Articles | Volume 11, issue 4
https://doi.org/10.5194/essd-11-1603-2019
https://doi.org/10.5194/essd-11-1603-2019
Data description paper
 | 
28 Oct 2019
Data description paper |  | 28 Oct 2019

High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions

Xingdong Li, Di Long, Qi Huang, Pengfei Han, Fanyu Zhao, and Yoshihide Wada

Related authors

A global daily gap-filled chlorophyll-a dataset in open oceans during 2001–2021 from multisource information using convolutional neural networks
Zhongkun Hong, Di Long, Xingdong Li, Yiming Wang, Jianmin Zhang, Mohamed A. Hamouda, and Mohamed M. Mohamed
Earth Syst. Sci. Data, 15, 5281–5300, https://doi.org/10.5194/essd-15-5281-2023,https://doi.org/10.5194/essd-15-5281-2023, 2023
Short summary
Ice thickness and water level estimation for ice-covered lakes with satellite altimetry waveforms and backscattering coefficients
Xingdong Li, Di Long, Yanhong Cui, Tingxi Liu, Jing Lu, Mohamed A. Hamouda, and Mohamed M. Mohamed
The Cryosphere, 17, 349–369, https://doi.org/10.5194/tc-17-349-2023,https://doi.org/10.5194/tc-17-349-2023, 2023
Short summary
Towards understanding the mean annual water-energy balance equation based on an Ohms-type approach
Xu Shan, Xingdong Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-283,https://doi.org/10.5194/hess-2019-283, 2019
Manuscript not accepted for further review
Short summary
Derivation of the mean annual water-energy balance equation based on an Ohms-type approach
Xu Shan, Xindong Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-598,https://doi.org/10.5194/hess-2018-598, 2018
Manuscript not accepted for further review
Short summary

Related subject area

Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022,https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022,https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022,https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary

Cited articles

Birkett, C. M. and Beckley, B.: Investigating the performance of the Jason-2/OSTM radar altimeter over lakes and reservoirs, Mar. Geod., 33, 204–238, 2010. 
Bouzinac, C.: CryoSat product handbook, ESA, UCL, available at: https://earth.esa.int/documents/10174/125272/CryoSat_Product_Handbook (last access: 17 October 2019), 2012. 
Cheng, K.-C., Kuo, C.-Y., Tseng, H.-Z., Yi, Y., and Shum, C.: Lake surface height calibration of Jason-1 and Jason-2 over the Great Lakes, Mar. Geod., 33, 186–203, 2010. 
Crétaux, J.-F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M.-C., Nino, F., Del Rio, R. A., and Cazenave, A.: SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data, Adv. Space Res., 47, 1497–1507, 2011a. 
Download
Short summary
Lakes on the Tibetan Plateau experienced rapid changes (mainly expanding) in the past 2 decades. Here we provide a data set of high temporal resolution and accuracy reflecting changes in water level and storage of Tibetan lakes. A novel source of water levels generated from Landsat archives was validated with in situ data and adopted to resolve the inconsistency in existing studies, benefiting monitoring of lake overflow floods, seasonal and interannual variability, and long-term trends.
Altmetrics
Final-revised paper
Preprint