Data description paper
26 May 2021
Data description paper
| 26 May 2021
A new merged dataset for analyzing clouds, precipitation and atmospheric parameters based on ERA5 reanalysis data and the measurements of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar and visible and infrared scanner
Lilu Sun and Yunfei Fu
Related authors
No articles found.
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 14, 1433–1445, https://doi.org/10.5194/essd-14-1433-2022, https://doi.org/10.5194/essd-14-1433-2022, 2022
Short summary
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from spaceborne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of the precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
Ziyu Huang, Lei Zhong, Yaoming Ma, and Yunfei Fu
Geosci. Model Dev., 14, 2827–2841, https://doi.org/10.5194/gmd-14-2827-2021, https://doi.org/10.5194/gmd-14-2827-2021, 2021
Short summary
Short summary
Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of regional climate models (RCMs). However, the biases of the driving fields over the Tibetan Plateau (TP) would possibly introduce extra biases when spectral nudging is applied. The results show that the precipitation simulations were significantly improved when limiting the application of spectral nudging toward the potential temperature and water vapor mixing ratio over the TP.
Meixin Zhang, Chun Zhao, Zhiyuan Cong, Qiuyan Du, Mingyue Xu, Yu Chen, Ming Chen, Rui Li, Yunfei Fu, Lei Zhong, Shichang Kang, Delong Zhao, and Yan Yang
Atmos. Chem. Phys., 20, 5923–5943, https://doi.org/10.5194/acp-20-5923-2020, https://doi.org/10.5194/acp-20-5923-2020, 2020
Short summary
Short summary
Analysis of multiple numerical experiments over the Himalayas and Tibetan Plateau (TP) shows that the complex topography results in 50 % stronger overall cross-Himalayan transport during the pre-monsoon season primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed in some valleys and deeper valley channels associated with larger transported BC mass volume, which leads to 30–50 % stronger BC radiative heating over the TP.
Yilun Chen, Guangcan Chen, Chunguang Cui, Aoqi Zhang, Rong Wan, Shengnan Zhou, Dongyong Wang, and Yunfei Fu
Atmos. Chem. Phys., 20, 1131–1145, https://doi.org/10.5194/acp-20-1131-2020, https://doi.org/10.5194/acp-20-1131-2020, 2020
Short summary
Short summary
The vertical evolution of the cloud effective radius reflects the precipitation-forming process. We developed an algorithm for retrieving it based on objective cloud-cluster identification rather than the subjective polygon of the conventional method. The profile shows completely different morphologies in different life stages of the cloud cluster, which is important in the characterization of the formation of precipitation and the temporal evolution of microphysical processes.
Lei Zhong, Yaoming Ma, Zeyong Hu, Yunfei Fu, Yuanyuan Hu, Xian Wang, Meilin Cheng, and Nan Ge
Atmos. Chem. Phys., 19, 5529–5541, https://doi.org/10.5194/acp-19-5529-2019, https://doi.org/10.5194/acp-19-5529-2019, 2019
Short summary
Short summary
Fine-temporal-resolution turbulent heat fluxes at the plateau scale have significant importance for studying diurnal variation characteristics of atmospheric boundary and weather systems in the Tibetan Plateau (TP) and its surroundings. Time series of land surface heat fluxes with high temporal resolution over the entire TP were derived. The derived surface heat fluxes proved to be in good agreement with in situ measurements and were superior to GLDAS flux products.
Renmin Yuan, Tao Luo, Jianning Sun, Hao Liu, Yunfei Fu, and Zhien Wang
Atmos. Meas. Tech., 9, 1925–1937, https://doi.org/10.5194/amt-9-1925-2016, https://doi.org/10.5194/amt-9-1925-2016, 2016
Short summary
Short summary
Atmospheric aerosol has a great influence on the natural environment. Despite consistent research efforts, there are still uncertainties in our understanding of its effects due to poor knowledge of aerosol vertical transport. In this paper, a new method for measuring atmospheric aerosol mass vertical transport flux is developed based on the similarity theory, the theory of light propagation, and the observations and studies of the atmospheric equivalent refractive index.
X. Y. Zheng, Y. F. Fu, Y. J. Yang, and G. S. Liu
Atmos. Chem. Phys., 15, 12115–12138, https://doi.org/10.5194/acp-15-12115-2015, https://doi.org/10.5194/acp-15-12115-2015, 2015
Short summary
Short summary
We systematically examined that how various large-scale atmospheric conditions (ACs) affects the distributions of aerosol optical depth (AOD) over eastern China. We extract and depict nine main types for AOD (six polluted types and three clean types) in autumn over eastern China. The results provide convincing evidence that the general characteristics of atmospheric circulations contribute significantly to the different types of regional pollution.
R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu
Atmos. Chem. Phys., 15, 2521–2531, https://doi.org/10.5194/acp-15-2521-2015, https://doi.org/10.5194/acp-15-2521-2015, 2015
Short summary
Short summary
This study developed a theoretical framework to analyse the contribution of absorption to scintillation, which can be used to derive the imaginary part of the ARISP in the urban atmospheric boundary layer from scintillation measurements. In this study, a simple expression for the imaginary part of the ARISP is obtained, which can be conveniently used to determine the imaginary part of the ARISP from LAS measurements. The experimental results showed good agreement with the presented theory.
Related subject area
Data, Algorithms, and Models
TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning
Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations
Multi-site, multi-crop measurements in the soil–vegetation–atmosphere continuum: a comprehensive dataset from two climatically contrasting regions in southwestern Germany for the period 2009–2018
Full-coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005–2017 based on a multi-variable random forest model
Median bed-material sediment particle size across rivers in the contiguous US
A flux tower dataset tailored for land model evaluation
Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data
Description of the China global Merged Surface Temperature version 2.0
A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018
A harmonized global land evaporation dataset from model-based products covering 1980–2017
Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter
Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017
GRQA: Global River Water Quality Archive
A 1 km global cropland dataset from 10 000 BCE to 2100 CE
A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables
SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach
Nitrogen deposition in the UK at 1 km resolution from 1990 to 2017
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data
100 years of lake evolution over the Qinghai–Tibet Plateau
The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
Coastal complexity of the Antarctic continent
UAV-based very high resolution point cloud, digital surface model and orthomosaic of the Chã das Caldeiras lava fields (Fogo, Cabo Verde)
AQ-Bench: a benchmark dataset for machine learning on global air quality metrics
Bias-corrected and spatially disaggregated seasonal forecasts: a long-term reference forecast product for the water sector in semi-arid regions
The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2017
The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018
A new satellite-derived dataset for marine aquaculture areas in China's coastal region
Database of petrophysical properties of the Mid-German Crystalline Rise
Landsat-derived bathymetry of lakes on the Arctic Coastal Plain of northern Alaska
Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China
Hyperspectral-reflectance dataset of dry, wet and submerged marine litter
A climate service for ecologists: sharing pre-processed EURO-CORDEX regional climate scenario data using the eLTER Information System
Crowdsourced air traffic data from the OpenSky Network 2019–2020
A restructured and updated global soil respiration database (SRDB-V5)
The Berkeley Earth Land/Ocean Temperature Record
Dielectric database of organic Arctic soils (DDOAS)
Global Carbon Budget 2020
A global long-term (1981–2000) land surface temperature product for NOAA AVHRR
A coastally improved global dataset of wet tropospheric corrections for satellite altimetry
Development of a standard database of reference sites for validating global burned area products
A Last Glacial Maximum forcing dataset for ocean modelling
An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets
Shipborne lidar measurements showing the progression of the tropical reservoir of volcanic aerosol after the June 1991 Pinatubo eruption
Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017
Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells
The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties
WFDE5: bias-adjusted ERA5 reanalysis data for impact studies
A high-resolution reanalysis of global fire weather from 1979 to 2018 – overwintering the Drought Code
Improving the usability of the Multi-angle Imaging SpectroRadiometer (MISR) L1B2 Georectified Radiance Product (2000–present) in land surface applications
Rohaifa Khaldi, Domingo Alcaraz-Segura, Emilio Guirado, Yassir Benhammou, Abdellatif El Afia, Francisco Herrera, and Siham Tabik
Earth Syst. Sci. Data, 14, 1377–1411, https://doi.org/10.5194/essd-14-1377-2022, https://doi.org/10.5194/essd-14-1377-2022, 2022
Short summary
Short summary
This dataset with millions of 22-year time series for seven spectral bands was built by merging Terra and Aqua satellite data and annotated for 29 LULC classes by spatial–temporal agreement across 15 global LULC products. The mean F1 score was 96 % at the coarsest classification level and 87 % at the finest one. The dataset is born to develop and evaluate machine learning models to perform global LULC mapping given the disagreement between current global LULC products.
Chuanmin Hu
Earth Syst. Sci. Data, 14, 1183–1192, https://doi.org/10.5194/essd-14-1183-2022, https://doi.org/10.5194/essd-14-1183-2022, 2022
Short summary
Short summary
Using data collected by the Hyperspectral Imager for the Coastal Ocean (HICO) between 2010–2014, hyperspectral reflectance of various floating matters in global oceans and lakes is derived for the spectral range of 400–800 nm. Such reflectance spectra are expected to provide spectral endmembers to differentiate and quantify the floating matters from existing multi-band satellite sensors and future hyperspectral satellite missions such as NASA’s PACE, SBG, and GLIMR missions.
Tobias K. D. Weber, Joachim Ingwersen, Petra Högy, Arne Poyda, Hans-Dieter Wizemann, Michael Scott Demyan, Kristina Bohm, Ravshan Eshonkulov, Sebastian Gayler, Pascal Kremer, Moritz Laub, Yvonne Funkiun Nkwain, Christian Troost, Irene Witte, Tim Reichenau, Thomas Berger, Georg Cadisch, Torsten Müller, Andreas Fangmeier, Volker Wulfmeyer, and Thilo Streck
Earth Syst. Sci. Data, 14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022, https://doi.org/10.5194/essd-14-1153-2022, 2022
Short summary
Short summary
Presented are measurement results from six agricultural fields operated by local farmers in southwestern Germany over 9 years. Six eddy-covariance stations measuring water, energy, and carbon fluxes between the vegetated soil surface and the atmosphere provided the backbone of the measurement sites and were supplemented by extensive soil and vegetation state monitoring. The dataset is ideal for testing process models characterizing fluxes at the vegetated soil surface and in the atmosphere.
Runmei Ma, Jie Ban, Qing Wang, Yayi Zhang, Yang Yang, Shenshen Li, Wenjiao Shi, Zhen Zhou, Jiawei Zang, and Tiantian Li
Earth Syst. Sci. Data, 14, 943–954, https://doi.org/10.5194/essd-14-943-2022, https://doi.org/10.5194/essd-14-943-2022, 2022
Short summary
Short summary
We constructed multi-variable random forest models based on 10-fold cross-validation and estimated daily PM2.5 and O3 concentration of China in 2005–2017 at a resolution of 1 km. The daily R2 values of PM2.5 and O3 were 0.85 and 0.77. The meteorological variables can significantly affect both PM2.5 and O3 modeling. During 2005–2017, PM2.5 exhibited an overall downward trend, while O3 experienced the opposite. The temporal trend of PM2.5 and O3 had spatial characteristics during the study period.
Guta Wakbulcho Abeshu, Hong-Yi Li, Zhenduo Zhu, Zeli Tan, and L. Ruby Leung
Earth Syst. Sci. Data, 14, 929–942, https://doi.org/10.5194/essd-14-929-2022, https://doi.org/10.5194/essd-14-929-2022, 2022
Short summary
Short summary
Existing riverbed sediment particle size data are sparsely available at individual sites. We develop a continuous map of median riverbed sediment particle size over the contiguous US corresponding to millions of river segments based on the existing observations and machine learning methods. This map is useful for research in large-scale river sediment using model- and data-driven approaches, teaching environmental and earth system sciences, planning and managing floodplain zones, etc.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Wenjun Tang, Jun Qin, Kun Yang, and Yaozhi Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-5, https://doi.org/10.5194/essd-2022-5, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Photosynthetically active radiation (PAR) is a fundamental physiological variable for research in the ecological, agricultural, and global change fields. In this study, we produced a 35-year high-resolution global gridded PAR dataset. Compared with the well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES), our PAR product was found to be a more accurate dataset with higher resolution.
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-447, https://doi.org/10.5194/essd-2021-447, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
The newly China global Merged Surface Temperature CMST 2.0 is described in this study, containing tree versions: CMST2.0-Nrec (without reconstruction), CMST2.0-Imax, and CMST2.0-Imin (According to their reconstruction area of the air temperature over the sea ice surface in the Arctic region). The reconstructed datasets significantly improve data coverage, especially in the high latitudes, and thus increasing the long-term trends at global, hemispheric, and regional scales from 1850 to 2020.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021, https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Short summary
This study has combined three existing land evaporation (ET) products to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25° to define the global proxy ET with lower uncertainties. The merged product is the best at capturing dynamics over different locations and times among all data sets. The merged product performed well over a range of vegetation cover scenarios and also captured the trend of land evaporation over different areas well.
Kytt MacManus, Deborah Balk, Hasim Engin, Gordon McGranahan, and Rya Inman
Earth Syst. Sci. Data, 13, 5747–5801, https://doi.org/10.5194/essd-13-5747-2021, https://doi.org/10.5194/essd-13-5747-2021, 2021
Short summary
Short summary
New estimates of population and land area by settlement types within low-elevation coastal zones (LECZs) based on four sources of population data, four sources of settlement data and four sources of elevation data for the years 1990, 2000 and 2015. The paper describes the sensitivity of these estimates and discusses the fitness of use guiding user decisions. Data choices impact the number of people estimated within LECZs, but across all sources the LECZs are predominantly urban and growing.
Yanhua Xie, Holly K. Gibbs, and Tyler J. Lark
Earth Syst. Sci. Data, 13, 5689–5710, https://doi.org/10.5194/essd-13-5689-2021, https://doi.org/10.5194/essd-13-5689-2021, 2021
Short summary
Short summary
We created 30 m resolution annual irrigation maps covering the conterminous US for the period of 1997–2017, together with derivative products and ground reference data. The products have several improvements over other data, including field-level details of change and frequency, an annual time step, a collection of ~ 10 000 ground reference locations for the eastern US, and improved mapping accuracy of over 90 %, especially in the east compared to others of 50 % to 80 %.
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
Short summary
Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Samuel J. Tomlinson, Edward J. Carnell, Anthony J. Dore, and Ulrike Dragosits
Earth Syst. Sci. Data, 13, 4677–4692, https://doi.org/10.5194/essd-13-4677-2021, https://doi.org/10.5194/essd-13-4677-2021, 2021
Short summary
Short summary
Nitrogen (N) may impact the environment in many ways, and estimation of its deposition to the terrestrial surface is of interest. N deposition data have not been generated at a high resolution (1 km × 1 km) over a long time series in the UK before now. This study concludes that N deposition has reduced by ~ 40 % from 1990. The impact of these results allows analysis of environmental impacts at a high spatial and temporal resolution, using a consistent methodology and consistent set of input data.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Short summary
Lakes can be effective indicators of climate change, especially over the Qinghai–Tibet Plateau. Here, we provide the most comprehensive lake mapping covering the past 100 years. The new features of this data set are (1) its temporal length, providing the longest period of lake observations from maps, (2) the data set provides a state-of-the-art lake inventory for the Landsat era (from the 1970s to 2020), and (3) it provides the densest lake observations for lakes with areas larger than 1 km2.
Jie Yang and Xin Huang
Earth Syst. Sci. Data, 13, 3907–3925, https://doi.org/10.5194/essd-13-3907-2021, https://doi.org/10.5194/essd-13-3907-2021, 2021
Short summary
Short summary
We produce the 30 m annual China land cover dataset (CLCD), with an accuracy reaching 79.31 %. Trends and patterns of land cover changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and increase in forest (+4.34 %). The CLCD generally reflected the rapid urbanization and a series of ecological projects in China and revealed the anthropogenic implications on LC under the condition of climate change.
Richard Porter-Smith, John McKinlay, Alexander D. Fraser, and Robert A. Massom
Earth Syst. Sci. Data, 13, 3103–3114, https://doi.org/10.5194/essd-13-3103-2021, https://doi.org/10.5194/essd-13-3103-2021, 2021
Short summary
Short summary
This study quantifies the characteristic complexity
signaturesaround the Antarctic outer coastal margin, giving a multiscale estimate of the magnitude and direction of undulation or complexity at each point location along the entire coastline. It has numerous applications for both geophysical and biological studies and will contribute to Antarctic research requiring quantitative information about this important interface.
Gonçalo Vieira, Carla Mora, Pedro Pina, Ricardo Ramalho, and Rui Fernandes
Earth Syst. Sci. Data, 13, 3179–3201, https://doi.org/10.5194/essd-13-3179-2021, https://doi.org/10.5194/essd-13-3179-2021, 2021
Short summary
Short summary
Fogo in Cabo Verde is one of the most active ocean island volcanoes on Earth, posing important hazards to local populations and at a regional level. The last eruption occurred from November 2014 to February 2015. A survey of the Chã das Caldeiras area was conducted using a fixed-wing unmanned aerial vehicle. A point cloud, digital surface model and orthomosaic with 10 and 25 cm resolutions are provided, together with the full aerial survey projects and datasets.
Clara Betancourt, Timo Stomberg, Ribana Roscher, Martin G. Schultz, and Scarlet Stadtler
Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021, https://doi.org/10.5194/essd-13-3013-2021, 2021
Short summary
Short summary
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in the field of environmental science. The AQ-Bench dataset contains air quality data and metadata from more than 5500 air quality observation stations all over the world. The dataset offers a low-threshold entrance to machine learning on a real-world environmental dataset. AQ-Bench thus provides a blueprint for environmental benchmark datasets.
Christof Lorenz, Tanja C. Portele, Patrick Laux, and Harald Kunstmann
Earth Syst. Sci. Data, 13, 2701–2722, https://doi.org/10.5194/essd-13-2701-2021, https://doi.org/10.5194/essd-13-2701-2021, 2021
Short summary
Short summary
Semi-arid regions depend on the freshwater resources from the rainy seasons as they are crucial for ensuring security for drinking water, food and electricity. Thus, forecasting the conditions for the next season is crucial for proactive water management. We hence present a seasonal forecast product for four semi-arid domains in Iran, Brazil, Sudan/Ethiopia and Ecuador/Peru. It provides a benchmark for seasonal forecasts and, finally, a crucial contribution for improved disaster preparedness.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Yongyong Fu, Jinsong Deng, Hongquan Wang, Alexis Comber, Wu Yang, Wenqiang Wu, Shixue You, Yi Lin, and Ke Wang
Earth Syst. Sci. Data, 13, 1829–1842, https://doi.org/10.5194/essd-13-1829-2021, https://doi.org/10.5194/essd-13-1829-2021, 2021
Short summary
Short summary
Marine aquaculture areas in a region up to 30 km from the coast in China were mapped for the first time. It was found to cover a total area of ~1100 km2, of which more than 85 % is marine plant culture areas, with 87 % found in four coastal provinces. The results confirm the applicability and effectiveness of deep learning when applied to GF-1 data at the national scale, identifying the detailed spatial distributions and supporting the sustainable management of coastal resources in China.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Fei Feng and Kaicun Wang
Earth Syst. Sci. Data, 13, 907–922, https://doi.org/10.5194/essd-13-907-2021, https://doi.org/10.5194/essd-13-907-2021, 2021
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Susannah Rennie, Klaus Goergen, Christoph Wohner, Sander Apweiler, Johannes Peterseil, and John Watkins
Earth Syst. Sci. Data, 13, 631–644, https://doi.org/10.5194/essd-13-631-2021, https://doi.org/10.5194/essd-13-631-2021, 2021
Short summary
Short summary
This paper describes a pan-European climate service data product intended for ecological researchers. Access to regional climate scenario data will save ecologists time, and, for many, it will allow them to work with data resources that they will not previously have used due to a lack of knowledge and skills to access them. Providing easy access to climate scenario data in this way enhances long-term ecological research, for example in general regional climate change or impact assessments.
Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders
Earth Syst. Sci. Data, 13, 357–366, https://doi.org/10.5194/essd-13-357-2021, https://doi.org/10.5194/essd-13-357-2021, 2021
Short summary
Short summary
Flight data have been used widely for research by academic researchers and (supra)national institutions. Example domains range from epidemiology (e.g. examining the spread of COVID-19 via air travel) to economics (e.g. use as proxy for immediate forecasting of the state of a country's economy) and Earth sciences (climatology in particular). Until now, accurate flight data have been available only in small pieces from closed, proprietary sources. This work changes this with a crowdsourced effort.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Robert A. Rohde and Zeke Hausfather
Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, https://doi.org/10.5194/essd-12-3469-2020, 2020
Short summary
Short summary
A global land and ocean temperature record was created by combining the Berkeley Earth monthly land temperature field with a newly interpolated version of the HadSST3 ocean dataset. The resulting dataset covers the period from 1850 to present.
This paper describes the methods used to create that combination and compares the results to other estimates of global temperature and the associated recent climate change, giving similar results.
Igor Savin, Valery Mironov, Konstantin Muzalevskiy, Sergey Fomin, Andrey Karavayskiy, Zdenek Ruzicka, and Yuriy Lukin
Earth Syst. Sci. Data, 12, 3481–3487, https://doi.org/10.5194/essd-12-3481-2020, https://doi.org/10.5194/essd-12-3481-2020, 2020
Short summary
Short summary
This article presents a dielectric database of organic Arctic soils. This database was created based on dielectric measurements of seven samples of organic soils collected in various parts of the Arctic tundra. The created database can serve not only as a source of experimental data for the development of new soil dielectric models for the Arctic tundra but also as a source of training data for artificial intelligence satellite algorithms of soil moisture retrievals based on neural networks.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Clara Lázaro, Maria Joana Fernandes, Telmo Vieira, and Eliana Vieira
Earth Syst. Sci. Data, 12, 3205–3228, https://doi.org/10.5194/essd-12-3205-2020, https://doi.org/10.5194/essd-12-3205-2020, 2020
Short summary
Short summary
In satellite altimetry (SA), the wet tropospheric correction (WTC) accounts for the path delay induced mainly by atmospheric water vapour. In coastal regions, the accuracy of the WTC determined by the on-board radiometer deteriorates. The GPD+ methodology, developed by the University of Porto in the remit of ESA-funded projects, computes improved WTCs for SA. Global enhanced products are generated for all past and operational altimetric missions, forming a relevant dataset for coastal altimetry.
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020, https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
Anne L. Morée and Jörg Schwinger
Earth Syst. Sci. Data, 12, 2971–2985, https://doi.org/10.5194/essd-12-2971-2020, https://doi.org/10.5194/essd-12-2971-2020, 2020
Short summary
Short summary
This dataset consists of eight variables needed in ocean modelling and is made to support modelers of the Last Glacial Maximum (LGM; 21 000 years ago) ocean. The LGM is a time of specific interest for climate researchers. The data are based on the results of state-of-the-art climate models and are the best available estimate of these variables for the LGM. The dataset shows clear spatial patterns but large uncertainties and is presented in a way that facilitates applications in any ocean model.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Juan-Carlos Antuña-Marrero, Graham W. Mann, Philippe Keckhut, Sergey Avdyushin, Bruno Nardi, and Larry W. Thomason
Earth Syst. Sci. Data, 12, 2843–2851, https://doi.org/10.5194/essd-12-2843-2020, https://doi.org/10.5194/essd-12-2843-2020, 2020
Short summary
Short summary
We report the recovery of lidar measurements of the 1991 Pinatubo eruption. Two Soviet ships crossing the tropical Atlantic in July–September 1991 and January–February 1992 measured the vertical profile of the Pinatubo cloud at different points in its spatio-temporal evolution. The datasets provide valuable new information on the eruption's impacts on climate, with the SAGE-II satellite measurements not able to measure most of the lower half of the Pinatubo cloud in the tropics in this period.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Shungudzemwoyo P. Garaba, Tomás Acuña-Ruz, and Cristian B. Mattar
Earth Syst. Sci. Data, 12, 2665–2678, https://doi.org/10.5194/essd-12-2665-2020, https://doi.org/10.5194/essd-12-2665-2020, 2020
Short summary
Short summary
Technologies to support detection and tracking of plastic litter in aquatic environments capable of repeated observations at a wide-area scale have been getting increased interest from scientists and stakeholders. We report findings about thermal infrared optical properties of naturally dried samples of algae, sands, sea shells and synthetic plastics obtained in Chile. Diagnostic features of the dataset are foreseen to contribute towards research relevant in thermal infrared sensing of plastics.
Kristian Bär, Thomas Reinsch, and Judith Bott
Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, https://doi.org/10.5194/essd-12-2485-2020, 2020
Short summary
Short summary
Petrophysical properties are key to populating numerical models of subsurface process simulations and the interpretation of many geophysical exploration methods. The P3 database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. The uniqueness of P3 emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding location, petrography, stratigraphy and original reference.
Marco Cucchi, Graham P. Weedon, Alessandro Amici, Nicolas Bellouin, Stefan Lange, Hannes Müller Schmied, Hans Hersbach, and Carlo Buontempo
Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, https://doi.org/10.5194/essd-12-2097-2020, 2020
Short summary
Short summary
WFDE5 is a novel meteorological forcing dataset for running land surface and global hydrological models. It has been generated using the WATCH Forcing Data methodology applied to surface meteorological variables from the ERA5 reanalysis. It is publicly available, along with its source code, through the C3S Climate Data Store at ECMWF. Results of the evaluations described in the paper highlight the benefits of using WFDE5 compared to both ERA5 and its predecessor WFDEI.
Megan McElhinny, Justin F. Beckers, Chelene Hanes, Mike Flannigan, and Piyush Jain
Earth Syst. Sci. Data, 12, 1823–1833, https://doi.org/10.5194/essd-12-1823-2020, https://doi.org/10.5194/essd-12-1823-2020, 2020
Short summary
Short summary
The Canadian Fire Weather Index uses temperature, relative humidity, wind speed, and rainfall to provide a fire danger rating that is crucial for fire managers and communities for risk assessment. We provide a global calculation of this index and other relevant indices using high-resolution modelled weather data for 1979–2018. These data will be useful for research studies aiming to quantify the relationships between fire occurrence, growth, or severity and weather or for trend analysis studies.
Michel M. Verstraete, Linda A. Hunt, and Veljko M. Jovanovic
Earth Syst. Sci. Data, 12, 1321–1346, https://doi.org/10.5194/essd-12-1321-2020, https://doi.org/10.5194/essd-12-1321-2020, 2020
Short summary
Short summary
The L1B2 Georectified Radiance Product, available for each of the nine cameras of the MISR instrument, contains a variable number of missing values, especially wherever and whenever the instrument is switched from the Global to the Local Mode. This paper proposes an algorithm to effectively replace those missing values and demonstrates the performance of the process. MISR data and software tools are obtainable from public domain websites to explore this issue further.
Cited articles
Awaka, J., Iguchi, T., Kumagai, H., and Okamoto, K.: Rain type
classification algorithm for TRMM precipitation radar, IEEE International
Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing – A
Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997,
https://doi.org/10.1109/IGARSS.1997.608993, 1997.
Baker, M. B.: Cloud Microphysics and Climate, Science, 276, 1072–1078,
https://doi.org/10.1126/science.276.5315.1072, 1997.
Chen, F. and Fu, Y. F.: Characteristics of typhoon precipitation and
non-typhoon precipitation over East Asia based on merged PR and VIRS data,
Climatic. Environ. Res., 20, 62–74,
https://doi.org/10.3878/j.issn.1006-9585.2014.14031, 2015 (in Chinese).
Chen, F., Sheng, S., Bao, Z., Wen, H., Hua, L., Paul, N. J., and Fu, Y.:
Precipitation Clouds Delineation Scheme in Tropical Cyclones and Its
Validation Using Precipitation and Cloud Parameter Datasets from TRMM, J.
Appl. Meteorol. Climatol., 57, 821–836,
https://doi.org/10.1175/jamc-d-17-0157.1, 2018.
Chen, Y. and Fu, Y.: Characteristics of VIRS Signals within Pixels of TRMM
PR for Warm Rain in the Tropics and Subtropics, J. Appl. Meteorol.
Climatol., 56, 789–801, https://doi.org/10.1175/jamc-d-16-0198.1, 2017.
Durden, S. L., Im, E., Haddad, Z. S., and Li, L.: Comparison of TRMM
precipitation radar and airbrone radar data, J. Appl. Meteorol., 42,
769–774, https://doi.org/10.1175/1520-0450(2003)042<0769:COTPRA>2.0.CO;2, 2003.
Fu, Y. and Zhang, A.: Life Cycle Effects on the Vertical Structure of
Precipitation in East China Measured by Himawari-8 and GPM DPR, Mon.
Weather Rev., 146, 2183–2199, https://doi.org/10.1175/mwr-d-18-0085.1,
2018.
Fu, Y., Pan, X., Xian, T., Liu, G., Zhong, L., Liu, Q., Li, R., Wang, Y.,
and Ma, M.: Precipitation characteristics over the steep slope of the
Himalayas in rainy season observed by TRMM PR and VIRS, Clim. Dynam., 51,
1971–1989, https://doi.org/10.1007/s00382-017-3992-3, 2017.
Fu, Y. F.: Cloud Parameyers retrieved by the bispectral reflectance
algorithm and associated applications, J. Meteorol. Res-Prc., 28, 965–982,
https://doi.org/10.1007/s13351-014-3292-3, 2014.
Fu, Y. F. and Liu, G. S.: The variability of tropical precipitation profiles
and its impact on microwave brightness temperatures as inferred from TRMM
data, J. Appl. Meteorol., 40, 2130–2143,
https://doi.org/10.1175/1520-0450(2001)040<2130:TVOTPP>2.0.CO;2, 2001.
Fu, Y. F., Liu, Q., Zi, Y., Feng, S., Li, Y., and Liu, G. S.: Summer
Precipitation andLatent Heating over the Tibet Plateau Based on TRMM
Measurements, Plateau. Mountain. Meteor. Res., 28, 8–18,
https://doi.org/10.3969/j.issn.1674-2184.2008.01.002, 2008 (in Chinese).
Fu, Y. F., Liu, P., Liu, Q., Ma, M., Sun, L., and Wang, Y.: Climatological
Characteristics of VIRS Channels for Precipitating Cloud in Summer Over the
Tropics and Subtropics, J. Atmos. Environ. Optics, 6, 129–140, https://doi.org/10.3969/j.issn.1673-6141.2011.02.009,
2011 (in
Chinese).
Gao, W., Liu, L., Li, J., and Lu, C.: The Microphysical Properties of
Convective Precipitation Over the Tibetan Plateau by a Subkilometer
Resolution Cloud-Resolving Simulation, J. Geophys. Res.-Atmos., 123,
3212–3227, https://doi.org/10.1002/2017jd027812, 2018.
Hartmann, D. L. and Short, D. A.: On the Use of Earth Radiation Budget
Statistics for Studies of Clouds and Climate, J. Atmos. Sci., 37, 1233–1250,
https://doi.org/10.1175/1520-0469(1980)037<1233:Otuoer>2.0.Co;2, 1980.
Hawkins, J., Miller, S., Mitrescu, C., L'Ecuyer, T., Turk, J., Partain, P.,
and Stephens, G.: Near-Real-Time Applications of CloudSat Data, J. Appl.
Meteorol. Climatol., 47, 1982–1994, https://doi.org/10.1175/2007jamc1794.1,
2008.
Hayasaka, T., Kozu, T., Iguchi, T., Meneghini, R., Awaka, J., Okamoto, K.
i., Wu, D. L., Jin, Y., and Jiang, J.: Preliminary test results of a rain
rate profiling algorithm for the TRMM precipitation radar, Microwave Remote
Sensing of the Atmosphere and Environment, China, 19 August 1998, 3503, 86–93,
https://doi.org/10.1117/12.319497, 1998.
Heng, Z. and Fu, Y. F.: Impact of gridding scale on TRMM microwave imager
cloud water information, Climatic. Environ. Res., 19, 693–702,
https://doi.org/10.3878/j.issn.1006-9585.2013.13049, 2014 (in Chinese).
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hobbs, P. V.: Research on the clouds and precipitation past present and
future,Part II, B. Am. Meteorol. Soc., 72, 184–191,
https://doi.org/10.1175/1520-0477(1991)072<0184:ROCAPP>2.0.CO;2, 1991.
Houze, R. A.: Structures of atmospheric precipitation systems A global
survey, Radio. Sci., 16, 671–689, https://doi.org/10.1029/RS016i005p00671,
1981.
Houze, R. A.: Stratiform Precipitation in Regions of Convection: A
Meteorological Paradox?, B. Am. Meteorol. Soc., 78, 2179–2196,
https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2, 1997.
Iguchi, T., Meneghini, R., Awaka, J., Kozu, T., and Okamoto, K.: Rain
profiling algorithm for TRMM Precipitation Radar data, Adv. Space. Res., 25,
973–976, https://doi.org/10.1016/S0273-1177(99)00933-3, 2000.
Kienast-Sjögren, E., Rolf, C., Seifert, P., Krieger, U. K., Luo, B. P., Krämer, M., and Peter, T.: Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements, Atmos. Chem. Phys., 16, 7605–7621, https://doi.org/10.5194/acp-16-7605-2016, 2016.
Kozu, T., Kawanishi, T., Kuroiwa, H., Oikawa, M., Kumagai, H., Okamoto, K.,
Okumura, M., Nakatsuka, H., and Nishikawa, K.: Development of precipitation
radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite.,
IEEE T. Geosci. Remote. Sens., 39, 102–116,
https://doi.org/10.1109/36.898669, 2001.
Kummerow, C., William, S., and Giglio, L.: A simplified scheme for obtaining
precipitation and vertical hydrometeor profiles from passive microwave
sensors, IEEE T. Geosci. Remote. Sens., 34, 1213–1232,
https://doi.org/10.1109/36.536538, 1996.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The tropical
rainfall measuring mission (TRMM) sensor package, J. Atmos. Ocean. Tech.,
15, 809–817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998.
Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker,
E., Adler, R. F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T.,
Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman,
G., Ferrier, B., Olson, W. S., Zipser, E., Smith, E. A., Wilheit, T. T.,
North, G., Krishnamurti, T., and Nakamura, K.: The status of the TRMM after
two years in orbit, J. Appl. Meteorol. Climatol., 39, 1965–1982,
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2, 2000.
Lau, K. M. and Wu, H. T.: Characteristics of Precipitation, Cloud, and
Latent Heating Associated with the Madden-Julian Oscillation, J. Climate,
23, 504–518, https://doi.org/10.1175/2009jcli2920.1, 2010.
Li, J., Lv, Q., Jian, B., Zhang, M., Zhao, C., Fu, Q., Kawamoto, K., and Zhang, H.: The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau, Atmos. Chem. Phys., 18, 7329–7343, https://doi.org/10.5194/acp-18-7329-2018, 2018.
Li, R. and Fu, Y. F.: Tropical Precipitation Estimated by GPCP and TRMM PR
Observations, Adv. Atmos. Sci., 22, 852–864,
https://doi.org/10.1007/BF02918685, 2005.
Liou, K.-N.: Influence of Cirrus Clouds on Weather and Climate Processes: A
Global Perspective, Mon. Weather Rev., 114, 1167–1199,
https://doi.org/10.1175/1520-0493(1986)114<1167:Ioccow>2.0.Co;2, 1986.
Liu, C. and Zipser, E. J.: “Warm Rain” in the Tropics: Seasonal and
Regional Distributions Based on 9 yr of TRMM Data, J. Climate, 22, 767–779,
https://doi.org/10.1175/2008jcli2641.1, 2009.
Liu, G. S. and Fu, Y. F.: The Characteristics of tropical precipitation
profiles as inferred from satellite radar measurements, J. Meteorol. Soc.
Jpn., 79, 131–143, https://doi.org/10.2151/jmsj.79.131, 2001.
Liu, Q. and Fu, Y. F.: The difference between precipitation profiles over the Tibetan Plateau and over East Asia and Tropics, Journal of University of Science and technology of China, 37, 885–894, https://doi.org/10.3969/j.issn.0253-2778.2007.08.011, 2007 (in Chinese).
Liu, Q. and Fu, Y.: Comparison of radiative signals between precipitating
and non-precipitating clouds in frontal and typhoon domains over East Asia,
Atmos. Res., 96, 436–446, https://doi.org/10.1016/j.atmosres.2010.02.003,
2010.
Lu, D., Yang, Y., and Fu, Y.: Interannual variability of summer monsoon
convective and stratiform precipitations in East Asia during 1998–2013, Int.
J. Climatol., 36, 3507–3520, https://doi.org/10.1002/joc.4572, 2016.
Luo, S., Fu, Y., Zhou, S., Wang, X., and Wang, D.: Analysis of the
Relationship between the Cloud Water Path and Precipitation Intensity of
Mature Typhoons in the Northwest Pacific Ocean, Adv. Atmos. Sci., 37,
359–376, https://doi.org/10.1007/s00376-020-9204-9, 2020.
Luo, Y., Zhang, R., and Wang, H.: Comparing Occurrences and Vertical
Structures of Hydrometeors between Eastern China and the Indian Monsoon
Region Using CloudSat/CALIPSO Data, J. Climate, 22, 1052–1064,
https://doi.org/10.1175/2008jcli2606.1, 2009.
Min, Q., Li, R., Wu, X., and Fu, Y.: Retrieving latent heating vertical
structure from cloud and precipitation Profiles – Part I: Warm rain
processes, J. Quant. Spectrosc. Ra., 122, 31–46,
https://doi.org/10.1016/j.jqsrt.2012.11.030, 2013.
Nesbitt, S. W., Zipser, E. J., and Cecil, D. J.: A census of precipitation
features in the tropics using TRMM Radar, ice scattering, and lightning
observations, J. Climate, 13, 4087–4106,
https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2, 1999.
Oki, T. and Kanae, S.: Global hydrological cycles and world water
resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845,
2006.
Olson, W. S., Kummerow, C. D., Heymsfield, G. M., and Giglio, L.: A Method
for Combined Passive-Active Microwave Retrievals of Cloud and Precipitation
Profiles, J. Appl. Meteorol., 35, 1763–1789,
https://doi.org/10.1175/1520-0450(1996)035<1763:Amfcpm>2.0.Co;2, 1996.
Pan, X. and Fu, Y. F.: Analysis on Climatological Characteristics of Deep
and Shallow Precipitation Cloud in Summer over Qinghai-Xizang Plateau,
Plateau. Meteor., 34, 1191–1203,
https://doi.org/10.7522/j.issn.1000-0534.2014.00112, 2015 (in Chinese).
Petty, G. W.: Physical retrievals of over-ocean rain rate from multichannel
microwave imagery. Part I: Theoretical Characteristics of Normalized
Polarization and Scattering Indices, Meteorol. Atmos. Phys., 54, 79–99,
https://doi.org/10.1007/BF01030054, 1994.
Roscow, W. B. and Robert, A.: Advances in understanding clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2288,
https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.
Sassen, K., Wang, Z., and Liu, D.: Cirrus clouds and deep convection in the
tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res., 114, D00H06,
https://doi.org/10.1029/2009jd011916, 2009.
Schumacher, C. and Houze, R. A.: The TRMM precipitation radar's view of
shallow, isolated rain, J. Appl. Meteorol., 42, 1519–1524,
https://doi.org/10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2, 2003.
Simpson, J., Kummerow, C., Tao, W.-K., and Adler, R. F.: On the Tropical
Rainfall Measuring Mission (TRMM), Meteorol. Atmos. Phys., 60, 19–36,
https://doi.org/10.1007/BF01029783, 1996.
Sun, L. L. and Fu, Y. F.: A new merged dataset for analyzing clouds,
precipitation and atmospheric parameters based on ERA5 reanalysis data and
the measurements of TRMM PR and VIRS [dataset], Zenodo, https://doi.org/10.5281/zenodo.4458868, 2021.
Szoke, E. J., Zipser, E. J., and Jorgensen, D. P.: A Radar Study of
Convective Cells in Mesoscale Systems in GATE. Part I: Vertical Profile
Statistics and Comparison with Hurricanes, J. Atmos. Sci., 43, 182–198,
https://doi.org/10.1175/1520-0469(1986)043<0182:Arsocc>2.0.Co;2, 1986.
Tustison, B., Foufoula-Georgiou, E., and Harris, D.: Scale-recursive
estimation for multisensor Quantitative Precipitation Forecast verification:
A preliminary assessment, J. Geophys. Res., 108, CIP2-1-14,
https://doi.org/10.1029/2001jd001073, 2002.
Wang, R. and Fu, Y.: Structural characteristics of atmospheric temperature
and humidity inside clouds of convective and stratiform precipitation in the
rainy season over East Asia, J. Meteorol. Res-Prc., 31, 890–905,
https://doi.org/10.1007/s13351-017-7038-x, 2017.
Wang, Y., Zhang, Y., Fu, Y., Li, R., and Yang, Y.: A climatological
comparison of column-integrated water vapor for the third-generation
reanalysis datasets, Sci. China Earth Sci., 59, 296–306,
https://doi.org/10.1007/s11430-015-5183-6, 2015.
Wetherald, R. T. and Manabe, S.: Cloud Feedback Processes in a General
Circulation Model, J. Atmos. Sci., 45, 1397–1416,
https://doi.org/10.1175/1520-0469(1988)045<1397:Cfpiag>2.0.Co;2, 1988.
Wilheit, T. T., Chang, A. T. C., V. Rao, M. S., Rodgers, E. B., and Theon,
J. S.: A Satellite Technique for Quantitatively Mapping Rainfall Rates over
the Oceans, J. Appl. Meteorol., 16, 551–560,
https://doi.org/10.1175/1520-0450(1977)016<0551:Astfqm>2.0.Co;2, 1977.
Xia, J. and Fu, Y. F.: The vertical characteristics of temperature and
humidity inside convective and stratiform precipitating clouds in the East
Asian summer monsoon region and Indian summer monsoon region, Chinese J.
Atmos. Sci., 40, 563–580,
https://doi.org/10.3878/j.issn.1006-9895.1507.15123, 2016 (in Chinese).
Yang, Y.-J., Lu, D.-R., Fu, Y.-F., Chen, F.-J., and Wang, Y.: Spectral
Characteristics of Tropical Anvils Obtained by Combining TRMM Precipitation
Radar with Visible and Infrared Scanner Data, Pure Appl. Geophys., 172,
1717–1733, https://doi.org/10.1007/s00024-014-0965-x, 2014.
Yuter, S. E. and Houze, R. A.: Three-Dimensional Kinematic and
Microphysical Evolution of Florida Cumulonimbus. Part III: Vertical Mass
Transport, Mass Divergence, and Synthesis, Mon. Weather Rev., 123,
1964–1983, https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2, 1995.
Zhao, B., Zhang, B., Shi, C., Liu, J., and Jiang, L.: Comparison of the
Global Energy Cycle between Chinese Reanalysis Interim and ECMWF Reanalysis,
J. Meteorol. Res-Prc., 33, 563–575,
https://doi.org/10.1007/s13351-019-8129-7, 2019.
Zheng, X. Y., Fu, Y. F., Yang, Y. J., and Liu, G. S.: Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: observational evidence, Atmos. Chem. Phys., 15, 12115–12138, https://doi.org/10.5194/acp-15-12115-2015, 2015.
Zipser, E. J. and Lutz, K. R.: The Vertical Profile of Radar Reflectivity
of Convective Cells: A Strong Indicator of Storm Intensity and Lightning
Probability?, Mon. Weather Rev., 122, 1751–1759,
https://doi.org/10.1175/1520-0493(1994)122<1751:Tvporr>2.0.Co;2, 1994.
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We...