Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3125-2024
https://doi.org/10.5194/essd-16-3125-2024
Data description paper
 | 
04 Jul 2024
Data description paper |  | 04 Jul 2024

A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet

Haibin Ye, Chaoyu Yang, Yuan Dong, Shilin Tang, and Chuqun Chen

Related authors

Biophysical controls on seasonal changes in the structure, growth, and grazing of the size-fractionated phytoplankton community in the northern South China Sea
Yuan Dong, Qian P. Li, Zhengchao Wu, Yiping Shuai, Zijia Liu, Zaiming Ge, Weiwen Zhou, and Yinchao Chen
Biogeosciences, 18, 6423–6434, https://doi.org/10.5194/bg-18-6423-2021,https://doi.org/10.5194/bg-18-6423-2021, 2021
Short summary
Phytoplankton dynamics driven by vertical nutrient fluxes during the spring inter-monsoon period in the northeastern South China Sea
Q. P. Li, Y. Dong, and Y. Wang
Biogeosciences, 13, 455–466, https://doi.org/10.5194/bg-13-455-2016,https://doi.org/10.5194/bg-13-455-2016, 2016
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
IAPv4 ocean temperature and ocean heat content gridded dataset
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024,https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Probabilistic reconstruction of sea-level changes and their causes since 1900
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024,https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024,https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo
Léo Seyfried, Laurie Biscara, Héloïse Michaud, Fabien Leckler, Audrey Pasquet, Marc Pezerat, and Clément Gicquel
Earth Syst. Sci. Data, 16, 3345–3367, https://doi.org/10.5194/essd-16-3345-2024,https://doi.org/10.5194/essd-16-3345-2024, 2024
Short summary
Gap-filling techniques applied to the GOCI-derived daily sea surface salinity product for the Changjiang diluted water front in the East China Sea
Jisun Shin, Dae-Won Kim, So-Hyun Kim, Gi Seop Lee, Boo-Keun Khim, and Young-Heon Jo
Earth Syst. Sci. Data, 16, 3193–3211, https://doi.org/10.5194/essd-16-3193-2024,https://doi.org/10.5194/essd-16-3193-2024, 2024
Short summary

Cited articles

Alvera-Azarate, A., Barth, A., and Rixen, M.: Reconstruction of Incomplete Satelite SST Data Sets Using Empirical Orthogonal Functions: Application to the Adriatic Sea Surface Temperature, Ocean Model., 9, 325–346, 2005. 
Barrot, G.: GlobColour: An EO based service supporting global ocean carbon cycle research Product User Guide Version 1.4, 2010. 
Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations, Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, 2020. 
Beckers, J. M. and Rixen, M.: EOF Calculations and Data Filling from Incomplete Oceanographic Datasets, J. Atmos. Ocean. Tech., 20, 1839–1856, 2003. 
Bessenbacher, V., Seneviratne, S. I., and Gudmundsson, L.: CLIMFILL v0.9: a framework for intelligently gap filling Earth observations, Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, 2022. 
Download
Short summary
A deep-learning model for gap-filling based on expected variance was developed. OI-SwinUnet achieves good performance reconstructing chlorophyll-a concentration data on the South China Sea. The reconstructed dataset depicts both the spatiotemporal patterns at the seasonal scale and a fast-change process at the weather scale. Reconstructed data show chlorophyll perturbations of individual eddies at different life stages, giving academics a unique and complete perspective on eddy studies.
Altmetrics
Final-revised paper
Preprint