurement campaign aiming to better understand how an exposed estuary (the Ems Estuary on the Dutch–German border) interacts with a tidal river (the lower Ems River). Eight simultaneously deployed ships measuring a tidal cycle and 10 moorings collecting data throughout a spring–neap tidal cycle have produced a dataset providing valuable insight into processes determining exchange of water and sediment between the two systems.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Francesco Paladini de Mendoza, Katrin Schroeder, Leonardo Langone, Jacopo Chiggiato, Mireno Borghini, Patrizia Giordano, Giulio Verazzo, and Stefano Miserocchi
Earth Syst. Sci. Data, 14, 5617–5635, https://doi.org/10.5194/essd-14-5617-2022, https://doi.org/10.5194/essd-14-5617-2022, 2022
Short summary
Short summary
This work presents the dataset of continuous monitoring in the southern Adriatic Margin, providing a unique observatory of deep-water dynamics. The study area is influenced by episodic dense-water cascading, which is a fundamental process for water renewal and deep-water dynamics. Information about the frequency and intensity variations of these events is observed along a time series. The monitoring activities are still ongoing and the moorings are part of the EMSO-ERIC network.
Oriane Bruyère, Benoit Soulard, Hugues Lemonnier, Thierry Laugier, Morgane Hubert, Sébastien Petton, Térence Desclaux, Simon Van Wynsberge, Eric Le Tesson, Jérôme Lefèvre, Franck Dumas, Jean-François Kayara, Emmanuel Bourassin, Noémie Lalau, Florence Antypas, and Romain Le Gendre
Earth Syst. Sci. Data, 14, 5439–5462, https://doi.org/10.5194/essd-14-5439-2022, https://doi.org/10.5194/essd-14-5439-2022, 2022
Short summary
Short summary
From 2014 to 2021, extensive monitoring of hydrodynamics was deployed within five contrasted lagoons of New Caledonia during austral summers. These coastal physical observations encompassed unmonitored lagoons and captured eight major atmospheric events ranging from tropical depression to category 4 cyclone. The main objectives were to characterize the processes controlling hydrodynamics of these lagoons and record the signature of extreme events on land–lagoon–ocean continuum functioning.
Tian Tian, Lijing Cheng, Gongjie Wang, John Abraham, Wangxu Wei, Shihe Ren, Jiang Zhu, Junqiang Song, and Hongze Leng
Earth Syst. Sci. Data, 14, 5037–5060, https://doi.org/10.5194/essd-14-5037-2022, https://doi.org/10.5194/essd-14-5037-2022, 2022
Short summary
Short summary
A high-resolution gridded dataset is crucial for understanding ocean processes at various spatiotemporal scales. Here we used a machine learning approach and successfully reconstructed a high-resolution (0.25° × 0.25°) ocean subsurface (1–2000 m) salinity dataset for the period 1993–2018 (monthly) by merging in situ salinity profile observations with high-resolution satellite remote-sensing data. This new product could be useful in various applications in ocean and climate fields.
Héloïse Lavigne, Ana Dogliotti, David Doxaran, Fang Shen, Alexandre Castagna, Matthew Beck, Quinten Vanhellemont, Xuerong Sun, Juan Ignacio Gossn, Pannimpullath Remanan Renosh, Koen Sabbe, Dieter Vansteenwegen, and Kevin Ruddick
Earth Syst. Sci. Data, 14, 4935–4947, https://doi.org/10.5194/essd-14-4935-2022, https://doi.org/10.5194/essd-14-4935-2022, 2022
Short summary
Short summary
Because of the large diversity of case 2 waters and the complexity of light transfer, retrieving main biogeochemical parameters in these waters is still challenging. By providing optical and biogeochemical parameters for 180 sampling stations with turbidity and chlorophyll-a concentration ranging from low to extreme values, the HYPERMAQ dataset will contribute to a better description of marine optics in optically complex water bodies and can help the scientific community to develop algorithms.
Mario Hoppmann, Ivan Kuznetsov, Ying-Chih Fang, and Benjamin Rabe
Earth Syst. Sci. Data, 14, 4901–4921, https://doi.org/10.5194/essd-14-4901-2022, https://doi.org/10.5194/essd-14-4901-2022, 2022
Short summary
Short summary
The role of eddies and fronts in the oceans is a hot topic in climate research, but there are still many related knowledge gaps, particularly in the ice-covered Arctic Ocean. Here we present a unique dataset of ocean observations collected by a set of drifting buoys installed on ice floes as part of the 2019/2020 MOSAiC campaign. The buoys recorded temperature and salinity data for 10 months, providing extraordinary insights into the properties and processes of the ocean along their drift.
Chengcheng Zhu, Jinyun Guo, Jiajia Yuan, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 14, 4589–4606, https://doi.org/10.5194/essd-14-4589-2022, https://doi.org/10.5194/essd-14-4589-2022, 2022
Short summary
Short summary
Accurate marine gravity anomalies play an important role in the fields of submarine topography, Earth structure, and submarine exploitation. With the launch of different altimetry satellites, the density of altimeter data can meet the requirements of inversion of high-resolution and high-precision gravity anomaly models. We construct the global marine gravity anomaly model (SDUST2021GRA) from altimeter data (including HY-2A). The accuracy of the model is high, especially in the offshore area.
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-343, https://doi.org/10.5194/essd-2022-343, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a unique observational dataset of Marine Heatwaves (MHWs) macro events and their characteristics over the Southern Europe and western Asian (SEWA) basins, SEWA-MHWs dataset. This dataset is the first effort in literature in archiving extreme hot sea surface temperature macro events. The advantages of the availability of SEWA-MHWs are to avoid waste of computational resources to detect MHWs, and to build a consistent framework which would increase comparability among MHWs studies.
Philip L. Woodworth and John M. Vassie
Earth Syst. Sci. Data, 14, 4387–4396, https://doi.org/10.5194/essd-14-4387-2022, https://doi.org/10.5194/essd-14-4387-2022, 2022
Short summary
Short summary
An electronic data set of tidal measurements at St. Helena in 1761 by Nevil Maskelyne is described. These data were first analysed by Cartwright in papers on changing tides, but his data files were never archived. The now newly digitised Maskelyne data have been reanalysed in order to obtain an updated impression of whether the tide has changed at that location in over two and a half centuries. Our main conclusion is that the major tidal constituent (M2) has changed little.
Alberto Ribotti, Roberto Sorgente, Federica Pessini, Andrea Cucco, Giovanni Quattrocchi, and Mireno Borghini
Earth Syst. Sci. Data, 14, 4187–4199, https://doi.org/10.5194/essd-14-4187-2022, https://doi.org/10.5194/essd-14-4187-2022, 2022
Short summary
Short summary
Over 1468 hydrological vertical profiles were acquired in 21 years in the Mediterranean Sea. This allowed us to follow the diffusion of the Western Mediterranean Transient along all western seas or make some important repetitions across straits, channels, or at defined locations. These data are now available in four open-access online datasets, including profiles of water temperature, conductivity, dissolved oxygen, chlorophyll α fluorescence, and, after 2004, turbidity and pH.
Andrea Pisano, Daniele Ciani, Salvatore Marullo, Rosalia Santoleri, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 14, 4111–4128, https://doi.org/10.5194/essd-14-4111-2022, https://doi.org/10.5194/essd-14-4111-2022, 2022
Short summary
Short summary
A new operational diurnal sea surface temperature (SST) product has been developed within the Copernicus Marine Service, providing gap-free hourly mean SST fields from January 2019 to the present. This product is able to accurately reproduce the diurnal cycle, the typical day–night SST oscillation mainly driven by solar heating, including extreme diurnal warming events. This product can thus represent a valuable dataset to improve the study of those processes that require a subdaily frequency.
Natalia Tilinina, Dmitry Ivonin, Alexander Gavrikov, Vitali Sharmar, Sergey Gulev, Alexander Suslov, Vladimir Fadeev, Boris Trofimov, Sergey Bargman, Leysan Salavatova, Vasilisa Koshkina, Polina Shishkova, Elizaveta Ezhova, Mikhail Krinitsky, Olga Razorenova, Klaus Peter Koltermann, Vladimir Tereschenkov, and Alexey Sokov
Earth Syst. Sci. Data, 14, 3615–3633, https://doi.org/10.5194/essd-14-3615-2022, https://doi.org/10.5194/essd-14-3615-2022, 2022
Short summary
Short summary
We present wind wave parameter data from research cruises in the North Atlantic in 2020 and 2021 and the SeaVision system for measuring wind wave characteristics with a standard marine navigation X-band radar. We promote the potential of ship navigation X-band radars (when assembled with SeaVision or similar systems) for the development of a new near-global observational network, providing a much larger number of wind wave observations.
Johannes J. Rick, Mirco Scharfe, Tatyana Romanova, Justus E. E. van Beusekom, Ragnhild Asmus, Harald Asmus, Finn Mielck, Anja Kamp, Rainer Sieger, and Karen H. Wiltshire
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-263, https://doi.org/10.5194/essd-2020-263, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
The Sylt Roads TS (Wadden Sea, NS) is illustrated. Since 1984, the water temperature has risen by 1.1 °C, while pH and salinity decreased by 0.2 and 0.3 units. Nutrients (P, N) displayed a period of high eutrophication till 1998 followed by a decrease since 1999 while silicate showed in parallel an increase. Chlorophyll did not mirror these changes probably due a switch in nutrient limitation: Until 1998, the algae were primarily limited by Si, and since 1999 P limitation became more important.
Cited articles
APHA: Standard Methods for Examination of Water and Wastewater, 17th Edn.,
Washington D.C., ISBN
9780875531618, 1989.
Bendtsen, J., Mortensen, J., Lennert, K., and Rysgaard, S.: Heat sources for
glacial ice melt in a west Greenland tidewater outlet glacier fjord: The
role of subglacial freshwater discharge, Geophys. Res. Lett., 42, 4089–4095,
https://doi.org/10.1002/2015GL063846, 2015.
Bertino, L. and Holland, M. M.: Coupled ice-ocean modeling and predictions,
J. Mar. Res., 75, 839–875, https://doi.org/10.1357/002224017823524017, 2017.
Chauché, N., Hubbard, A., Gascard, J.-C., Box, J. E., Bates, R., Koppes, M., Sole, A., Christoffersen, P., and Patton, H.: Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers, The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014, 2014.
Cowton, T., Slater, D., Sole, A., Goldberg, D., and Nienow, P.: Modeling the
impact of glacial runoff on fjord circulation and submarine melt rate using
a new subgrid-scale parameterization for glacial plumes, J. Geophys. Res.-Oceans, 120, 796–812, https://doi.org/10.1002/2014JC010324, 2015.
De Andrés, E., Otero, J., Navarro, F. J., and Walczowski, W.:
Glacier-plume or glacier-fjord circulation models? A 2-D comparison for
Hansbreen-Hansbukta system, Svalbard, J. Glaciol., 67, 797–810,
https://doi.org/10.1017/jog.2021.27, 2021.
Dziembowski, M. and Bialik, R. J.: The Remotely and Directly Obtained
Results of Glaciological Studies on King George Island: A Review, Remote
Sens. Basel, 14, 2736, https://doi.org/10.3390/RS14122736, 2022.
Gerrish, L., Fretwell, P., and Cooper, P.: High resolution vector polylines
of the Antarctic coastline (7.4), ADD – Antarctic Digital Database [data set],
https://doi.org/10.5285/e46be5bc-ef8e-4fd5-967b-92863fbe2835,
2021.
Jenkins, A.: Convection-Driven Melting near the Grounding Lines of Ice
Shelves and Tidewater Glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011.
Kimura, S., Holland, P. R., Jenkins, A., and Piggott, M.: The Effect of
Meltwater Plumes on the Melting of a Vertical Glacier Face, J. Phys. Oceanogr.,
44, 3099–3117, https://doi.org/10.1175/JPO-D-13-0219.1, 2014.
Mankoff, K. D., Straneo, F., Cenedese, C., Das, S. B., Richards, C. G., and
Singh, H.: Structure and dynamics of a subglacial discharge plume in a
Greenlandic fjord, J. Geophys. Res.-Oceans, 121, 8670–8688,
https://doi.org/10.1002/2016JC011764, 2016.
Osińska, M., Bialik, R. J., and Wójcik-Długoborska, K. A.:
Interrelation of quality parameters of surface waters in five tidewater
glacier coves of King George Island, Antarctica, Sci. Total
Environ., 771, 144780, https://doi.org/10.1016/j.scitotenv.2020.144780,
2021.
Osińska, M., Wójcik-Długoborska, K. A., and Bialik, R. J.: Water
conductivity, salinity, temperature, turbidity, pH, fluorescent dissolved
organic matter (fDOM), optical dissolved oxygen (ODO), chlorophyll a and
phycoerythrin measurements in Admiralty Bay, King George Island, from Dec
2018 to Jan 2022, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.947909, 2022.
Rückamp, M., Blindow, N., Suckro, S., Braun, M., and Humbert, A.:
Dynamics of the ice cap on King George Island, antarctica: Field
measurements and numerical simulations, Ann. Glaciol., 51, 80–90,
https://doi.org/10.3189/172756410791392817, 2010.
Snazelle, T. T.: Evaluation of Xylem EXO water-quality sondes and sensors,
U.S. Geological Survey Open-File Report 2015-1063,
https://doi.org/10.3133/OFR20151063, 2015.
Straneo, F.: Impact of the large scale ocean circulation on Greenland's
outlet glaciers, Quaternary Int., 279–280, 472,
https://doi.org/10.1016/j.quaint.2012.08.1584, 2012.
Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C.,
Våge, K., and Stearns, L. A.: Impact of fjord dynamics and glacial
runoff on the circulation near Helheim Glacier, Nat. Geosci., 4, 322–327,
https://doi.org/10.1038/ngeo1109, 2011.
Wójcik-Długoborska, K. A., Osińska, M., and Bialik, R. J.: The
impact of glacial suspension color on the relationship between its
properties and marine water spectral reflectance, IEEE J. Sel. Top. Appl., 15, 3258–3268, https://doi.org/10.1109/JSTARS.2022.3166398, 2022.
YSI Inc: Exo User Manual, Yellow Springs, 1–154 pp., 2017.
Short summary
Water properties, including temperature, conductivity, turbidity and pH as well as the dissolved oxygen, dissolved organic matter, chlorophyll-a and phycoerythrin contents, were investigated in 31 different locations at up to 100 m depth over a period of 38 months in a glacial bay in Antarctica. These investigations were carried out 142 times in all seasons of the year, resulting in a unique dataset of information about seasonal and long-term changes in polar water properties.
Water properties, including temperature, conductivity, turbidity and pH as well as the dissolved...