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Abstract. Satellite remote sensing of sea surface chlorophyll products sometimes yields a significant amount
of sporadic missing data due to various variables, such as weather conditions and operational failures of satellite
sensors. The limited nature of satellite observation data impedes the utilization of satellite data in the domain of
marine research. Hence, it is highly important to investigate techniques for reconstructing satellite remote sens-
ing data to obtain spatially and temporally uninterrupted and comprehensive data within the desired area. This
approach will expand the potential applications of remote sensing data and enhance the efficiency of data usage.
To address this series of problems, based on the demand for research on the ecological effects of multiscale
dynamic processes in the South China Sea, this paper combines the advantages of the optimal interpolation (OI)
method and SwinUnet and successfully develops a deep-learning model based on the expected variance in data
anomalies, called OI-SwinUnet. The OI-SwinUnet method was used to reconstruct the MODIS chlorophyll-a
concentration products of the South China Sea from 2013 to 2017. When comparing the performances of the
data-interpolating empirical orthogonal function (DINEOF), OI, and Unet approaches, it is evident that the OI-
SwinUnet algorithm outperforms the other algorithms in terms of reconstruction. We conduct a reconstruction
experiment using different artificial missing patterns to assess the resilience of OI-SwinUnet. Ultimately, the re-
constructed dataset was utilized to examine the seasonal variations and geographical distribution of chlorophyll-
a concentrations in various regions of the South China Sea. Additionally, the impact of the plume front on the
dispersion of phytoplankton in upwelling areas was assessed. The potential use of reconstructed products to in-
vestigate the process by which individual mesoscale eddies affect sea surface chlorophyll is also examined. The
reconstructed daily chlorophyll-a dataset is freely accessible at https://doi.org/10.5281/zenodo.10478524 (Ye et
al., 2024).
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1 Introduction

Chlorophyll a is the primary pigment involved in photosyn-
thesis in phytoplankton. Its concentration serves as a crucial
metric for assessing the density of phytoplankton, including
algae (Vantrepotte and Mélin, 2011; Ye et al., 2020). Con-
ventional techniques for measuring chlorophyll-a concentra-
tions use ship surveys and buoy observations. Sampling us-
ing these methods is not only expensive and time-consuming
but is also challenging to implement for monitoring on a
wide scale and over extended periods. Consequently, this
approach fails to accurately capture real-time fluctuations
in chlorophyll-a concentrations over time (Bierman et al.,
2011). Due to advancements in satellite remote sensing tech-
nology, remote sensing has emerged as the primary method
for acquiring ocean color data (Gregg, 2007). Satellite-based
ocean color remote sensing allows convenient retrieval of sea
surface chlorophyll-a concentration data with high temporal
and spatial resolutions. Nevertheless, the majority of ocean
color satellites follow a polar orbit, resulting in limited data
coverage due to gaps between scanning flights. In addition,
the water column’s limited capacity to reflect signals can be
influenced by certain meteorological factors, such as cloud
cover, solar flares, and dense aerosols. These factors can im-
pact the accuracy of sensor sampling, leading to missing data
(Wang and Shi, 2006; Liu and Wang, 2018). The absence of
these data will significantly restrict their future utilization.
Data reconstruction is a technique that can bridge gaps in
data, expand the range of ocean color data, and ensure that
the data are continuous throughout time and space. The re-
constructed ocean color data not only maintain the temporal
consistency of the data but also expand the spatially valid
range of the data, enabling a more accurate representation
of the continuous distribution and variation in sea surface
chlorophyll-a concentration in the ocean over time and space
(Barrot, 2010).

Two frequently employed reconstruction approaches in the
field are optimal interpolation (OI) (Reynolds and Smith,
1994; Kako et al., 2011) and data-interpolating empirical or-
thogonal functions (DINEOFs) (Beckers and Rixen, 2003).
The OI algorithm leverages the conservative nature of ma-
rine elements and takes into account the spatial distribu-
tion characteristics of each element. It interpolates the un-
evenly distributed data to the corresponding grid points, re-
sulting in an optimal estimation. This algorithm increases
the coverage area and data density, allowing for simultane-
ous use of observation data with varying error characteris-
tics. It effectively addresses the issue of sparse spatial dis-
tribution of marine data. The optimal interpolation method
has gained global recognition since the 1980s and has been
adopted by the U.S. National Meteorological Center (NMC)
and the European Centre for Medium-Range Weather Fore-
casts (ECMWF) for assimilation analysis and numerical pre-
diction (Lönnberg and Shaw, 1987). The method is exten-
sively employed in the marine domain to reconstruct histor-

ical datasets of sea surface temperature (SST), in situ mea-
surements, and sea level anomaly (SLA) datasets. Currently,
it is the most frequently used data assimilation method in the
field of marine meteorology. The assumption made by OI is
that the datasets are independent in terms of space and time.
However, it fails to adequately consider the spatial and tem-
poral correlation of the data. The suboptimal computational
efficiency of the optimal interpolation approach is also a con-
straining factor in its implementation.

DINEOF is a data reconstruction technique that relies on
the use of empirical orthogonal functions (EOFs). It pos-
sesses the benefit of internal adaptive correlation without re-
quiring any predetermined values for variables. The cross-
correction set is implemented to facilitate the optimal reduc-
tion of truncation and estimation errors when constructing
the EOF by accounting for default values. This method not
only addresses missing data and eliminates noise from the
data image but also produces a dynamically adjusted image
that accurately represents the overall condition of the data
and their temporal development trend. This is achieved by
utilizing the most significant modes obtained through opti-
mal truncation (Alvera-Azarate et al., 2005). Due to the fact
that the initial modes in the DINEOF method, which are de-
rived from the entire target dataset decomposed by EOFs,
represent changes that occur over a period of more than 6
months, the reconstruction of multiyear-timescale large-data-
volume satellite remote sensing datasets using the DINEOF
method focuses primarily on capturing temporal and spatial
large-scale information. It disregards the small-scale infor-
mation from a few local observation points. Therefore, us-
ing the interpolated target ocean dataset with missing mea-
surements generated by the DINEOF method is not suitable
for studying temporal small-scale processes, such as local
weather-scale phenomena.

The use of deep-learning techniques, specifically the con-
volutional neural network (CNN)-based Unet model, has
been proposed by researchers for the purpose of reconstruct-
ing chlorophyll-a products derived from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS)/Aqua (Ye et al.,
2023). Unet is a compact CNN architecture that includes an
encoder–decoder framework, which involves downsampling
and upsampling operations. Additionally, Unet incorporates
attention gates (AGs) inside its network structure. By training
Unet with AGs, the background regions in the image are sup-
pressed, while the salient features in the data-missing regions
are highlighted. This leads to an improvement in the sensitiv-
ity of the model and the accuracy of the reconstruction. This
model has demonstrated favorable outcomes in the region of
the Pearl River estuary, which is characterized by highly tur-
bid waters. However, the applicability of the CNN model to
a larger expanse, such as the South China Sea, has raised
concerns. This is primarily due to the intricate nature of the
physical oceanic processes in the South China Sea. Further-
more, the limited capacity of the CNN model may hinder its
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ability to effectively capture the comprehensive characteris-
tics of the entire South China Sea.

In recent years, Google, Inc. has presented the Trans-
former architecture as an alternative to convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs).
This architecture is exclusively based on the self-attention
mechanism and feed-forward neural network. The self-
attention mechanism has superior parallelism capabilities
and effectively addresses the challenge of long-range depen-
dencies (Vaswni et al., 2017). The hierarchical Transformer
design, known as the Swin Transformer, was proposed by re-
searchers at Microsoft Research Asia in the field of computer
vision. This architecture computes its representation by shift-
ing windows. The utilization of a shifted windowing in the
Transformer enables interactions between neighboring win-
dows, resulting in a significant reduction in computational
complexity. Moreover, the hierarchical design resembles the
hierarchical construction frequently employed in convolu-
tional neural networks. Consequently, this technique can be
effectively applied to various tasks, including but not lim-
ited to image classification, image segmentation, and target
detection (Liu et al., 2021). SwinUnet was developed by re-
searchers as an extension of the Swin Transformer. It utilizes
the Swin Transformer as its fundamental module and is com-
posed of an encoder, a bottleneck, a decoder, and a skip con-
nection. SwinUnet establishes a connection between shallow
and deep features via skip connections akin to Unet. This
approach effectively mitigates the loss of spatial informa-
tion caused by downsampling, resulting in notable improve-
ments in accuracy, robustness, and generalizability (Cao et
al., 2023).

This paper aims to address the existing challenges and
research gaps in traditional reconstruction methods and
CNN-based reconstruction models. It focuses on studying
the mechanism of chlorophyll in multiscale spatiotemporal
changes in the South China Sea (SCS), including on the
weather scale. To achieve effective filling of missing data in
remotely sensed data products, we propose a novel approach
called the OI-SwinUnet method. This method combines the
techniques of OI and SwinUnet and utilizes a multiscale op-
timal interpolation, quadratic revision of a transformer-based
U-type coding and decoding network.

2 Materials and methods

2.1 MODIS imaging

The Level-1A data for MODIS/Aqua and MODIS/Terra were
acquired from the Ocean Water Color Archive, which is
maintained by the National Aeronautics and Space Adminis-
tration (NASA). The remotely sensed data were preprocessed
using the SeaWiFS data analysis system (SeaDAS 8.3.10).
The MUMM algorithm was employed for atmospheric cor-
rection (Ruddick et al., 2000), while the CI algorithm was
utilized for the retrieval of chlorophyll-a concentrations (Hu

et al., 2012, 2019). Subsequently, the daily data were pro-
cessed to generate Level-3 standard mapped images (SMIs)
with a spatial resolution of 1 km.

2.2 Methods

2.2.1 General framework

The primary aim of this research is to design a comprehen-
sive deep-learning framework that can effectively address
the issue of missing observed chlorophyll-a concentration
data. This framework will be trained using satellite-observed
chlorophyll-a concentration data and will incorporate in situ
observations to improve the accuracy of the reconstructed
data. To accomplish this objective, we utilize the optimal
interpolation approach and SwinUnet. A schematic repre-
sentation of the suggested framework is depicted in Fig. 1.
The objective of our study is to employ optimal interpolation
for integrating satellite and in situ observations by leverag-
ing the spatial-domain information of the observations. Ad-
ditionally, we aim to utilize SwinUnet to conduct multiscale
feature learning on remotely sensed observational time se-
ries data across a vast geographical area and extensive time
series. Ultimately, the goal is to estimate the marginal distri-
butions for all locations with missing values.

In practice, the remotely sensed chlorophyll-a concentra-
tions of MODIS/Aqua and MODIS/Terra in the South China
Sea from 2013 to 2017 were reconstructed. This reconstruc-
tion was performed to create a daily multi-satellite merged
product that would provide complete coverage of the product
in both temporal and spatial dimensions. The dataset consists
of 1826 time series, with each image having a pixel matrix
size of 2240× 2240. The spatial resolution of the images is
1 km, and they cover a spatial extent ranging from approxi-
mately 0–25° N and 100–125° E.

Initially, the Level-3 chlorophyll-a concentration products
derived from the two MODIS sensors were sequentially in-
cluded in the OI module. This process yielded an OI merged
product for determining the chlorophyll-a concentration. The
OI merged product serves as a background for producing in-
put variables for the SwinUnet module.

Next, the log-transformed satellite observation is sub-
tracted from the log-transformed OI background to yield the
disparity between the two. To maintain the reliability of the
reconstructed data, researchers have proposed the establish-
ment of a missing data rate threshold. This threshold would
prevent data with a missing rate over the specified thresh-
old from being utilized for training and validation purposes
(Barth et al., 2020). This work establishes a missing data rate
threshold of 0.6, taking into account the specific character-
istics of the remote sensing products in the study area. As a
result, a total of 422 time series datasets were successfully
retrieved. The training dataset consisted of 379 randomly se-
lected time series data points, while the remaining 43 time
series data points were used as the validation dataset. The
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purpose of the validation dataset was to assess the model’s
performance by comparing it with the reconstruction results.
Notably, the validation dataset was not utilized during the
training process of the model.

This study introduces a three-dimensional tensor as the in-
put for SwinUnet, with a specific size of H ×W ×C. The
parameters H and W represent the dimensions of the image,
specifically its height and width, whereas the parameter C
denotes the number of channels. This document presents the
variables of the first to sixth channels, listed in the following
order.

1. Disparities in chlorophyll-a concentration, adjusted by
the reciprocal of the error variance (ANOT/σ

2
T) while

accounting for missing data using zero filling

2. The reciprocal of the variance of errors (1/σ 2
T) is calcu-

lated, with missing data imputed as zeros.

3. The longitude data were adjusted to a range of −1 to 1.

4. The latitude data were adjusted to a range of −1 to 1.

5. The temporal data were linearly scaled according to the
cosine function.

6. The temporal data were linearly scaled according to the
sine function.

The variables in the remaining 60 channels exhibited dispari-
ties in chlorophyll-a concentrations, which were adjusted by
the reciprocal of the error variance and the reciprocal of the
variance of errors. These variables are calculated for two time
periods: from pre-15 d to pre-1 d and from post-1 d to post-
15 d. In cases where data are missing, the term is replaced
with zeros. There are a large number of mesoscale processes
such as eddies and fronts in the South China Sea, and their
timescales range from a few days to several months. Theo-
retically, the longer the duration of the input variables is, the
more useful features the model can learn from the training.
However, it is not possible to maximize the length of the in-
put variables without any limitations, and the choice of 15 d
for the model inputs is a combination of many factors. Such a
choice covers a complete mesoscale process as much as pos-
sible while taking into account the computational efficiency.

SwinUnet yields a three-dimensional tensor with dimen-
sions H ×W × 2 as its output. The first layer (H ×W ) rep-
resents the scaled disparity in the chlorophyll-a concentra-
tion adjusted by the inverse of the expected error variance
(ANOP/σ

2
P ). The second layer (H ×W ) represents the loga-

rithm of the inverse of the expected error variance log
(
1/σ 2

P
)
.

The Kullback–Leibler divergence (KLDiv) was selected as
the loss function and computed using the following formula:

Loss= KLDiv(log_softmax(ANOT×Mask) ,

softmax(ANOP×Mask)). (1)

The equation for calculating Loss considers the true value
(ANOT), which is obtained by subtracting the OI back-
ground from the satellite-observed values. ANOP represents
the model-predicted value, which corresponds to the pre-
dicted discrepancy. The missing value mask (Mask) is used
to ensure that only pixels with valid values are included in
the Loss calculation. The occurrence of negative Loss val-
ues can be mitigated by employing the log_softmax function
and the softmax function on the true and predicted values,
respectively. The reconstructed chlorophyll-a concentration
was obtained by adding the model-predicted value to the OI
background value. The formula is expressed in the following
manner:

CHLrec = CHLOI+ANOP. (2)

The training process was expedited by the utilization of
a graphics processing unit (GPU), while the selection of the
optimizer was based on the Adam algorithm (Kingma and
Ba, 2015). The default parameter values were employed, in-
cluding a learning rate of 0.001, beta values of 0.9 and 0.999,
and an epsilon value of 1×10−8. The decision to set the batch
size of the training dataset to 1 was made based on consider-
ations of the GPU memory and the size of the input tensor.

2.2.2 OI module

Optimal interpolation is a method of analysis that aims to
minimize the variance of an answer analytically. This is done
by assuming that the background, observed, and analytical
values are all unbiased estimates (Reynolds and Smith, 1994;
Kako et al., 2011). The process of optimal interpolation in-
volves determining the analyzed value at each spatial grid
point by considering the original valuation of the grid point
along with a revised value. This revised value is calculated
based on the deviation of the known observations from the
initial valuation of the model at N grid points within a spec-
ified range, as represented by the following equation:

W = BH T
(

R+HBH T
)−1

. (3)

The matrix B represents the initial estimation error covari-
ance, while the matrix R represents the observation error co-
variance. The computation of the initial estimate error co-
variance matrix can be computationally demanding. In prac-
tice, it is common to utilize a matrix decomposition tech-
nique to approximate the initial estimation error covariance
matrix without taking into account the equilibrium operator,
denoted by B= D

1
2 ρD

1
2 (Wang et al., 2014). The diagonal

matrix D is composed of the variance of the initial estimate
field. The matrix ρ represents the correlation between the el-
ements of the initial estimate field. Similarly, the observation
error covariance matrix R undergoes the same treatment. The
weight function W can be computed by estimating the initial
estimate error covariance matrix and the observation error
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Figure 1. Overview of the structure of the OI-SwinUnet framework.

covariance matrix, which allows for the determination of the
gridded analysis values.

The background field within the optimal interpolation
refers to the first assessment of the observations. The data of
the background field are then adjusted based on the sensor’s
observations and the associated weighting function. This
study used the average chlorophyll-a concentration from the
corresponding seasonal months in the 2 preceding years as
the background field for data merging. The implementation
of optimal interpolation involves utilizing the optimal inter-
polation algorithm model with single-sensor data and back-
ground field data as inputs. The resulting optimal interpo-
lation merge data are then employed as the updated back-
ground field. This process is repeated iteratively by substitut-
ing another single-sensor dataset into the model, ultimately
yielding the merged multi-sensor OI dataset (Fig. 2).

2.2.3 SwinUnet module

The Unet architecture serves as the fundamental framework
for SwinUnet. The model comprises four primary compo-
nents, i.e., the encoder, decoder, bottleneck, and skip con-
nections (Fig. 3). Given that the original SwinUnet model
requires 3 channels of input data, we encountered dispar-
ity because our preprocessed data comprised 66 channels.
To address this discrepancy, we introduce an additional con-
volutional layer prior to the patch partition layer. This new
layer serves the purpose of transforming the data from their
original 66 channels to the required 3 channels. In order to
transform the image into an embedding sequence, we di-

vide the entire input tensor into patches of size 4× 4 that do
not overlap. These patches are then flattened in the direction
of the channels. By employing this partitioning technique,
the dimensions of the feature map transform from [HW,3]
to [H/4W/4,48]. Next, the linear embedding layer linearly
transforms the feature dimension of each pixel from 48 to C.
This results in a change in the shape of the feature map from
[H/4W/4,48] to [H/4W/4,C].

Within the encoder, the patches are inputted into the Swin
Transformer block to facilitate learning, while the feature
size and resolution stay constant. Simultaneously, the patch-
merging layer will decrease the quantity of feature maps by
a factor of 2 through downsampling while doubling the fea-
ture dimension compared to its original size. This step will be
iterated three times in the encoder. The symmetric decoder,
which relies on the Swin Transformer block, serves as the
counterpart to the encoder. The deep features that were re-
covered are enlarged in the decoder using a patch-expanding
layer. The patch-expanding layer transforms the feature maps
of adjacent dimensions into higher-resolution feature maps
(2× upsampling) and reduces the feature dimensions by half.
In order to prevent the failure of convergence in a deep Swin
Transformer block, the bottleneck is constructed using only
two SW-MSA modules. This construction ensures that the
feature size and resolution stay unchanged. Like UNet, skip
connections are employed to integrate multiscale informa-
tion from the encoder with upsampled features. Shallow and
deep features are linked together to reduce the loss of spatial
information caused by downsampling. Ultimately, the feature
map’s resolution is increased four times by utilizing the final
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Figure 2. The flowchart depicting the process of data merging using optimal interpolation.

Figure 3. Structure of the SwinUnet module.
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patch-expanding layer, resulting in a restoration to the orig-
inal input resolution. Afterwards, a linear projection layer is
used to generate pixelwise predictions using the upsampled
features.

The fundamental element of SwinUnet is the Swin Trans-
former block (Fig. 4). The construction of the Swin Trans-
former block is based on the concept of the shift window. The
Swin Transformer block is composed of two normalization
layers (LNs), a multi-head self-attention module, residual
connections, and a multilayer perceptron (MLP) layer with
a GELU nonlinear activation function (Xiao et al., 2020).
The use of the window-based multi-head self-attention mod-
ule (W-MSA) and the shift-window-based multi-head self-
attention module (SW-MSA) is observed in two consecutive
Transformer blocks (Fig. 4). The formula for the block can
be represented as follows (Sheng et al., 2022):

z̄l =W-MSA
(

LN
(
zl−1

))
+ zl−1, (4)

zl =MLP
(

LN
(
z̄l
))
+ z̄l, (5)

z̄l+1
= SW-MSA

(
LN

(
zl
))
+ zl, (6)

zl+1
=MLP

(
LN

(
z̄l+1

))
+ z̄l+1. (7)

The symbol z̄l denotes the features generated by the (S)W-
MSA module, whereas zl represents the features generated
by the MLP module. The variable l corresponds to the num-
ber of blocks.

The W-MSA module initially partitions the feature map
into several windows based on the specified M ×M di-
mensions. It subsequently computes the self-attention within
each window independently. Nevertheless, the W-MSA mod-
ule lacks the capability to transfer information between win-
dows. Therefore, it becomes imperative to implement SW-
MSA, which relies on shifted windows, in order to address
this limitation. The SW-MSA module, together with the
W-MSA module in the Swin Transformer block, forms a
two-tier structure through which information can be passed
through neighboring windows.

The features within each (shift) window are weighted by
(S)W-MSA, and the attention weights are adaptively changed
via bootstrap feature selection. This approach generates a
more extensive feature expression as follows (Zhang et al.,
2023):

Attention(Q,K,V )= softmax

(
QKT

√
d
+B

)
V, (8)

where Q denotes the query vector, K denotes the key vec-
tor, V denotes the value vector, d denotes the dimensionality
of the key–value vector, and B denotes the relative position
bias.

The configuration of SwinUnet is shown in Table 1. The
downsampling (upsampling) rate refers to the frequency at

which upsampling and downsampling are carried out by the
patch-merging layer and the patch-expanding layer. After re-
sampling, the output feature maps for each stage have heights
and widths of [560×560,280×280,140×140,70×70] ac-
cordingly. The window size for performing MSA and SW-
MSA operations is set to 7× 7. As a result, each stage con-
tains a total of [6400, 1600, 400, 100] windows. The hidden
size refers to the length of the vector associated with each
token, which represents the feature dimension of the feature
map. Upon traversing the linear embedding layer, the feature
dimension of the feature map in Unet’s stage 1 is augmented
to 96 and thereafter doubles in size in the following stages.
The depth refers to the quantity of W-MSA and SW-MSA
modules present in the Swin Transformer block. Specifically,
in the first three stages, the Swin Transformer block is com-
posed of a double-layer structure consisting of one W-MSA
module and one SW-MSA module. In stage 4, often known
as the bottleneck, there is only one SW-MSA module. The
MLP size refers to the number of nodes in the first fully con-
nected layer of the MLP module, which is 4 times the hidden
size. The “heads” parameter represents the number of nodes
in both the W-MSA and SW-MSA in the Swin Transformer
block.

2.2.4 Statistical tests

The performance of the model was assessed using vari-
ous statistical metrics, such as the root mean square error
(RMSE), correlation coefficient (R2), and bias. The follow-
ing formulas were used:

RMSE=

√√√√ 1
N

N∑
i=1

(xi − yi)2, (9)

R2
= 1−

N∑
i=1

(xi − yi)2

N∑
i=1

(xi − x)2
, (10)

bias=
1
N

N∑
i=1

(xi − yi) , (11)

where xi is the true value of pixel i, yi is the predicted value
of pixel i, and x is the average of all true values.

3 Results

3.1 Comparison of the different reconstruction models

The presence of missing values is pervasive in the routine
outputs of satellite observations. The occurrence of missing
values inside the basin area is primarily impacted by cloud
cover. In contrast to that in the sea basin area, the likelihood
of missing observations occurring is greater in the nearshore
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Figure 4. Structure of the Swin Transformer block.

Table 1. Detailed architecture configurations of SwinUnet.

Downsampling/upsampling rate Window Window Hidden Depth MLP Heads
(output feature map size) size numbers depth size

Stage 1 4 (560× 560) 7× 7 6400 96 2 384 3
Stage 2 8 (280× 280) 7× 7 1600 192 2 768 6
Stage 3 16 (140× 140) 7× 7 400 384 2 1536 12
Stage 4 32 (70× 70) 7× 7 100 768 1 3072 24

region. In conjunction with cloud cover, anthropogenic ac-
tivities significantly influence the nearshore region, resulting
in elevated chlorophyll-a concentrations and suspended sed-
iment in the water column. Consequently, distinguishing be-
tween the intense backscattering caused by algal or nonalgal
particulate matter and the scattering of atmospheric aerosols
becomes challenging. This difficulty in correcting the atmo-
sphere of nearshore remotely sensed data contributes to the
relatively inferior quality of remote sensing in this area. This
study aimed to evaluate the performances of several recon-
struction schemes by applying them to three satellite obser-
vation products characterized by distinct missing data rates.
The selected methods for reconstruction include DINEOF,
OI, Unet, and OI-SwinUnet. The objective is to assess the ef-
fectiveness of these schemes in reconstructing missing data.
The imaging of the data took place on three separate occa-
sions: 11 February 2014, 27 February 2015, and 5 January
2016. The spatial coverage of the legitimate data for each re-
spective category is 11.9 %, 49.8 %, and 66.5 %. These per-
centages indicate the extent to which the observed data are
contaminated, ranging from severe to moderate and least.
Within the dataset, it is evident that the data pertaining to
severe contamination exhibit a lack of contiguous large valid
data in the basin area as well as a near absence of data in
the nearshore area. The dataset exhibits a moderate level of
contamination and contains a significant number of missing
data points within the nearshore region, i.e., in the northern
and southwestern sectors of the South China Sea. The dataset
with the lowest pollution levels has a minimal number of
missing data points within the basin area, whereas only a lim-
ited number of missing data points are observed in the north-
ern and southeastern regions of the South China Sea (Fig. 5).

Figure 6 shows the spatial distributions of the recon-
structions obtained from the DINEOF, OI, Unet, and OI-
SwinUnet methods for three distinct satellite observa-
tion datasets characterized by varying missing data rates.
The chlorophyll-a concentration has a coherent structure
throughout all the reconstructions, with the exception of
Unet. All three reconstructions demonstrate a certain de-
gree of coherence with the original satellite observations,
while Unet exhibits a notable tendency to underestimate the
chlorophyll-a concentration in the sea basin region. One pos-
sible explanation is that remote sensing images with high
spatial resolution (1 km) and extensive coverage encompass a
substantial amount of data. However, the Unet model, which
relies on convolutional operations, faces limitations due to
its own capacity, making it challenging to accurately predict
pixel level images in this context. In relation to the precise
replication of visual representations, as evidenced in this re-
search through the depiction of mesoscale and small-scale
phenomena in the marine environment, our proposed OI-
SwinUnet exhibits the highest level of efficacy, followed by
OI and, ultimately, DINEOF. In general, the outcomes of the
DINEOF method exhibit a lower level of clarity than alter-
native models. This diminished clarity is attributed to the al-
gorithmic characteristics inherent to the DINEOF approach,
resulting in the loss of significant mesoscale and small-scale
details. The OI-SwinUnet method, however, is modified by
using the OI technique to achieve more plausible reconstruc-
tion outcomes.

The scatterplot confirms the earlier observation that our
suggested OI-SwinUnet model outperforms the other three
reconstruction models in terms of different performance met-
rics, including RMSE, R2, and bias. This holds true regard-
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Figure 5. Satellite-observed chlorophyll-a concentration products with different data coverage.

Figure 6. The reconstructed CHL based on different models, with data acquired on (upper row) 11 February 2014, (middle panel) 27 February
2015, and (lower panel) 5 January 2016.
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less of the chlorophyll-a concentration product utilized for
coverage (Fig. 7). The slope of the trend line for the Unet re-
sults indicates that the Unet reconstruction method is likely
to significantly underestimate low chlorophyll values and
overestimate high chlorophyll values. This discovery aligns
with the prior finding that the Unet reconstruction outcomes
for the sea basin region are notably inferior to those of the
other methods.

To better understand the effectiveness of the various re-
construction methods, we conducted a statistical analysis of
the observed and reconstructed complete dataset, which in-
cluded daily products from 2013 to 2017. The average RMSE
values derived from the four methods (DINEOF, OI, Unet,
and OI-SwinUnet) were 0.09, 0.06, 0.13, and 0.06 mg m−3,
respectively. The OI-SwinUnet and OI algorithms exhibited
the most superior performance, with DINEOF ranking sec-
ond, while Unet yielded the least favorable outcomes. The
upper and lower quartiles Q3 and Q1 had ranges of 0.08–
0.12, 0.04–0.10, 0.12–0.16, and 0.05–0.07 mg m−3, respec-
tively. The boxplots show that the OI-SwinUnet reconstruc-
tion scheme consistently produces reasonable reconstruction
results across all the datasets. The average R2 values for the
four systems are 0.90, 0.96, 0.85, and 0.96. The bias is nearly
0 for all three methods, except for Unet. The boxplots for
R2 and bias exhibit comparable features to the boxplots for
RMSE (Fig. 8). The findings demonstrate that OI-SwinUnet
outperforms the other methods in reconstructing daily satel-
lite observation products for the period from 2013 to 2017.

Two representative pixels were sampled from the Pearl
River estuary in the northern part of the South China Sea and
the central part of the South China Sea. These pixels were
chosen to represent highly turbid water and clean water, re-
spectively (red triangles in Fig. 10). The purpose was to com-
pare the performance of OI-SwinUnet and three other meth-
ods in terms of filling gaps in time series data. The results
indicate that our proposed OI-SwinUnet demonstrates strong
resilience to localized extremes, typically outliers. Within
the clean water region, the OI-SwinUnet, DINEOF, and OI
methods are capable of analyzing the dynamic patterns of
the chlorophyll time series. However, the Unet method per-
forms slightly less accurately, as it tends to underestimate
chlorophyll values in most time intervals. This discrepancy
is particularly evident in time intervals where satellite ob-
servations are consistently absent. In areas with high levels
of turbid water, the OI-SwinUnet method performs similarly
to the DINEOF method during periods of consecutive high
chlorophyll levels. Figure 9 demonstrates that DINEOF is
more successful in reconstructing high chlorophyll levels.
This suggests that the method can effectively fill in the gaps
in the time series data, allowing for reasonable patterns of
interannual variation in chlorophyll a to be observed.

The performance of OI-SwinUnet was assessed by parti-
tioning the study area into three zones according to water
depth: nearshore, shelf, and basin. The water depths in the
nearshore zone varied between 0 and −5 m, while the wa-

ter depths in the shelf zone ranged from −50 to −1000 m
(Fig. 10). In the basin zone, the water depths were less than
−1000 m. The allocation of the maritime territory included
the influence of local features, ocean currents, and the distri-
bution of biological ecosystems.

The nearshore zone had a median RMSE value of
0.075 mg m−3, the shelf zone had a median RMSE value
of 0.065 mg m−3, and the basin zone had a median RMSE
value of 0.07 mg m−3. The R2 values were 0.94, 0.96,
and 0.95 in the nearshore, shelf, and basin zones, respec-
tively. In the nearshore zone, the median value of bias was
2× 10−3 mg m−3, while it was approximately 0 in both the
shelf zone and the basin zone (Fig. 11). OI-SwinUnet ex-
hibited superior performance in the shelf zone, followed by
the basin zone, and demonstrated sub-par performance in
the nearshore zone. The model’s inferior performance in the
nearshore region can be attributed to the limited amount of
training data available. The nearshore zone has the highest
proportion of missing data compared to the other zones, with
a median percentage of valid data of approximately 21 %. In
contrast, the median values for the other zones ranged from
25 % to 30 %. A small number of training data hinder the
model’s ability to understand the characteristics of the loca-
tion.

3.2 Model robustness

Missing patterns in remotely sensed data are a crucial consid-
eration when evaluating the generalizability of reconstructed
models (Bessenbacher et al., 2022). In the context of data
analysis, the phenomenon of missing data can be classified
into three main categories (Rubin, 1976): missing completely
at random (MCAR), missing at random (MAR), and missing
not at random (MNAR). The next sections provide a descrip-
tion of the aforementioned categories that are absent, with
specific reference to satellite observations.

1. The phenomenon of missing data is classified as com-
pletely random when the likelihood of missing data
points is independent of any underlying mechanism
(MCAR, Fig. 12a). Random sensor failures can con-
tribute to missing data in satellite observations, although
they are typically not the primary cause of missing data.

2. Missing data can frequently occur in satellite scans due
to the absence of satellite orbits over specific places
during particular periods. The likelihood of encounter-
ing missing data points is not influenced by the specific
value of the missing data point. The aforementioned
pattern is MAR, as depicted in Fig. 12b.

3. One of the most intricate patterns of missingness is
MNAR. The masking of data points in this scenario is
contingent upon the presence of missing data. The ob-
served variables might influence this mechanism, such
as when the values surpass or fall below a specific
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Figure 7. Scatterplots between satellite-derived (merged products from Aqua and Terra) and reconstructed chlorophyll-a concentrations of
different models, with data acquired on (upper panel) 11 February, 2014, (middle panel) 27 February 2015, and (lower panel) 5 January 2016.

Figure 8. Boxplots of the model performance.
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Figure 9. Gap-filled time series of two represented pixels: (a) clear water and (b) high turbid water using the DINEOF, OI, Unet, and
OI-SwinUnet methods.

Figure 10. Three divided regions in the South China Sea.

threshold, rendering them unobservable (see Fig. 12c).
When utilizing satellite observations to measure sea sur-
face chlorophyll-a concentrations in the visible band, it
is important to note that the reflectance of clouds does
not represent signals originating from the water column
at the sea surface. Consequently, during the preprocess-
ing of data, pixels that are covered by clouds are identi-
fied and excluded from further analysis. In this context,
it is not justifiable to assume that the chlorophyll-a con-
centration under cloudy conditions is not significantly
different from the observed chlorophyll-a concentra-
tion. Consequently, it is not appropriate to assume sta-
tistical independence between the missing data points
and the unobserved values associated with those miss-
ing points.

The presence of missing values in satellite observations
is a prevalent issue since these data often constitute a sub-
stantial portion of the data. These missing values exhibit a
complex pattern known as MNAR, which poses challenges
for gap-filling methods. Hence, our research aimed to inves-
tigate the extent to which an increase in data sparsity and an
increase in complexity of missing cases result in a decrease
in the efficacy of OI-SwinUnet.
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Figure 11. Performance of OI-SwinUnet in different regions.

Figure 12. Illustration of three missing patterns: (a) MCAR, (b) MAR, and (c) MNAR.

For our trials, we selected the OI-SwinUnet reconstructed
data from 26 April 2014. The data exhibit a genuine miss-
ing data rate of 48 %, with a predominant concentration of
missing pixels in the northern and southwestern regions of
the South China Sea. The reconstructed data with varying
missing data rates were generated by initially removing a
portion of the whole reconstructed dataset based on three
different patterns. Subsequently, the new data were reintro-
duced into the trained network. The missing data were de-
fined within a range of 10 % to 90 %, with increments of
10 %. The performance metrics utilized in the experiment

included the RMSE, R2, and bias. These metrics were em-
ployed to compare the observed and reconstructed values.

This case study revealed that the disparities between re-
constructed and satellite observations of chlorophyll-a con-
centrations in the basin area exhibit a consistent level of
stability across various rates of missing data. The discrep-
ancy between the two measurements reached approximately
±2× 10−3 mg m−3. In instances where the rate of miss-
ing data is elevated, there is a notable disparity between
the reconstructed and observed values, particularly within
the nearshore sea region characterized by high chlorophyll-
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a concentrations. Areas exhibiting differences exceeding
0.01 mg m−3 are predominantly situated in the nearshore re-
gion of the Philippines, specifically in the eastern sector of
the South China Sea. As the incidence of missing data de-
creases, the quality of the reconstructed results constantly
improves. Consequently, the areas in the nearshore region of
the eastern South China Sea that previously exhibited signif-
icant differences nearly vanished (Fig. 13).

As the percentage of deletions increased from 10 % to
90 %, the RMSE of the MCAR system increased from 0.049
to 0.055 mg m−3. Additionally, R2 fell from 0.974 to 0.967,
and the bias exhibited variation ranging from −1.6× 10−3

to 4.9× 10−3 mg m−3. The RMSE of the MAR pattern in-
creased from 0.049 to 0.056 mg m−3. Additionally, R2 de-
creased from 0.974 to 0.967. Furthermore, the range of
the bias spanned from 1.5× 10−3 to 3.9× 10−3 mg m−3.
The RMSE of the MNAR pattern increased from 0.052 to
0.055 mg m−3. Additionally, R2 fell from 0.968 to 0.965.
The bias varied from 2.5× 10−3 to 3.5× 10−3 mg m−3. The
performance of the model in the real situation was supe-
rior to that of the artificial missing patterns, both operat-
ing at the same missing data rate (represented by dots in
Fig. 14). In contrast to the other two patterns, the MCAR
pattern more easily estimates missing values due to the pres-
ence of similar observations neighboring the missing values.
The MAR pattern exposes a large missing patch that is inade-
quately addressed by spatiotemporal interpolation, resulting
in a decrease in gap-filling performance when compared to
that of MCAR. The MNAR pattern represents the most intri-
cate missing pattern, thus capturing the upper limit of perfor-
mance achievable in real-world scenarios for OI-SwinUnet.

In general, the slight disparity observed between the met-
rics obtained from the simulated missing mode and the ac-
tual scenario serves to illustrate the maximum operational
performance of OI-SwinUnet when real data are used. The
excellent performance of the model may be attributed to the
inclusion of input data, which included both temporal and
spatial dimensions. Specifically, the input data incorporate
information pertaining to the previous 15 d period as well
as the post-15 d period. Despite the intentional masking of
the original satellite observation data on the same day, OI-
SwinUnet is capable of acquiring knowledge about various
spatial scales by utilizing information from both before and
after the same day. Consequently, the proposed method can
successfully reconstruct missing regions with a high level of
accuracy.

4 Discussion

4.1 Spatiotemporal characteristics

For a gap-filling framework to possess utility in scientific
and practical contexts, it is imperative that this framework
possesses the capacity to accurately recapitulate the essential
characteristics of the phenomena under investigation. Oceans

exhibit a multitude of mesoscale and small-scale phenom-
ena, including eddies, upwelling, fronts, and other similar
processes. Oceanic dynamic mechanisms play a crucial role
in regulating the proliferation and decline of phytoplankton
populations within the marine environment. On the other
hand, the examination of phytoplankton dispersion on the
ocean surface using satellite observations can enhance the
understanding of intricate and localized dynamic processes.
This study investigated the potential benefits of utilizing re-
constructed datasets obtained through OI-SwinUnet for mon-
itoring seasonal ocean phenomena.

The spatial distribution of the seasonal mean chlorophyll-
a concentration, as depicted in Fig. 15, exhibited a consis-
tent pattern over the four seasons. Notably, higher values
were observed in nearshore waters than in offshore waters.
This phenomenon could be attributed to the variability in
nutrient content originating from terrestrial sources. Phyto-
plankton in nearshore areas typically consume nutrients, re-
sulting in decreased nutrient concentrations in offshore seas
upon their arrival (Bristow et al., 2017; Liu et al., 2003).
During the summer season, a region of significant ecologi-
cal importance was observed along the coastal area of Viet-
nam due to the occurrence of upwelling. This zone extends
from the southeastern part of Vietnam toward the east. In
this region, the average concentration of chlorophyll a is ap-
proximately 0.30 mg m−3. In contrast, the surrounding basin
area exhibited an average chlorophyll-a concentration of ap-
proximately 0.16 mg m−3 during the same time period. The
upwelling along the eastern coast of Vietnam forms during
May–September and reaches its mature stage during July–
August (Fang et al., 2012; Voss et al., 2006). Past studies
have shown that this summer upwelling is always in the form
of a jet-like cold tongue (or cold patch) originating off the
coast of Vietnam between 9 and 15° N (Hein et al., 2013).
After generation, the cold tongue may extend eastward or
northeastward into the central South China Sea (Gan et al.,
2006). In the offshore region, the upwelling is usually accom-
panied by the Vietnamese cold eddy (Hu and Wang, 2016).
In addition to the cold water observed in upwelling regions,
high chlorophyll-a concentrations are often reported (Ho et
al., 2000; Li et al., 2014; Zhao and Tang, 2007). By provid-
ing deep nutrient-rich water, upwelling stimulates the growth
of phytoplankton in the euphotic zone, thus significantly al-
tering the trophic state of the Vietnamese nearshore region
(Bombar et al., 2010). Driven by transport in offshore cur-
rents, upwelling nutrients and stimulated high chlorophyll a
(≥ 0.2 mg m−3) can extend from the coast to 116° E, creating
“Chl a jets” (Chen et al., 2014).

In winter, the average concentration of chlorophyll a in
the northern region of the South China Sea was greater than
that in the southern region of the South China Sea. The av-
erage concentration of chlorophyll a in the northern region
of the South China Sea is approximately 0.32 mg m−3. This
concentration is particularly prominent in the northwestern
area of the Luzon Strait, where the average chlorophyll-a
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Figure 13. Spatial distribution of the OI-SwinUnet reconstruction in three different patterns for missing data rates ranging from 10 % to
90 % (upper panel: MCAR; middle panel: MAR; lower panel: MNAR).

Figure 14. The OI-SwinUnet reconstruction performance in three different patterns for missing data rates ranging from 10 % to 90 %.
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Figure 15. Spatial distribution of the reconstructed chlorophyll-a
concentration in the SCS during the four seasons.

concentration can reach as high as 0.50 mg m−3. Previous re-
search has indicated a correlation between the occurrence of
phytoplankton blooms in the northern region of the South
China Sea during winter and the deepening of the mixing
layer caused by intensified winds and cooling of the sea sur-
face (Shen et al., 2008; Liu and Chen, 2014). The high con-
centration of nutrients brought by deep water encourages the
growth of surface phytoplankton.

Figure 16 illustrates the fluctuations in chlorophyll-a con-
centrations in various parts of the South China Sea across the
four seasons. Typically, the South China Sea experiences ele-
vated surface chlorophyll-a concentrations during winter and
reduced levels throughout spring or summer. The average
chlorophyll-a content in the South China Sea ranged from
0.35 to 0.46 mg m−3. The nearshore area exhibited the great-
est average chlorophyll-a concentration, ranging from 0.93
to 1.21 mg m−3. This is attributed to the significant impact of
human activities in this particular area. The basin zone exhib-
ited the smallest range of mean chlorophyll-a concentrations,
which varied from 0.14 to 0.22 mg m−3. Additionally, there
was minimal seasonal fluctuation in the depth of the mixed
layer in this area. Throughout all four seasons, the subsurface
layer consistently contained zones with high chlorophyll-a
concentrations (Zhang et al., 2016). In general, the recon-
structed dataset successfully replicated the seasonal-scale ge-
ographical and temporal patterns of chlorophyll-a concentra-
tions in the surface layer of the South China Sea.

4.2 Responses to small-scale and mesoscale
dynamical processes

In addition to the aforementioned seasonal-scale processes,
a number of recent studies have provided evidence for the
occurrence of weather-scale phytoplankton outbreaks in the
South China Sea. To comprehensively examine the seasonal
variations in chlorophyll-a concentrations at the surface of
the South China Sea over an extended period, it is necessary
to utilize extensive time series data. Conversely, the detection
of phytoplankton outbreaks occurring at shorter timescales,
such as weather-scale events, is relatively straightforward
due to their prominent signals. Consequently, numerous stud-
ies have concentrated on investigating these sporadic or
localized phytoplankton outbreaks. Nevertheless, obtaining
weather-scale information that encompasses the entire re-
search area through remotely sensed observations might be
challenging. The attainment of comprehensive knowledge
and comprehension pertaining to the ocean is evidently chal-
lenging when exclusively relying on satellite observations
that exhibit a substantial quantity of data gaps. Through
the utilization of the OI-SwinUnet reconstructed dataset for
chlorophyll-a concentration, we were able to visually per-
ceive and examine localized episodic occurrences of phyto-
plankton abnormalities.

This phenomenon can be observed in the manner in which
the plume front impacts upwelling regions (Fig. 17). The re-
constructed dataset spans from 14 to 25 June 2015, encom-
passing the geographical region extending from the Pearl
River estuary to southeastern Taiwan. Over the course of a
12 d period, the initial 3 d were characterized by the pre-
liminary stage of the frontal impact on the upwelling phe-
nomenon. During this phase, the plume front began to de-
velop in the eastern direction. The images also reveal the
existence of an upwelling zone in the shallow waters of
southwestern Taiwan, which can be attributed to topograph-
ical alteration. The mean concentration of chlorophyll a
in this region characterized by upwelling is approximately
0.63 mg m−3. During days 4 to 6, the second phase of
frontally affected upwelling occurred and was character-
ized by the arrival of freshwater in the upwelling region.
This influx of freshwater leads to a notable increase in
the concentration of chlorophyll a. Specifically, the aver-
age chlorophyll-a concentration reaches its peak value of
1.15 mg m−3 on day 6. After the seventh day, the subse-
quent phase, denoted the third stage, ensues. During this pe-
riod, the freshwater progressively recedes toward the west-
ern region, causing its impact zone to gradually withdraw
from the upwelling area. However, it is noteworthy that the
chlorophyll-a concentration inside the upwelling area re-
mains elevated, exhibiting an average value of approximately
1.00 mg m−3. In contrast to that in the initial stage, the mean
chlorophyll-a concentration notably increased by approxi-
mately 0.37 mg m−3 during the subsequent stage, constitut-
ing almost 50 % of the overall increase. The presence of a
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Figure 16. Seasonal variations of the reconstructed chlorophyll-a concentration in the SCS and the seven divided regions.

substantial quantity of phytoplankton in freshwater environ-
ments led to a notable increase in chlorophyll-a levels on the
surface of the sea within the upwelling zone. The observed
increase in the chlorophyll-a concentration in the upwelling
zone continued even after the cessation of freshwater input,
indicating that the presence of freshwater can stimulate sub-
sequent phytoplankton proliferation by delivering substantial
quantities of nutrients to the upwelling zone.

Another instance involves the assessment of mesoscale
eddies on an individual basis. The interaction between
mesoscale eddies and sea surface chlorophyll is intricate and
might involve the simultaneous occurrence of several physi-
cal phenomena. The frequent and substantial lack of surface
chlorophyll data in satellite observations poses challenges in
observing and analyzing the ecological impacts of individ-
uals or a small number of eddies. Consequently, numerous
studies have concentrated on examining the comprehensive
ecological impacts of mesoscale eddy activity in a specific
maritime region and its primary dynamic mechanisms. To as-
sess the effectiveness of the reconstructed chlorophyll prod-
uct in monitoring the changes in chlorophyll levels within a
single mesoscale eddy, we randomly chose an anticyclonic
eddy and analyzed it using both the incomplete satellite-
observed chlorophyll product and the reconstructed chloro-
phyll product.

The mesoscale eddy with the identification number
27708868 is an anticyclonic eddy (AE) situated in the off-
shore region of southeastern Vietnam. The AE originated
on 9 April 2016 and ceased to exist on 19 August 2016.
The life cycle of the AE is 133 d, which can be divided
into four distinct stages: generation, strengthening, maturity,
and extinction. The AE originated in the western region of
the South China Sea at 13.2° N, 112.8° E. Thereafter, the
typhoon followed a path toward the north, then toward the
west, and then toward to the south, until it eventually dis-
sipated near 14.0° N, 110.2° E (Fig. 18a). The magnitude of
the change varied between 5.0 and 10.0 cm during the phase
of increased intensity. In the mature stage, the amplitude
exceeded 15.0 cm, reaching a maximum value of approxi-
mately 25.0 cm. During the extinction stage, the amplitude

substantially decreased, dropping to less than 5 cm during a
span of 25 d. Additionally, the shape and structure of the AE
became unclear and difficult to discern (Fig. 18b).

The impacts of mesoscale eddies on marine ecosystems
can be categorized as eddy-induced pumping (McGillicuddy
et al., 1998; Siegel et al., 2008), eddy-induced Ekman pump-
ing (Martin and Richards, 2001), or eddy stirring (Chelton et
al., 2011). To gather data on the changes in the chlorophyll-a
concentration in mesoscale eddies, we systematically deter-
mined the geographic location of the AEs during each sam-
pling period. We then collected data from satellite observa-
tions and reconstructions taken at the same time. Chlorophyll
disturbances within a range of ±1.5 times the effective ra-
dius of the eddy were interpolated in a linear manner onto
a grid that had been normalized. By transforming mesoscale
chlorophyll perturbation from a Cartesian coordinate system
CHL(x,y) to a polar coordinate system CHL(r,θ ), it is possible
to split the overall chlorophyll perturbation CHL(r,θ ) into two
distinct types: a symmetric dipole ( ¯CHL(r)) and a monopole
chlorophyll perturbation (CHL′(r,θ )). The dipole potential is
determined by calculating the average chlorophyll-a concen-
tration in the radial direction ¯CHL(r). The monopole density
was determined by subtracting the dipole energy from the
total chlorophyll perturbation.

CHL′(r,θ ) = CHL(r,θ )− ¯CHL(r), (12)

where r represents the radius of the eddy and θ represents
the angle of direction. CHL′(r,θ ) refers to the dipole chloro-
phyll perturbation, which can be considered a consequence
of the eddy stirring caused by the eddy. CHL(r,θ) represents
the overall change in chlorophyll concentration within the
eddy. ¯CHL(r) refers to the specific change in chlorophyll con-
centration caused by processes such as eddy-induced pump-
ing.

Figure 19 displays the outcomes of the perturbations in
total chlorophyll and the perturbations in separation within
the AE, as computed using both satellite observation data
and reconstructed data. Both the reconstructed and satellite
observation data indicate a distribution of total chlorophyll
perturbations, with higher values in the west and lower val-
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Figure 17. The Pearl River plume front affects surface phytoplankton in the upwelling zone of southwestern Taiwan. (a) Location of
upwelling. (b) Processes of freshwater affecting the upwelling zone captured by reconstructed daily data. (c) Time series of the daily mean
chlorophyll-a concentration in the upwelling zone.

ues in the east. This distribution aligns with the characteristic
westward gradient of background chlorophyll in the west-
ern part of the South China Sea, as shown in Fig. 18a. The
mean chlorophyll-a concentration within a distance equal
to the radius of the eddy’s inner core is 0.12 mg m−3, as
determined from reconstructed data. This value is in close
proximity to the mean chlorophyll-a concentration, which is
0.11 mg m−3, as computed from satellite observations. The
mean chlorophyll-a concentration within a distance of 1–
1.5 times the radius of the eddy’s outer edge, as determined
from reconstructed data, is 0.14 mg m−3, which is equiva-
lent to the concentration obtained from satellite data. The
analysis of the isolated monopole yielded an average chloro-
phyll perturbation value of 0.12 mg m−3 in the inner core
and 0.14 mg m−3 in the outer edge, as determined from the
reconstructed data. The mean chlorophyll disturbance de-
rived from satellite observations is 0.13 mg m−3 in the cen-
tral region and 0.16 mg m−3 in the peripheral area. The re-
constructed data exhibited decreases of approximately 7.7 %
and 12.5 % in the mean values within the inner core and out-
side edge, respectively. The analysis of the separated dipole
results reveals that both datasets exhibit positive anomalies
in the western region of the eddy and negative anomalies in
the eastern region. However, a notable distinction is that the
contrast between the eastern and western sides of the eddy is
more pronounced in the reconstructed data than in the satel-

lite observation. Additionally, the computed east–west dis-
parity derived from the reconstructed data is greater than that
observed from the satellite data.

An issue with utilizing satellite observations to quan-
tify chlorophyll perturbations is the formation of isolated
monopole perturbations due to inadequate data. These per-
turbations are created by the overlap of many circles with dif-
ferent values. The current situation contradicts the previous
assumption that changes in monopole chlorophyll content are
caused by vertical transport, such as eddy-induced pumping.
Consequently, the chlorophyll-a concentration consistently
increases as the radius of the eddy increases, and the lowest
values are found at the center of the eddy. From this perspec-
tive, the utilization of reconstructed data to isolate monopole
disturbances appears to provide a more comprehensive ex-
planation for the vertical transport characteristics of eddies.
However, it is important to note that the average value of
monopole chlorophyll disturbances obtained from incom-
plete satellite data is typically greater than that from recon-
structed data. This disparity between the two datasets cannot
be disregarded. A discrepancy in monopole disturbances re-
sults in a more significant difference in dipole disturbances,
even if the total chlorophyll disturbances calculated from the
two datasets do not differ significantly. Hence, the accuracy
of the data might directly impact researchers’ computations
of the proportional influences of horizontal stirring and eddy-
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Figure 18. (a) Trajectory of anticyclonic eddy, sea surface chlorophyll, and sea level anomalies within the eddy at different life stages
from April to August 2016 in the southeastern Vietnamese Sea (the map is filled in with the mean sea surface chlorophyll-a concentration
throughout the life cycle of the eddies). (b) Amplitude plotted against time during the lifespan of the eddy.

induced pumping and, consequently, their assessment of the
principal mechanism through which eddies influence sea sur-
face chlorophyll.

To further investigate the variations in chlorophyll lev-
els related to eddy development, we utilized the Lagrangian
method to scale the eddy life cycle from 0 to 1. We subse-
quently determined the chlorophyll perturbations for each
1/10th of the eddy’s lifespan and analyzed the changes
in the chlorophyll-a concentration in the radial direction
(Fig. 20). During the initial phase of eddy formation (nor-
malized day 1, ND1), the chlorophyll in the surface layer
spread evenly. The difference in chlorophyll concentration
between the central edge and the outer edge was approxi-
mately 0.01 log10 mg m−3, with the chlorophyll-a concen-
tration being slightly greater in the central edge than in the
outer edge. During the strengthening stage (ND2–ND3), a
phenomenon emerged where the chlorophyll-a concentration
in the center of the eddy was lower than that in the sur-
rounding area, although a distinct low-chlorophyll core had
not yet developed. During the mature stage, the eddy exhib-
ited a central region with a relatively low concentration of
chlorophyll, which was dispersed within a radius of 0–0.5
times the eddy’s size. During the later phase of the matura-
tion stage (ND6–ND8), chlorophyll ring structures form near
the eddy’s 1-fold radius, where chlorophyll accumulates due
to the influence of the anticyclone. This fact suggested that

agitation at the edge became the primary mechanism for dis-
rupting chlorophyll during the maturation period. During the
extinction period, the chlorophyll-a concentration in the core
was evenly distributed, and the chlorophyll-a concentration
at the center of the edge was somewhat greater than that in
the outer edge of the eddy. Once the eddy vanishes, the dis-
turbance in chlorophyll likewise ceases.

5 Data availability

The reconstructed daily chlorophyll-a datasets
have been published and are available at
https://doi.org/10.5281/zenodo.10478524 (Ye et al., 2024).

6 Conclusions

Our proposed OI-SwinUnet reconstruction model is better
suited to reconstructing large-scale, high-resolution satellite-
observed chlorophyll-a concentration products in the South
China Sea than traditional reconstruction schemes such
as DINEOF, OI, and Unet, which rely on convolutional
operations. The analysis of the merged Aqua and Terra
chlorophyll-a concentration products from 2013 to 2017 in-
dicates that the OI-SwinUnet model outperforms the other
models. The OI scheme is a spatially interpolated method
that does not correlate information between products in the
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Figure 19. Synthesized mean chlorophyll perturbation within the anticyclonic eddy (no. 27708868) and separation of the monopole chloro-
phyll perturbation and dipole chlorophyll perturbation. ((a, b, c): computed from reconstructed data; (d, e, f): obtained from satellite obser-
vations; (g, h, i): difference in the chlorophyll perturbation computed from the two types of data).

Figure 20. Chlorophyll perturbations and radially averaged chlorophyll-a concentrations in the anticyclonic eddy (no. 27708868) at different
life stages.
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temporal dimension. DINEOF incorporates time data while
sacrificing a significant portion of the fine-grained spatial
data. However, Unet is unable to handle a reconstruction task
at such a wide scale and high resolution because of the intrin-
sic constraints of convolutional operations. These processes
make it challenging for Unet to learn explicit correlations
between global and long-range semantic information. The
multi-head attention mechanism and hierarchical window ar-
chitecture of OI-SwinUnet effectively address the issue of
long-range dependence and exhibit strong relationships with
global information. With the inclusion of the OI module, the
model can now incorporate in situ observational data along-
side satellite data, resulting in a more dependable data prod-
uct.

The reconstruction performance of OI-SwinUnet in vari-
ous regions of the South China Sea is dependent on the extent
of the coverage provided by the satellite observation prod-
ucts. The reconstruction results will be more credible if the
region is less impacted by weather conditions and has greater
coverage of relevant data. The good generalization ability of
OI-SwinUnet was proven by a designed experiment with dif-
ferent masking patterns and different masking rates.

The application potential of the reconstructed chlorophyll-
a concentration product in the South China Sea is signif-
icant. The reconstructed dataset accurately represents both
the seasonal-scale temporal and spatial patterns of sea sur-
face chlorophyll-a changes in the South China Sea and the
rapid changes in marine phenomena at the weather scale.
This includes capturing the impact of plume fronts on sur-
face phytoplankton changes in the upwelling zone through
nutrient input. The reconstructed data can be utilized not
only for studying the primary ecological effects of mesoscale
eddy activities in specific regions but also for illustrating the
chlorophyll perturbations of each individual eddy at various
life stages. This approach offers researchers a novel and com-
prehensive viewpoint on eddy studies. In the future, we can
employ reconstructed data to further enhance marine scien-
tific study. The real-time, large-scale, long time series, and
stable observation data obtained from satellite remote sens-
ing are highly advantageous for monitoring and assessing
ocean carbon fluxes and stocks as well as studying the ocean
carbon cycle. Additionally, these data serve as a motivat-
ing factor for advancing the application of remote sensing of
ocean color in the study of the ocean carbon cycle. Currently,
there are significant uncertainties and challenges in estimat-
ing the ocean carbon sink based on actual measurements. The
OI-SwinUnet deep-learning reconstruction model and high-
precision remote sensing reconstruction products are crucial
for studying the spatial and temporal distribution pattern of
carbon parameters in response to global changes. They also
help reduce uncertainties in estimating carbon fluxes and
stocks.
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