Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2817-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2817-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington
CORRESPONDING AUTHOR
Manaaki Whenua – Landcare Research, Lincoln 7608, New Zealand
George L. W. Perry
School of Environment, University of Auckland, Private Bag 92019,
Auckland, New Zealand
Janet M. Wilmshurst
Manaaki Whenua – Landcare Research, Lincoln 7608, New Zealand
School of Environment, University of Auckland, Private Bag 92019,
Auckland, New Zealand
Related authors
Thomas R. Etherington
Web Ecol., 22, 1–6, https://doi.org/10.5194/we-22-1-2022, https://doi.org/10.5194/we-22-1-2022, 2022
Short summary
Short summary
Landscape ecologists often use virtual or imaginary landscapes to explore how landscapes can effect ecological processes. In a similar manner, procedural modelling algorithms are used in computer graphics for the creation of virtual or imaginary worlds used in movies and computer games. Perlin noise is a procedural modelling algorithm that could be very useful for landscape ecologists, and this work explains and translates Perlin noise for landscape ecologists.
Emma Rehn, Haidee Cadd, Scott Mooney, Tim J. Cohen, Henry Munack, Alexandru T. Codilean, Matthew Adeleye, Kristen K. Beck, Mark Constantine IV, Chris Gouramanis, Johanna M. Hanson, Penelope J. Jones, A. Peter Kershaw, Lydia Mackenzie, Maame Maisie, Michela Mariani, Kia Matley, David McWethy, Keely Mills, Patrick Moss, Nicholas R. Patton, Cassandra Rowe, Janelle Stevenson, John Tibby, and Janet Wilmshurst
Earth Syst. Sci. Data, 17, 2681–2692, https://doi.org/10.5194/essd-17-2681-2025, https://doi.org/10.5194/essd-17-2681-2025, 2025
Short summary
Short summary
This paper presents SahulCHAR, a new collection of palaeofire (ancient fire) records from Australia, New Guinea, and New Zealand. SahulCHAR version 1 contains 687 records of sedimentary charcoal or black carbon, including digitized data, records from existing databases, and original author-submitted data. SahulCHAR is a much-needed update to past charcoal compilations that will also provide greater representation of records from this region in future global syntheses to understand past fire.
Quinn Asena, George L. W. Perry, and Janet M. Wilmshurst
EGUsphere, https://doi.org/10.5194/egusphere-2024-3845, https://doi.org/10.5194/egusphere-2024-3845, 2025
Short summary
Short summary
Palaeoecology provides crucial information into past changes in climate and ecosystems. However, uncertainties from environmental processes and laboratory methods affect our inferences from the data. We use a virtual ecological approach to quantifying uncertainties by simulating proxy data and systematically introducing sources of uncertainty. Better understanding the effects of uncertainty can help shape study designs before a project is carried out and make robust inferences palaeoproxy data.
Thomas R. Etherington
Web Ecol., 22, 1–6, https://doi.org/10.5194/we-22-1-2022, https://doi.org/10.5194/we-22-1-2022, 2022
Short summary
Short summary
Landscape ecologists often use virtual or imaginary landscapes to explore how landscapes can effect ecological processes. In a similar manner, procedural modelling algorithms are used in computer graphics for the creation of virtual or imaginary worlds used in movies and computer games. Perlin noise is a procedural modelling algorithm that could be very useful for landscape ecologists, and this work explains and translates Perlin noise for landscape ecologists.
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.:
TerraClimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015, Scientific Data, 5, 170191,
https://doi.org/10.1038/sdata.2017.191, 2018.
Bannister, P.: Are frost hardiness ratings useful predictors of frost damage
in the field? A test using damage records from the severe frost in South
Otago and Southland, New Zealand, July 1996, New. Zeal. J. Bot., 41, 555–569,
https://doi.org/10.1080/0028825X.2003.9512869, 2003.
Clark, P. J. and Evans, F. C.: Distance to nearest neighbor as a measure of
spatial relationships in populations, Ecology, 35, 445–453, 1954.
Cook, E. R., Buckley, B. M., Palmer, J. G., Fenwick, P., Peterson, M. J.,
Boswijk, G., and Fowler, A.: Millennia-long tree-ring records from Tasmania
and New Zealand: a basis for modelling climate variability and forcing,
past, present and future, J. Quat. Sci., 21, 689–699, https://doi.org/10.1002/jqs.1071, 2006.
de Vos, M. G., Hazeleger, W., Bari, D., Behrens, J., Bendoukha, S., Garcia-Marti, I., van Haren, R., Haupt, S. E., Hut, R., Jansson, F., Mueller, A., Neilley, P., van den Oord, G., Pelupessy, I., Ruti, P., Schultz, M. G., and Walton, J.: Open weather and climate science in the digital era, Geosci. Commun., 3, 191–201, https://doi.org/10.5194/gc-3-191-2020, 2020.
Duncan, R. P., Fenwick, P., Palmer, J. G., McGlone, M. S., and Turney, C. S.
M.: Non-uniform interhemispheric temperature trends over the past 550 years,
Clim. Dynam., 35, 1429–1438, https://doi.org/10.1007/s00382-010-0794-2, 2010.
Etherington, T. R.: Discrete natural neighbour interpolation with
uncertainty using cross-validation error-distance fields, Peer. J. Comput.
Sci., 6, e282, https://doi.org/10.7717/peerj-cs.282, 2020.
Etherington, T. R.: Code for A History of Open Temperature and Rainfall with
Uncertainty in New Zealand (HOTRUNZ), DataStore [code],
https://doi.org/10.7931/yk7g-vz81, 2021.
Etherington, T. R., Perry, G. L. W., and Wilmshurst, J. M.: Data for A
History of Open Temperature and Rainfall with Uncertainty in New Zealand
(HOTRUNZ), DataStore [data set], https://doi.org/10.7931/zmvz-xf30, 2021.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1 km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, 10.1002/joc.5086, 2017.
Foley, A. M.: Uncertainty in regional climate modelling: a review, Prog. Phys. Geogr., 34, 647–670, 10.1177/0309133310375654, 2010.
Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., and Husak, G.: A global satellite-assisted precipitation climatology, Earth Syst. Sci. Data, 7, 275–287, https://doi.org/10.5194/essd-7-275-2015, 2015.
GDAL/OGR Geospatial Data Abstraction software Library: https://gdal.org (last access: 17 June 2022), 2021.
Girardin, M. P. and Wotton, B. M.: Summer moisture and wildfire risks
across Canada, J. Appl. Meteorol. Climatol., 48, 517–533,
https://doi.org/10.1175/2008JAMC1996.1, 2009.
Gordo, O. and Sanz, J. J.: Phenology and climate change: a long-term study
in a Mediterranean locality, Oecologia, 146, 484–495,
https://doi.org/10.1007/s00442-005-0240-z, 2005.
Gregory, S.: Statistical Methods and the Geographer, 4th edn., Longman,
London, 240 pp.,
ISBN 0-582-48186-4, 1978.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.:
Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020a.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020b.
Hofstra, N., Haylock, M., New, M., Jones, P., and Frei, C.: Comparison of
six methods for the interpolation of daily, European climate data, J. Geophys. Res., 113, D21110, 10.1029/2008JD010100, 2008.
Hunter, J. D.: Matplotlib: a 2D graphics environment, Comput. Sci. Engin., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas,
Sci. Data, 4, 170122, 10.1038/sdata.2017.122, 2017.
Kaye, N. R., Hartley, A., and Hemming, D.: Mapping the climate: guidance on appropriate techniques to map climate variables and their uncertainty, Geosci. Model Dev., 5, 245–256, https://doi.org/10.5194/gmd-5-245-2012, 2012.
Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., and Dixon, H.: CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications, Earth Syst. Sci. Data, 7, 143–155, https://doi.org/10.5194/essd-7-143-2015, 2015.
Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A LLVM-Based Python JIT
Compiler, Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, 7, 1–6, 10.1145/2833157.2833162, 2015.
Leathwick, J., Morgan, F., Wilson, G., Rutledge, D., McLeod, M., and
Johnson, K.: Land environments of New Zealand: a technical guide, Ministry
for the Environment, Wellington, 237 pp., 2002.
Lorrey, A. M. and Chappell, P. R.: The ”dirty weather” diaries of Reverend Richard Davis: insights about early colonial-era meteorology and climate variability for northern New Zealand, 1839–1851, Clim. Past, 12, 553–573, https://doi.org/10.5194/cp-12-553-2016, 2016.
Lyra, G. B., Correia, T. P., de Oliveira-Júnior, J. F., and Zeri, M.:
Evaluation of methods of spatial interpolation for monthly rainfall data
over the state of Rio de Janeiro, Brazil, Theor. Appl. Climatol., 134, 955–965, https://doi.org/10.1007/s00704-017-2322-3, 2018.
McCarthy, J. K., Leathwick, J. R., Roudier, P., Barringer, J. R. F.,
Etherington, T. R., Morgan, F. J., Odgers, N. P., Price, R. H., Wiser, S.
K., and Richardson, S. J.: New Zealand Environmental Data Stack (NZEnvDS): A
standardised collection of spatial layers for environmental modelling and
site characterisation, N. Z. J. Ecol., 45, 3440, https://doi.org/10.20417/nzjecol.45.31, 2021.
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to present,
Copernicus Climate Change Service (C3S) Climate Data Store (CDS), [data
set], https://doi.org/10.24381/cds.68d2bb30, 2019.
NIWA: NIWA's National Climate Database on the Web, cliflo [data set],
https://cliflo.niwa.co.nz/, last access: 15 June 2020.
Park, S. W., Linsen, L., Kreylos, O., Owens, J. D., and Hamann, B.: Discrete
Sibson interpolation, IEEE Trans. Visual. Comput.
Graph., 12, 243–253, https://doi.org/10.1109/TVCG.2006.27, 2006.
Pérez, F., Granger, B. E., and Hunter, J. D.: Python: an ecosystem for
scientific computing, Comput. Sci. Eng., 13, 13–21,
https://doi.org/10.1109/MCSE.2010.119, 2011.
Remesan, R., Bellerby, T., and Frostick, L.: Hydrological modelling using
data from monthly GCMs in a regional catchment, Hydrol. Proc., 28,
3241–3263, https://doi.org/10.1002/hyp.9872, 2014.
Retchless, D. P. and Brewer, C. A.: Guidance for representing uncertainty
on global temperature change maps, Int. J. Climatol., 36,
1143–1159, https://doi.org/10.1002/joc.4408, 2016.
Roth, R. E., Woodruff, A. W., and Johnson, Z. F.: Value-by-alpha maps: an
alternative technique to the cartogram, Cartogr. J., 47,
130–140, https://doi.org/10.1179/000870409x12488753453372, 2010.
Sibson, R.: A brief description of natural neighbour interpolation, in:
Interpreting Multivariate Data, edited by: Barnett, V., Wiley, Chichester,
21–36, 374 pp.,
ISBN 0-471-28039-9, 1981.
Snow, A. D., Whitaker, J., Cochran, M., Van den Bossche, J., Mayo, C., de
Kloe, J., Karney, C., Ouzounoudis, G., Dearing, J., Lostis, G., Heitor,
Filipe, May, R., Itkin, M., Couwenberg, B., Berardinelli, G., The Gitter
Badger, Eubank, N., Dunphy, M., Brett, M., Raspaud, M., Aurélio da
Costa, M., Evers, K., Ranalli, J., de Maeyer, J., Popov, E., Gohlke, C.,
Willoughby, C., Barker, C., and Wiedemann, B. M.: pyproj4/pyproj: 2.6.1
Release, [code], https://doi.org/10.5281/zenodo.3783866, 2020.
Spearman, C.: The proof and measurement of association between two things, Am. J. Psychol., 15, 72–101, https://doi.org/10.2307/1412159, 1904.
Stahl, K., Moore, R. D., Floyer, J. A., Asplin, M. G., and McKendry, I. G.:
Comparison of approaches for spatial interpolation of daily air temperature
in a large region with complex topography and highly variable station
density, Agr. Forest Meteorol., 139, 224–236,
https://doi.org/10.1016/j.agrformet.2006.07.004, 2006.
Stewart, S. B., Elith, J., Fedrigo, M., Kasel, S., Roxburgh, S. H., Bennett,
L. T., Chick, M., Fairman, T., Leonard, S., Kohout, M., Cripps, J. K.,
Durkin, L., and Nitschke, C. R.: Climate extreme variables generated using
monthly time-series data improve predicted distributions of plant species,
Ecography, 44, 626–639, https://doi.org/10.1111/ecog.05253, 2021.
Tait, A. and Macara, G.: Evaluation of interpolated daily temperature data
for high elevation areas in New Zealand, Weather Climate, 34, 36–49,
https://doi.org/10.2307/26169743, 2014.
Tait, A., Henderson, R., Turner, R., and Zheng, X. G.: Thin plate smoothing
spline interpolation of daily rainfall for New Zealand using a
climatological rainfall surface, Int. J. Climatol., 26,
2097–2115, https://doi.org/10.1002/joc.1350, 2006.
Tait, A., Sturman, J., and Clark, M.: An assessment of the accuracy of
interpolated daily rainfall for New Zealand, J. Hydrol. (New
Zealand), 51, 25–44, 2012.
Willmott, C. J. and Robeson, S. M.: Climatologically aided interpolation
(CAI) of terrestrial air temperature, Int. J. Climatol.,
15, 221–229, 1995.
Willmott, C. J. and Matsuura, K.: On the use of dimensioned measures of
error to evaluate the performance of spatial interpolators, Int. J. Geogr. Inf. Sci., 20, 89–102, https://doi.org/10.1080/13658810500286976, 2006.
Zhang, J. and Goodchild, M.: Uncertainty in Geographical Information,
Taylor & Francis, London, 266 pp.,
ISBN 0-415-24334-3, 2002.
Short summary
Long time series of temperature and rainfall grids are fundamental to understanding how these variables affects environmental or ecological patterns and processes. We present a History of Open Temperature and Rainfall with Uncertainty in New Zealand (HOTRUNZ) that is an open-access dataset that provides monthly 1 km resolution grids of rainfall and mean, minimum, and maximum daily temperatures with associated uncertainties for New Zealand from 1910 to 2019.
Long time series of temperature and rainfall grids are fundamental to understanding how these...
Altmetrics
Final-revised paper
Preprint