Articles | Volume 11, issue 3
https://doi.org/10.5194/essd-11-1099-2019
https://doi.org/10.5194/essd-11-1099-2019
Review article
 | 
26 Jul 2019
Review article |  | 26 Jul 2019

Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives

Shanlong Lu, Jin Ma, Xiaoqi Ma, Hailong Tang, Hongli Zhao, and Muhammad Hasan Ali Baig

Related authors

WETLAND CHANGE DETECTION IN PROTECTED AND UNPROTECTED INDUS COASTAL AND INLAND DELTA
M. H. Ali Baig, M. Sultan, M. Riaz Khan, L. Zhang, M. Kozlova, N. Abbas Malik, and S. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 1495–1501, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1495-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W7-1495-2017, 2017

Related subject area

Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022,https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022,https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022,https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary

Cited articles

Barnett, J., Rogers, S., Webber, M., Finlayson, B., and Wang, M.: Transfer project cannot meet China's water needs, Nature, 527, 295–297, https://doi.org/10.1038/527295a, 2015. 
Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P., and Sohlberg, R. A.: A new global raster water mask at 250 m resolution, Int. J. Dig. Earth, 2, 291–308, https://doi.org/10.1080/17538940902951401, 2009. 
Du, Z., Bin, L., Ling, F., Li, W., Tian, W., Wang, H., Gui, Y., Sun, B., and Zhang, X.: Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China, J. Appl. Remote Sens., 6, 3609, https://doi.org/10.1117/1.JRS.6.063609, 2012. 
Feng, M., Sexton, J. O., Channan, S., and Townshend, J. R.: A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm, Int. J. Dig. Earth, 9, 113–133, https://doi.org/10.1080/17538947.2015.1026420, 2015. 
Feyisa, G. L., Meilby, H., Fensholt, R., and Proud, S. R.: Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery, Remote Sens. Environ., 140, 23–35, https://doi.org/10.1016/j.rse.2013.08.029, 2014. 
Download
Short summary
A 8 d time series 250 m resolution surface water dataset of inland China (ISWDC) from 2000 to 2016 is introduced. It is a fully public-sharing data product with prominent features of long time series, moderate spatial resolution, and high temporal resolution. The ISWDC is a valuable basic data source for the analysis of dynamic changes of surface water in China over the past 20 years. It can be used as cross-validation reference data for other global surface water datasets.
Altmetrics
Final-revised paper
Preprint