Articles | Volume 13, issue 5
https://doi.org/10.5194/essd-13-2293-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-2293-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new merged dataset for analyzing clouds, precipitation and atmospheric parameters based on ERA5 reanalysis data and the measurements of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar and visible and infrared scanner
Lilu Sun
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, 230026, China
Yunfei Fu
CORRESPONDING AUTHOR
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, 230026, China
Related authors
No articles found.
Zhenhao Wu, Jian Shang, Chunguan Cui, Peng Zhang, Songyan Gu, Lin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 17, 5137–5148, https://doi.org/10.5194/essd-17-5137-2025, https://doi.org/10.5194/essd-17-5137-2025, 2025
Short summary
Short summary
We have established a new dataset of rain cell precipitation parameters and visible-infrared and microwave signals by combining multi-instrument observation data from the Tropical Rainfall Measuring Mission (TRMM). The purpose of this dataset is to promote the three-dimensional studies of rain cell precipitation systems and to reveal the spatial and temporal variations in their scale, morphology, and intensity.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Peizhen Li, Lei Zhong, Yaoming Ma, Yunfei Fu, Meilin Cheng, Xian Wang, Yuting Qi, and Zixin Wang
Atmos. Chem. Phys., 23, 9265–9285, https://doi.org/10.5194/acp-23-9265-2023, https://doi.org/10.5194/acp-23-9265-2023, 2023
Short summary
Short summary
In this paper, all-sky downwelling shortwave radiation (DSR) over the entire Tibetan Plateau (TP) at a spatial resolution of 1 km was estimated using an improved parameterization scheme. The influence of topography and different radiative attenuations were comprehensively taken into account. The derived DSR showed good agreement with in situ measurements. The accuracy was better than six other DSR products. The derived DSR also provided more reasonable and detailed spatial patterns.
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 14, 1433–1445, https://doi.org/10.5194/essd-14-1433-2022, https://doi.org/10.5194/essd-14-1433-2022, 2022
Short summary
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from spaceborne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of the precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
Ziyu Huang, Lei Zhong, Yaoming Ma, and Yunfei Fu
Geosci. Model Dev., 14, 2827–2841, https://doi.org/10.5194/gmd-14-2827-2021, https://doi.org/10.5194/gmd-14-2827-2021, 2021
Short summary
Short summary
Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of regional climate models (RCMs). However, the biases of the driving fields over the Tibetan Plateau (TP) would possibly introduce extra biases when spectral nudging is applied. The results show that the precipitation simulations were significantly improved when limiting the application of spectral nudging toward the potential temperature and water vapor mixing ratio over the TP.
Cited articles
Awaka, J., Iguchi, T., Kumagai, H., and Okamoto, K.: Rain type
classification algorithm for TRMM precipitation radar, IEEE International
Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing – A
Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997,
https://doi.org/10.1109/IGARSS.1997.608993, 1997.
Baker, M. B.: Cloud Microphysics and Climate, Science, 276, 1072–1078,
https://doi.org/10.1126/science.276.5315.1072, 1997.
Chen, F. and Fu, Y. F.: Characteristics of typhoon precipitation and
non-typhoon precipitation over East Asia based on merged PR and VIRS data,
Climatic. Environ. Res., 20, 62–74,
https://doi.org/10.3878/j.issn.1006-9585.2014.14031, 2015 (in Chinese).
Chen, F., Sheng, S., Bao, Z., Wen, H., Hua, L., Paul, N. J., and Fu, Y.:
Precipitation Clouds Delineation Scheme in Tropical Cyclones and Its
Validation Using Precipitation and Cloud Parameter Datasets from TRMM, J.
Appl. Meteorol. Climatol., 57, 821–836,
https://doi.org/10.1175/jamc-d-17-0157.1, 2018.
Chen, Y. and Fu, Y.: Characteristics of VIRS Signals within Pixels of TRMM
PR for Warm Rain in the Tropics and Subtropics, J. Appl. Meteorol.
Climatol., 56, 789–801, https://doi.org/10.1175/jamc-d-16-0198.1, 2017.
Durden, S. L., Im, E., Haddad, Z. S., and Li, L.: Comparison of TRMM
precipitation radar and airbrone radar data, J. Appl. Meteorol., 42,
769–774, https://doi.org/10.1175/1520-0450(2003)042<0769:COTPRA>2.0.CO;2, 2003.
Fu, Y. and Zhang, A.: Life Cycle Effects on the Vertical Structure of
Precipitation in East China Measured by Himawari-8 and GPM DPR, Mon.
Weather Rev., 146, 2183–2199, https://doi.org/10.1175/mwr-d-18-0085.1,
2018.
Fu, Y., Liu, G., Wu, G., Yu, R., Xu, Y., Wang, Y., Li, R., and Liu, Q.:
Tower mast of precipitation over the central Tibetan Plateau summer,
Geophys. Res. Lett., 33, L05802, https://doi.org/10.1029/2005gl024713, 2006.
Fu, Y., Liu, Q., Gao, Y., Hong, X., Zi, Y., Zheng, Y., Li, R., and Heng, Z.:
A feasible method for merging the TRMM microwave imager and precipitation
radar data, J. Quant. Spectrosc. Ra., 122, 155–169,
https://doi.org/10.1016/j.jqsrt.2012.08.028, 2013.
Fu, Y., Pan, X., Xian, T., Liu, G., Zhong, L., Liu, Q., Li, R., Wang, Y.,
and Ma, M.: Precipitation characteristics over the steep slope of the
Himalayas in rainy season observed by TRMM PR and VIRS, Clim. Dynam., 51,
1971–1989, https://doi.org/10.1007/s00382-017-3992-3, 2017.
Fu, Y. F.: Cloud Parameyers retrieved by the bispectral reflectance
algorithm and associated applications, J. Meteorol. Res-Prc., 28, 965–982,
https://doi.org/10.1007/s13351-014-3292-3, 2014.
Fu, Y. F. and Liu, G. S.: The variability of tropical precipitation profiles
and its impact on microwave brightness temperatures as inferred from TRMM
data, J. Appl. Meteorol., 40, 2130–2143,
https://doi.org/10.1175/1520-0450(2001)040<2130:TVOTPP>2.0.CO;2, 2001.
Fu, Y. F., Liu, Q., Zi, Y., Feng, S., Li, Y., and Liu, G. S.: Summer
Precipitation andLatent Heating over the Tibet Plateau Based on TRMM
Measurements, Plateau. Mountain. Meteor. Res., 28, 8–18,
https://doi.org/10.3969/j.issn.1674-2184.2008.01.002, 2008 (in Chinese).
Fu, Y. F., Liu, P., Liu, Q., Ma, M., Sun, L., and Wang, Y.: Climatological
Characteristics of VIRS Channels for Precipitating Cloud in Summer Over the
Tropics and Subtropics, J. Atmos. Environ. Optics, 6, 129–140, https://doi.org/10.3969/j.issn.1673-6141.2011.02.009,
2011 (in
Chinese).
Gao, W., Liu, L., Li, J., and Lu, C.: The Microphysical Properties of
Convective Precipitation Over the Tibetan Plateau by a Subkilometer
Resolution Cloud-Resolving Simulation, J. Geophys. Res.-Atmos., 123,
3212–3227, https://doi.org/10.1002/2017jd027812, 2018.
Hartmann, D. L. and Short, D. A.: On the Use of Earth Radiation Budget
Statistics for Studies of Clouds and Climate, J. Atmos. Sci., 37, 1233–1250,
https://doi.org/10.1175/1520-0469(1980)037<1233:Otuoer>2.0.Co;2, 1980.
Hawkins, J., Miller, S., Mitrescu, C., L'Ecuyer, T., Turk, J., Partain, P.,
and Stephens, G.: Near-Real-Time Applications of CloudSat Data, J. Appl.
Meteorol. Climatol., 47, 1982–1994, https://doi.org/10.1175/2007jamc1794.1,
2008.
Hayasaka, T., Kozu, T., Iguchi, T., Meneghini, R., Awaka, J., Okamoto, K.
i., Wu, D. L., Jin, Y., and Jiang, J.: Preliminary test results of a rain
rate profiling algorithm for the TRMM precipitation radar, Microwave Remote
Sensing of the Atmosphere and Environment, China, 19 August 1998, 3503, 86–93,
https://doi.org/10.1117/12.319497, 1998.
Heng, Z. and Fu, Y. F.: Impact of gridding scale on TRMM microwave imager
cloud water information, Climatic. Environ. Res., 19, 693–702,
https://doi.org/10.3878/j.issn.1006-9585.2013.13049, 2014 (in Chinese).
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hobbs, P. V.: Research on the clouds and precipitation past present and
future,Part II, B. Am. Meteorol. Soc., 72, 184–191,
https://doi.org/10.1175/1520-0477(1991)072<0184:ROCAPP>2.0.CO;2, 1991.
Houze, R. A.: Structures of atmospheric precipitation systems A global
survey, Radio. Sci., 16, 671–689, https://doi.org/10.1029/RS016i005p00671,
1981.
Houze, R. A.: Stratiform Precipitation in Regions of Convection: A
Meteorological Paradox?, B. Am. Meteorol. Soc., 78, 2179–2196,
https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2, 1997.
Iguchi, T., Meneghini, R., Awaka, J., Kozu, T., and Okamoto, K.: Rain
profiling algorithm for TRMM Precipitation Radar data, Adv. Space. Res., 25,
973–976, https://doi.org/10.1016/S0273-1177(99)00933-3, 2000.
Kienast-Sjögren, E., Rolf, C., Seifert, P., Krieger, U. K., Luo, B. P., Krämer, M., and Peter, T.: Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements, Atmos. Chem. Phys., 16, 7605–7621, https://doi.org/10.5194/acp-16-7605-2016, 2016.
Kozu, T., Kawanishi, T., Kuroiwa, H., Oikawa, M., Kumagai, H., Okamoto, K.,
Okumura, M., Nakatsuka, H., and Nishikawa, K.: Development of precipitation
radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite.,
IEEE T. Geosci. Remote. Sens., 39, 102–116,
https://doi.org/10.1109/36.898669, 2001.
Kummerow, C., William, S., and Giglio, L.: A simplified scheme for obtaining
precipitation and vertical hydrometeor profiles from passive microwave
sensors, IEEE T. Geosci. Remote. Sens., 34, 1213–1232,
https://doi.org/10.1109/36.536538, 1996.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The tropical
rainfall measuring mission (TRMM) sensor package, J. Atmos. Ocean. Tech.,
15, 809–817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998.
Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker,
E., Adler, R. F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T.,
Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman,
G., Ferrier, B., Olson, W. S., Zipser, E., Smith, E. A., Wilheit, T. T.,
North, G., Krishnamurti, T., and Nakamura, K.: The status of the TRMM after
two years in orbit, J. Appl. Meteorol. Climatol., 39, 1965–1982,
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2, 2000.
Lau, K. M. and Wu, H. T.: Characteristics of Precipitation, Cloud, and
Latent Heating Associated with the Madden-Julian Oscillation, J. Climate,
23, 504–518, https://doi.org/10.1175/2009jcli2920.1, 2010.
Li, J., Lv, Q., Jian, B., Zhang, M., Zhao, C., Fu, Q., Kawamoto, K., and Zhang, H.: The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau, Atmos. Chem. Phys., 18, 7329–7343, https://doi.org/10.5194/acp-18-7329-2018, 2018.
Li, R. and Fu, Y. F.: Tropical Precipitation Estimated by GPCP and TRMM PR
Observations, Adv. Atmos. Sci., 22, 852–864,
https://doi.org/10.1007/BF02918685, 2005.
Liou, K.-N.: Influence of Cirrus Clouds on Weather and Climate Processes: A
Global Perspective, Mon. Weather Rev., 114, 1167–1199,
https://doi.org/10.1175/1520-0493(1986)114<1167:Ioccow>2.0.Co;2, 1986.
Liu, C. and Zipser, E. J.: “Warm Rain” in the Tropics: Seasonal and
Regional Distributions Based on 9 yr of TRMM Data, J. Climate, 22, 767–779,
https://doi.org/10.1175/2008jcli2641.1, 2009.
Liu, G. S. and Fu, Y. F.: The Characteristics of tropical precipitation
profiles as inferred from satellite radar measurements, J. Meteorol. Soc.
Jpn., 79, 131–143, https://doi.org/10.2151/jmsj.79.131, 2001.
Liu, Q. and Fu, Y. F.: The difference between precipitation profiles over the Tibetan Plateau and over East Asia and Tropics, Journal of University of Science and technology of China, 37, 885–894, https://doi.org/10.3969/j.issn.0253-2778.2007.08.011, 2007 (in Chinese).
Liu, Q. and Fu, Y.: Comparison of radiative signals between precipitating
and non-precipitating clouds in frontal and typhoon domains over East Asia,
Atmos. Res., 96, 436–446, https://doi.org/10.1016/j.atmosres.2010.02.003,
2010.
Lu, D., Yang, Y., and Fu, Y.: Interannual variability of summer monsoon
convective and stratiform precipitations in East Asia during 1998–2013, Int.
J. Climatol., 36, 3507–3520, https://doi.org/10.1002/joc.4572, 2016.
Luo, S., Fu, Y., Zhou, S., Wang, X., and Wang, D.: Analysis of the
Relationship between the Cloud Water Path and Precipitation Intensity of
Mature Typhoons in the Northwest Pacific Ocean, Adv. Atmos. Sci., 37,
359–376, https://doi.org/10.1007/s00376-020-9204-9, 2020.
Luo, Y., Zhang, R., and Wang, H.: Comparing Occurrences and Vertical
Structures of Hydrometeors between Eastern China and the Indian Monsoon
Region Using CloudSat/CALIPSO Data, J. Climate, 22, 1052–1064,
https://doi.org/10.1175/2008jcli2606.1, 2009.
Min, Q., Li, R., Wu, X., and Fu, Y.: Retrieving latent heating vertical
structure from cloud and precipitation Profiles – Part I: Warm rain
processes, J. Quant. Spectrosc. Ra., 122, 31–46,
https://doi.org/10.1016/j.jqsrt.2012.11.030, 2013.
Nesbitt, S. W., Zipser, E. J., and Cecil, D. J.: A census of precipitation
features in the tropics using TRMM Radar, ice scattering, and lightning
observations, J. Climate, 13, 4087–4106,
https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2, 1999.
Oki, T. and Kanae, S.: Global hydrological cycles and world water
resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845,
2006.
Olson, W. S., Kummerow, C. D., Heymsfield, G. M., and Giglio, L.: A Method
for Combined Passive-Active Microwave Retrievals of Cloud and Precipitation
Profiles, J. Appl. Meteorol., 35, 1763–1789,
https://doi.org/10.1175/1520-0450(1996)035<1763:Amfcpm>2.0.Co;2, 1996.
Pan, X. and Fu, Y. F.: Analysis on Climatological Characteristics of Deep
and Shallow Precipitation Cloud in Summer over Qinghai-Xizang Plateau,
Plateau. Meteor., 34, 1191–1203,
https://doi.org/10.7522/j.issn.1000-0534.2014.00112, 2015 (in Chinese).
Petty, G. W.: Physical retrievals of over-ocean rain rate from multichannel
microwave imagery. Part I: Theoretical Characteristics of Normalized
Polarization and Scattering Indices, Meteorol. Atmos. Phys., 54, 79–99,
https://doi.org/10.1007/BF01030054, 1994.
Roscow, W. B. and Robert, A.: Advances in understanding clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2288,
https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.
Sassen, K., Wang, Z., and Liu, D.: Cirrus clouds and deep convection in the
tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res., 114, D00H06,
https://doi.org/10.1029/2009jd011916, 2009.
Schumacher, C. and Houze, R. A.: The TRMM precipitation radar's view of
shallow, isolated rain, J. Appl. Meteorol., 42, 1519–1524,
https://doi.org/10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2, 2003.
Simpson, J., Kummerow, C., Tao, W.-K., and Adler, R. F.: On the Tropical
Rainfall Measuring Mission (TRMM), Meteorol. Atmos. Phys., 60, 19–36,
https://doi.org/10.1007/BF01029783, 1996.
Sun, L. L. and Fu, Y. F.: A new merged dataset for analyzing clouds,
precipitation and atmospheric parameters based on ERA5 reanalysis data and
the measurements of TRMM PR and VIRS [dataset], Zenodo, https://doi.org/10.5281/zenodo.4458868, 2021.
Szoke, E. J., Zipser, E. J., and Jorgensen, D. P.: A Radar Study of
Convective Cells in Mesoscale Systems in GATE. Part I: Vertical Profile
Statistics and Comparison with Hurricanes, J. Atmos. Sci., 43, 182–198,
https://doi.org/10.1175/1520-0469(1986)043<0182:Arsocc>2.0.Co;2, 1986.
Tustison, B., Foufoula-Georgiou, E., and Harris, D.: Scale-recursive
estimation for multisensor Quantitative Precipitation Forecast verification:
A preliminary assessment, J. Geophys. Res., 108, CIP2-1-14,
https://doi.org/10.1029/2001jd001073, 2002.
Wang, R. and Fu, Y.: Structural characteristics of atmospheric temperature
and humidity inside clouds of convective and stratiform precipitation in the
rainy season over East Asia, J. Meteorol. Res-Prc., 31, 890–905,
https://doi.org/10.1007/s13351-017-7038-x, 2017.
Wang, R., Fu, Y., Xian, T., Chen, F., Yuan, R., Li, R., and Liu, G.:
Evaluation of Atmospheric Precipitable Water Characteristics and Trends in
Mainland China from 1995 to 2012, J. Climate, 30, 8673–8688,
https://doi.org/10.1175/jcli-d-16-0433.1, 2017.
Wang, Y., Zhang, Y., Fu, Y., Li, R., and Yang, Y.: A climatological
comparison of column-integrated water vapor for the third-generation
reanalysis datasets, Sci. China Earth Sci., 59, 296–306,
https://doi.org/10.1007/s11430-015-5183-6, 2015.
Wetherald, R. T. and Manabe, S.: Cloud Feedback Processes in a General
Circulation Model, J. Atmos. Sci., 45, 1397–1416,
https://doi.org/10.1175/1520-0469(1988)045<1397:Cfpiag>2.0.Co;2, 1988.
Wilheit, T. T., Chang, A. T. C., V. Rao, M. S., Rodgers, E. B., and Theon,
J. S.: A Satellite Technique for Quantitatively Mapping Rainfall Rates over
the Oceans, J. Appl. Meteorol., 16, 551–560,
https://doi.org/10.1175/1520-0450(1977)016<0551:Astfqm>2.0.Co;2, 1977.
Xia, J. and Fu, Y. F.: The vertical characteristics of temperature and
humidity inside convective and stratiform precipitating clouds in the East
Asian summer monsoon region and Indian summer monsoon region, Chinese J.
Atmos. Sci., 40, 563–580,
https://doi.org/10.3878/j.issn.1006-9895.1507.15123, 2016 (in Chinese).
Yang, Y.-J., Lu, D.-R., Fu, Y.-F., Chen, F.-J., and Wang, Y.: Spectral
Characteristics of Tropical Anvils Obtained by Combining TRMM Precipitation
Radar with Visible and Infrared Scanner Data, Pure Appl. Geophys., 172,
1717–1733, https://doi.org/10.1007/s00024-014-0965-x, 2014.
Yuter, S. E. and Houze, R. A.: Three-Dimensional Kinematic and
Microphysical Evolution of Florida Cumulonimbus. Part III: Vertical Mass
Transport, Mass Divergence, and Synthesis, Mon. Weather Rev., 123,
1964–1983, https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2, 1995.
Zhao, B., Zhang, B., Shi, C., Liu, J., and Jiang, L.: Comparison of the
Global Energy Cycle between Chinese Reanalysis Interim and ECMWF Reanalysis,
J. Meteorol. Res-Prc., 33, 563–575,
https://doi.org/10.1007/s13351-019-8129-7, 2019.
Zheng, X. Y., Fu, Y. F., Yang, Y. J., and Liu, G. S.: Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: observational evidence, Atmos. Chem. Phys., 15, 12115–12138, https://doi.org/10.5194/acp-15-12115-2015, 2015.
Zipser, E. J. and Lutz, K. R.: The Vertical Profile of Radar Reflectivity
of Convective Cells: A Strong Indicator of Storm Intensity and Lightning
Probability?, Mon. Weather Rev., 122, 1751–1759,
https://doi.org/10.1175/1520-0493(1994)122<1751:Tvporr>2.0.Co;2, 1994.
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We...
Altmetrics
Final-revised paper
Preprint