Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3125-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3125-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
Haibin Ye
State Key Laboratory of Tropical Oceanography & Guangdong Key Laboratory of Ocean Remote Sensing, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Chaoyu Yang
South China Sea Marine Forecast and Hazard Mitigation Center, Ministry of Natural Resource, Guangzhou, China
Key Laboratory of Marine Environment Survey Technology and Application, Ministry of Natural Resource, Guangzhou, China
Yuan Dong
State Key Laboratory of Tropical Oceanography & Guangdong Key Laboratory of Ocean Remote Sensing, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Shilin Tang
CORRESPONDING AUTHOR
State Key Laboratory of Tropical Oceanography & Guangdong Key Laboratory of Ocean Remote Sensing, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Chuqun Chen
State Key Laboratory of Tropical Oceanography & Guangdong Key Laboratory of Ocean Remote Sensing, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Related authors
No articles found.
Jun Chen, Cheng Fan, Qianni Deng, Liguo Liu, Qianguo Xing, Shilin Tang, Wenting Quan, and Xiaofan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-484, https://doi.org/10.5194/essd-2025-484, 2025
Preprint under review for ESSD
Short summary
Short summary
In this study, we extend the temporal coverage of Suspended particulate matter (SPM) observations to the past century by developing independent inversion models from global Secchi depth records and remote sensing reflectance measurements, subsequently integrating these results with in situ SPM data. The outcome is an open-access, century-scale global SPM dataset designed to advance research on long-term SPM source-sink dynamics and their climate connections.
Yuan Dong, Qian P. Li, Zhengchao Wu, Yiping Shuai, Zijia Liu, Zaiming Ge, Weiwen Zhou, and Yinchao Chen
Biogeosciences, 18, 6423–6434, https://doi.org/10.5194/bg-18-6423-2021, https://doi.org/10.5194/bg-18-6423-2021, 2021
Short summary
Short summary
Temporal change of plankton growth and grazing are less known in the coastal ocean, not to mention the relevant controlling mechanisms. Here, we performed monthly size-specific dilution experiments outside a eutrophic estuary over a 1-year cycle. Phytoplankton growth was correlated to nutrients and grazing mortality to total chlorophyll a. A selective grazing on small cells may be important for maintaining high abundance of large-chain-forming diatoms in this eutrophic system.
Cited articles
Alvera-Azarate, A., Barth, A., and Rixen, M.: Reconstruction of Incomplete Satelite SST Data Sets Using Empirical Orthogonal Functions: Application to the Adriatic Sea Surface Temperature, Ocean Model., 9, 325–346, 2005.
Barrot, G.: GlobColour: An EO based service supporting global ocean carbon cycle research Product User Guide Version 1.4, 2010.
Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations, Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, 2020.
Beckers, J. M. and Rixen, M.: EOF Calculations and Data Filling from Incomplete Oceanographic Datasets, J. Atmos. Ocean. Tech., 20, 1839–1856, 2003.
Bessenbacher, V., Seneviratne, S. I., and Gudmundsson, L.: CLIMFILL v0.9: a framework for intelligently gap filling Earth observations, Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, 2022.
Bierman, P., Lewis, M., Ostendorf, B., Tanner, J., and Elsevier, B. V.: A review of methods for analysing spatial and temporal patterns in coastal water quality, Ecol. Indic., 11, 103–114, 2011.
Bombar, D., Dippner, J. W., Doan, H. N., Ngoc, L. N., Liskow, I., Loick-Wilde, N., and Voss, M.: Sources of new nitrogen in the Vietnamese upwelling region of the South China Sea, J. Geophys. Res., 115, C06018, https://doi.org/10.1029/2008JC005154, 2010.
Bristow, L. A., Mohr, W., Ahmerkamp, S., and Kuypers, M. M. M.: Nutrients that limit growth in the ocean, Curr. Biol., 27, 474–478, 2017.
Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., and Wang, M.: Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation, in: Computer Vision – ECCV 2022 Workshops, ECCV 2022, Lecture Notes in Computer Science, edited by: Karlinsky, L., Michaeli, T., and Nishino, K., vol 13803, Springer, Cham, https://doi.org/10.1007/978-3-031-25066-8_9, 2023.
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll, Science, 334, 328–332, 2011.
Chen, G., Xiu, P., and Chai, F.: Physical and biological controls on the summer chlorophyll bloom to the east of Vietnam, J. Oceanogr., 70, 323–328, 2014.
Fang, G., Wang, G., Fang, Y., and Fang, W.: A review on the South China Sea western boundary current, Acta Oceanol. Sin., 31, 1–10, 2012.
Gan, J., Li, H., Curchitser, E. N., and Haidvogel, D. B.: Modeling South China Sea circulation: Response to seasonal forcing regimes, J. Geophys. Res., 111, C06034, https://doi.org/10.1029/2005JC003298, 2006.
Gregg, W. W.: Ocean-Colour Data Merging, Reports of the International Ocean-Colour Coordinating Group, IOCCG, Dartmouth, Canada, https://doi.org/10.25607/OBP-100, 2007.
Hein, H., Hein, B., Pohlmann, T., and Long, B. H.: Inter-annual variability of upwelling off the South-Vietnamese coast and its relation to nutrient dynamics, Global Planet. Change, 110, 170–182, 2013.
Ho, C. R., Kuo, N. J., Zheng, Q., and Soong, Y. S.: Dynamically active areas in the South China Sea detected from TOPEX/POSEIDON satellite altimeter data, Remote Sens. Environ., 71, 320–328, 2000.
Hu, C., Lee, Z., and Franz, B.: Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophys. Res.-Oceans, 117, C01011, https://doi.org/10.1029/2011JC007395, 2012.
Hu, C., Feng, L., Lee, Z., Franz, B., Bailey, S. W., Werdell, P. J., and Proctor, C. W.: Improving satellite global chlorophyll a data products through algorithm refinement and data recovery, J. Geophys. Res.-Oceans, 124, 1524–1543, 2019.
Hu, J. and Wang, X. H.: Progress on upwelling studies in the China seas, Rev. Geophys., 54, 653, https://doi.org/10.1002/2015RG000505, 2016.
Kako, S., Isobe, A., and Kubota, M.: High-resolution ASCAT wind vector data set gridded by applying an optimum interpolation method to the global ocean, J. Geophys. Res.-Oceans, 116, 1–16, 2011.
Kingma, D. P. and Ba, J. L.: ADAM: A Method for Stochastic Optimization, International Conference on Learning Representations (ICLR 2015), San Diego, CA, https://hdl.handle.net/11245/1.505367, 2015.
Li, Y., Han, W., Wilkin, J. L., Zhang, W. G., Arango, H., and Zavala-Garay, J.: Interannual variability of the surface summertime eastward jet in the South China Sea, J. Geophys. Res.-Oceans, 119, 7205–7228, 2014.
Liu, F. and Chen, C.: Seasonal variation of chlorophyll a in the South China Sea from 1997–2010, Aquat. Ecosyst. Health, 17, 212–220, 2014.
Liu, S. M., Zhang, J., Chen, S. Z., Chen, H. T., Hong, G. H., Wei, H., and Wu, Q. M.: Inventory of nutrient compounds in the Yellow Sea, Cont. Shelf Res., 23, 1161–1174, 2003.
Liu, X. and Wang, M.: Gap Filling of Missing Data for VIIRS Global Ocean Color Products Using the DINEOF Method, IEEE T. Geosci. Remote, 56, 4464–4476, 2018.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, International Conference on Computer Vision (ICCV 2021), Montreal, QC, Canada, 2021, 9992–10002, https://doi.org/10.1109/ICCV48922.2021.00986, 2021.
Lönnberg, P. and Shaw, D.: ECMWF data assimilation scientific documentation, ECMWF, 96 pp., 1987.
Martin, A. P. and Richards, K. J.: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy, Deep-Sea Res. Pt. II, 48, 757–773, 2001.
McGillicuddy, D., Robinson, A., Siegel, D., Jannasch, H., Johnson, R., Dickey, T., McNeil, J., Michaels, A., and Knap, A.: Influence of mesoscale eddies on new production in the Sargasso Sea, Nature, 394, 263–266, 1998.
Reynolds, R. W. and Smith, T. M.: Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation, J. Climate, 7, 929–948, 1994.
Rubin, D. B.: Inference and missing data, Biometrika, 63, 581–592, 1976.
Ruddick, K. G., Ovidio, F., and Rijkeboer, M.: Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Optics, 39, 897–912, 2000.
Shen, S., Leptoukh, G. G., Acker, J. G., Yu, Z., and Kempler, S. J.: Seasonal Variations of Chlorophyll a Concentration in the Northern South China Sea, IEEE Geosci. Remote Sens. Lett., 5, 315–319, 2008.
Sheng, C., Wang, L., Huang, Z., Wang, T., Guo, Y., Hou, W., Xu, L., Wang, J., and Yan, X.: Transformer-Based Deep Learning Network for Tooth Segmentation on Panoramic Radiographs, J. Syst. Sci. Complex., 36, 257–272, 2022.
Siegel, D. A., Court, D. B., Menzies, D. W., Peterson, P., Maritorena, S., and Nelson, N. B.: Satellite and in situ observations of the bio-optical signatures of two mesoscale eddies in the Sargasso Sea, Deep-Sea Res. Pt. II, 55, 1218–1230, 2008.
Vantrepotte, V. and Mélin, F.: Inter-Annual Variations in the SeaWiFS Global Chlorophyll a Concentration (1997–2007), Deep-Sea Res. Pt. I, 58, 429–441, 2011.
Vaswni, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.: Attention Is All You Need, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (last access: 2 July 2024), 2017.
Voss, M., Bombar, D., Loick, N., and Dippner, J. W.: Riverine influence on nitrogen fixation in the upwelling region off Vietnam, South China Sea, Geophys. Res. Lett., 33, L07604, https://doi.org/10.1029/2005GL025569, 2006.
Wang, G., Zhang, R., Chen, J., Wang, H., and Wang, L.: The correlation length-scale optimized by baroclinic Rossby radius of deformation and its improvement to optimum interpolation, Acta Oceanol. Sin., 36, 109–118, 2014.
Wang, M. and Shi, W.: Cloud Masking for Ocean Color Data Processing in the Coastal Regions, IEEE T. Geosci. Remote, 44, 3196, https://doi.org/10.1109/TGRS.2006.876293, 2006.
Xiao, X., Zhang, D., Hu, G., Jiang, Y., and Xia, S.: CNN–MHSA: A Convolutional Neural Network and multi-head self-attention combined approach for detecting phishing websites, Neural Networks, 125, 303–312, 2020.
Ye, H., Tang, S., Yang, C., and Chen, C.: Reconstruction of Daily MODIS/Aqua Chlorophyll a Concentration in Turbid Estuarine Waters Based on Attention U-NET, Remote Sens., 15, 546, https://doi.org/10.3390/rs15030546, 2023.
Ye, H., Yang, C., Tang, S., and Chen, C.: The phytoplankton variability in the Pearl River estuary based on VIIRS imagery, Cont. Shelf Res., 207, 104228, https://doi.org/10.1016/j.csr.2020.104228, 2020.
Ye, H., Yang, C., Dong, Y., Tang, S., and Chuqun, C.: OI-SwinUnet reconstructed daily Chlorophyll a products in the South China Sea (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.10478524, 2024.
Zhang, J., Gong, J., Zhang, Y., Mostafa, K., and Yuan, G.: Weed Identification in Maize Fields Based on Improved Swin-Unet, Agronomy, 13, 1846, https://doi.org/10.3390/agronomy13071846, 2023.
Zhang, W.-Z., Wang, H., Chai, F., and Qiu, G.: Physical drivers of chlorophyll variability in the open South China Sea, J. Geophys. Res.-Oceans, 121, 7123–7140, 2016.
Zhao, H. and Tang, D. L.: Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea, J. Geophys. Res., 112, C02017, https://doi.org/10.1029/2006JC003536, 2007.
Short summary
A deep-learning model for gap-filling based on expected variance was developed. OI-SwinUnet achieves good performance reconstructing chlorophyll-a concentration data on the South China Sea. The reconstructed dataset depicts both the spatiotemporal patterns at the seasonal scale and a fast-change process at the weather scale. Reconstructed data show chlorophyll perturbations of individual eddies at different life stages, giving academics a unique and complete perspective on eddy studies.
A deep-learning model for gap-filling based on expected variance was developed. OI-SwinUnet...
Altmetrics
Final-revised paper
Preprint