Articles | Volume 13, issue 2
Earth Syst. Sci. Data, 13, 631–644, 2021
https://doi.org/10.5194/essd-13-631-2021
Earth Syst. Sci. Data, 13, 631–644, 2021
https://doi.org/10.5194/essd-13-631-2021
Data description paper
24 Feb 2021
Data description paper | 24 Feb 2021

A climate service for ecologists: sharing pre-processed EURO-CORDEX regional climate scenario data using the eLTER Information System

Susannah Rennie et al.

Related authors

The UK Environmental Change Network datasets – integrated and co-located data for long-term environmental research (1993–2015)
Susannah Rennie, Chris Andrews, Sarah Atkinson, Deborah Beaumont, Sue Benham, Vic Bowmaker, Jan Dick, Bev Dodd, Colm McKenna, Denise Pallett, Rob Rose, Stefanie M. Schäfer, Tony Scott, Carol Taylor, and Helen Watson
Earth Syst. Sci. Data, 12, 87–107, https://doi.org/10.5194/essd-12-87-2020,https://doi.org/10.5194/essd-12-87-2020, 2020
Short summary

Related subject area

Data, Algorithms, and Models
Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data
Wenjun Tang, Jun Qin, Kun Yang, Yaozhi Jiang, and Weihao Pan
Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022,https://doi.org/10.5194/essd-14-2007-2022, 2022
Short summary
Description of the China global Merged Surface Temperature version 2.0
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022,https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning
Rohaifa Khaldi, Domingo Alcaraz-Segura, Emilio Guirado, Yassir Benhammou, Abdellatif El Afia, Francisco Herrera, and Siham Tabik
Earth Syst. Sci. Data, 14, 1377–1411, https://doi.org/10.5194/essd-14-1377-2022,https://doi.org/10.5194/essd-14-1377-2022, 2022
Short summary
Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations
Chuanmin Hu
Earth Syst. Sci. Data, 14, 1183–1192, https://doi.org/10.5194/essd-14-1183-2022,https://doi.org/10.5194/essd-14-1183-2022, 2022
Short summary
Multi-site, multi-crop measurements in the soil–vegetation–atmosphere continuum: a comprehensive dataset from two climatically contrasting regions in southwestern Germany for the period 2009–2018
Tobias K. D. Weber, Joachim Ingwersen, Petra Högy, Arne Poyda, Hans-Dieter Wizemann, Michael Scott Demyan, Kristina Bohm, Ravshan Eshonkulov, Sebastian Gayler, Pascal Kremer, Moritz Laub, Yvonne Funkiun Nkwain, Christian Troost, Irene Witte, Tim Reichenau, Thomas Berger, Georg Cadisch, Torsten Müller, Andreas Fangmeier, Volker Wulfmeyer, and Thilo Streck
Earth Syst. Sci. Data, 14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022,https://doi.org/10.5194/essd-14-1153-2022, 2022
Short summary

Cited articles

Ardestani, S. B., Hakansson, C. J., Laure, E., Livenson, I., Stranak, P., Dima, E., Blommesteijn, E., van de Sanden, M.: B2SHARE: An Open eScience Data Sharing Platform, 2015 IEEE 11th International Conference on E-Science, Munich, Germany, 31 August–4 September 2015, https://doi.org/10.1109/escience.2015.44, 2015. 
B2SHARE: available at: https://b2share.eudat.eu/, last access: 1 August 2020. 
Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa, M., and Schär, C.: Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections, Water Resour. Res., 49, 1523–1536, https://doi.org/10.1029/2011WR011533, 2013. 
Bruno Soares, M., Alexander, M., and Dessai, S.: Sectoral use of climate information in Europe: A synoptic overview, Clim. Serv., 9, 5–20, https://doi.org/10.1016/j.cliser.2017.06.001, 2018. 
Buontempo, C., Hutjes, R., Beavis, P., Berckmans, J., Cagnazzo, C., Vamborg, F., Thépaut, J.-N., Bergeron, C., Almond, S., Amici, A., Ramasamy, S., and Dee, D.: Fostering the development of climate services through Copernicus Climate Change Service (C3S) for agriculture applications, Weather. Clim. Extremes, 27, 100226, https://doi.org/10.1016/j.wace.2019.100226, 2020. 
Download
Short summary
This paper describes a pan-European climate service data product intended for ecological researchers. Access to regional climate scenario data will save ecologists time, and, for many, it will allow them to work with data resources that they will not previously have used due to a lack of knowledge and skills to access them. Providing easy access to climate scenario data in this way enhances long-term ecological research, for example in general regional climate change or impact assessments.