Data description paper
23 Feb 2022
Data description paper
| 23 Feb 2022
Estimating CO2 emissions for 108 000 European cities
Daniel Moran et al.
Related authors
No articles found.
Seyed Vahid Mousavi, Khalil Karami, Simone Tilmes, Helene Muri, Lili Xia, and Abolfazl Rezaei
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-370, https://doi.org/10.5194/acp-2022-370, 2022
Preprint under review for ACP
Short summary
Short summary
Understanding atmospheric dust changes in the MENA region under future climate scenarios is essential. By injecting sulfate aerosols into the stratosphere, the Stratospheric Aerosol Injection (SAI) geoengineering reflects some of the incoming sunlight back to space. This study projects the changes in dust in the MENA region under the SAI and RCP8.5 scenarios compared to the current climate (CTL) and shows the dust would be reduced under both the RCP8.5 and SAI scenarios compared to the CTL.
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022, https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Hanna Lee, Helene Muri, Altug Ekici, Jerry Tjiputra, and Jörg Schwinger
Earth Syst. Dynam., 12, 313–326, https://doi.org/10.5194/esd-12-313-2021, https://doi.org/10.5194/esd-12-313-2021, 2021
Short summary
Short summary
We assess how three different geoengineering methods using aerosol affect land ecosystem carbon storage. Changes in temperature and precipitation play a large role in vegetation carbon uptake and storage, but our results show that increased levels of CO2 also play a considerable role. We show that there are unforeseen regional consequences under geoengineering applications, and these consequences should be taken into account in future climate policies before implementing them.
Johan Strandgren, David Krutz, Jonas Wilzewski, Carsten Paproth, Ilse Sebastian, Kevin R. Gurney, Jianming Liang, Anke Roiger, and André Butz
Atmos. Meas. Tech., 13, 2887–2904, https://doi.org/10.5194/amt-13-2887-2020, https://doi.org/10.5194/amt-13-2887-2020, 2020
Short summary
Short summary
This paper presents the concept of a spaceborne imaging spectrometer targeting the routine monitoring of CO2 emissions from localized point sources down to an emission strength of about 1 Mt CO2 yr-1. Using high-resolution CO2 emission and albedo data, it is shown that CO2 plumes from point sources with an emission strength down to the order of 0.3 Mt CO2 yr-1 can be resolved in an urban environment (when limited by instrument noise only), hence leaving significant margin for additional errors.
Kevin R. Gurney, Jianming Liang, Risa Patarasuk, Yang Song, Jianhua Huang, and Geoffrey Roest
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-154, https://doi.org/10.5194/essd-2019-154, 2019
Preprint withdrawn
Short summary
Short summary
Estimates of greenhouse gas emissions (GHG), in fine space/time detail is critical to guiding and efficiently implementing emission reduction policies. This paper presents the Vulcan version 3.0 which quantifies fossil fuel carbon dioxide emissions at a spatial resolution of 1 km2/hourly for the entire United States. We describe the methods, share key results, and compare to a global emissions data product.
Kevin R. Gurney, Risa Patarasuk, Jianming Liang, Yang Song, Darragh O'Keeffe, Preeti Rao, James R. Whetstone, Riley M. Duren, Annmarie Eldering, and Charles Miller
Earth Syst. Sci. Data, 11, 1309–1335, https://doi.org/10.5194/essd-11-1309-2019, https://doi.org/10.5194/essd-11-1309-2019, 2019
Short summary
Short summary
The
Hestia Projectis an effort to provide bottom-up fossil fuel (FFCO2) emissions at the urban scale with building, street, and hourly space–time resolution. Here, we report on the latest urban area for which a Hestia estimate has been completed – the Los Angeles megacity. We provide a complete description of the methods used to build the Hestia FFCO2 emissions data product and general analysis of the numerical results.
Yilong Wang, Philippe Ciais, Grégoire Broquet, François-Marie Bréon, Tomohiro Oda, Franck Lespinas, Yasjka Meijer, Armin Loescher, Greet Janssens-Maenhout, Bo Zheng, Haoran Xu, Shu Tao, Kevin R. Gurney, Geoffrey Roest, Diego Santaren, and Yongxian Su
Earth Syst. Sci. Data, 11, 687–703, https://doi.org/10.5194/essd-11-687-2019, https://doi.org/10.5194/essd-11-687-2019, 2019
Short summary
Short summary
We address the question of the global characterization of fossil fuel CO2 emission hotspots that may cause coherent XCO2 plumes in space-borne CO2 images, based on the ODIAC global high-resolution 1 km fossil fuel emission data product. For space imagery with 0.5 ppm precision for a single XCO2 measurement, a total of 11 314 hotspots are identified, covering 72 % of the global emissions. These hotspots define the targets for the purpose of monitoring fossil fuel CO2 emissions from space.
Jacob K. Hedelius, Junjie Liu, Tomohiro Oda, Shamil Maksyutov, Coleen M. Roehl, Laura T. Iraci, James R. Podolske, Patrick W. Hillyard, Jianming Liang, Kevin R. Gurney, Debra Wunch, and Paul O. Wennberg
Atmos. Chem. Phys., 18, 16271–16291, https://doi.org/10.5194/acp-18-16271-2018, https://doi.org/10.5194/acp-18-16271-2018, 2018
Short summary
Short summary
Human activities can cause concentrated emissions of greenhouse gases and other pollutants from cities. There is ongoing effort to convert new satellite observations of pollutants into fluxes for many cities. Here we present a method for determining the flux of three species (CO2, CH4, and CO) from the greater LA area using satellite (CO2 only) and ground-based (all three species) observations. We run tests to estimate uncertainty and find the direct net CO2 flux is 104 ± 26 Tg CO2 yr−1.
Liren Wei, Duoying Ji, Chiyuan Miao, Helene Muri, and John C. Moore
Atmos. Chem. Phys., 18, 16033–16050, https://doi.org/10.5194/acp-18-16033-2018, https://doi.org/10.5194/acp-18-16033-2018, 2018
Short summary
Short summary
We analyzed streamflow and flood frequency under the stratospheric aerosol geoengineering scenario simulated by climate models. Stratospheric aerosol geoengineering appears to reduce flood risk in most regions, but the overall effects are largely determined by the large-scale geographic pattern. Over the Amazon, stratospheric aerosol geoengineering ameliorates the drying trend here under a future warming climate.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
David P. Keller, Andrew Lenton, Vivian Scott, Naomi E. Vaughan, Nico Bauer, Duoying Ji, Chris D. Jones, Ben Kravitz, Helene Muri, and Kirsten Zickfeld
Geosci. Model Dev., 11, 1133–1160, https://doi.org/10.5194/gmd-11-1133-2018, https://doi.org/10.5194/gmd-11-1133-2018, 2018
Short summary
Short summary
There is little consensus on the impacts and efficacy of proposed carbon dioxide removal (CDR) methods as a potential means of mitigating climate change. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDR-MIP) has been initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDR-MIP experiments.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Siv K. Lauvset, Jerry Tjiputra, and Helene Muri
Biogeosciences, 14, 5675–5691, https://doi.org/10.5194/bg-14-5675-2017, https://doi.org/10.5194/bg-14-5675-2017, 2017
Short summary
Short summary
Solar radiation management (SRM) is suggested as a method to offset global warming and to buy time to reduce emissions. Here we use an Earth system model to project the impact of SRM on future ocean biogeochemistry. This work underscores the complexity of climate impacts on ocean primary production and highlights the fact that changes are driven by an integrated effect of many environmental drivers, which all change in different ways.
Lars Ahlm, Andy Jones, Camilla W. Stjern, Helene Muri, Ben Kravitz, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 17, 13071–13087, https://doi.org/10.5194/acp-17-13071-2017, https://doi.org/10.5194/acp-17-13071-2017, 2017
Short summary
Short summary
We present results from coordinated simulations with three Earth system models focusing on the response of Earth’s radiation balance to the injection of sea salt particles. We find that in most regions the effective radiative forcing by the injected particles is equally large in cloudy and clear-sky conditions, suggesting a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.
Timothy M. Lenton, Peter-Paul Pichler, and Helga Weisz
Earth Syst. Dynam., 7, 353–370, https://doi.org/10.5194/esd-7-353-2016, https://doi.org/10.5194/esd-7-353-2016, 2016
Short summary
Short summary
We identify six past revolutions in energy input and material cycling in Earth and human history. We find that human energy use has now reached a magnitude comparable to the biosphere, and conclude that a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems. Our work was inspired by recognising the connections between Earth system science and industrial ecology at the "LOOPS" workshop.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
V. N. Aswathy, O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas
Atmos. Chem. Phys., 15, 9593–9610, https://doi.org/10.5194/acp-15-9593-2015, https://doi.org/10.5194/acp-15-9593-2015, 2015
Short summary
Short summary
Simulations conducted in the GeoMIP and IMPLICC model intercomparison studies for climate engineering by stratospheric sulfate injection and marine cloud brightening via sea salt are analysed and compared to the reference scenario RCP4.5. The focus is on extremes in surface temperature and precipitation. It is found that the extreme changes mostly follow the mean changes and that extremes are also in general well mitigated, except for in polar regions.
R. M. Bright, G. Myhre, R. Astrup, C. Antón-Fernández, and A. H. Strømman
Biogeosciences, 12, 2195–2205, https://doi.org/10.5194/bg-12-2195-2015, https://doi.org/10.5194/bg-12-2195-2015, 2015
Related subject area
Energy and Emissions
Global Datasets of Leaf Photosynthetic Capacity for Ecological and Earth System Research
Global Carbon Budget 2021
Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems
High-resolution spatial-distribution maps of road transport exhaust emissions in Chile, 1990–2020
Emissions of greenhouse gases from energy use in agriculture, forestry and fisheries: 1970–2019
A global seamless 1 km resolution daily land surface temperature dataset (2003–2020)
High-resolution inventory of atmospheric emissions from transport, industrial, energy, mining and residential activities in Chile
PAPILA dataset: a regional emission inventory of reactive gases for South America based on the combination of local and global information
Mapping photovoltaic power plants in China using Landsat, Random Forest, and Google Earth Engine
Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery
Global anthropogenic CO2 emissions and uncertainties as a prior for Earth system modelling and data assimilation
A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019
High-resolution seasonal and decadal inventory of anthropogenic gas-phase and particle emissions for Argentina
African anthropogenic emissions inventory for gases and particles from 1990 to 2015
Global Covenant of Mayors, a dataset of greenhouse gas emissions for 6200 cities in Europe and the Southern Mediterranean countries
Catalog of NOx emissions from point sources as derived from the divergence of the NO2 flux for TROPOMI
Global CO2 uptake by cement from 1930 to 2019
CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017
Facility-scale inventory of dairy methane emissions in California: implications for mitigation
A comparative study of anthropogenic CH4 emissions over China based on the ensembles of bottom-up inventories
Country-resolved combined emission and socio-economic pathways based on the Representative Concentration Pathway (RCP) and Shared Socio-Economic Pathway (SSP) scenarios
Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): global and European emission temporal profile maps for atmospheric chemistry modelling
A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS)
Timely estimates of India's annual and monthly fossil CO2 emissions
A comparison of estimates of global carbon dioxide emissions from fossil carbon sources
Spatio-temporal assessment of the polychlorinated biphenyl (PCB) sediment contamination in four major French river corridors (1945–2018)
Global Carbon Budget 2019
Global CO2 emissions from cement production, 1928–2018
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-136, https://doi.org/10.5194/essd-2022-136, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Francesco N. Tubiello, Kevin Karl, Alessandro Flammini, Johannes Gütschow, Griffiths Obli-Laryea, Giulia Conchedda, Xueyao Pan, Sally Yue Qi, Hörn Halldórudóttir Heiðarsdóttir, Nathan Wanner, Roberta Quadrelli, Leonardo Rocha Souza, Philippe Benoit, Matthew Hayek, David Sandalow, Erik Mencos Contreras, Cynthia Rosenzweig, Jose Rosero Moncayo, Piero Conforti, and Maximo Torero
Earth Syst. Sci. Data, 14, 1795–1809, https://doi.org/10.5194/essd-14-1795-2022, https://doi.org/10.5194/essd-14-1795-2022, 2022
Short summary
Short summary
The paper presents results from the new FAOSTAT database on food system emissions, covering all countries over the time series 1990–2019. Results indicate and further clarify – updated to 2019 – the relevance of emissions from crop and livestock production processes within the farm gate; from conversion of natural ecosystems to agriculture, such as deforestation and peat degradation; and from use of fossil fuels for energy and other industrial processes along food supply chains.
Mauricio Osses, Néstor Rojas, Cecilia Ibarra, Víctor Valdebenito, Ignacio Laengle, Nicolás Pantoja, Darío Osses, Kevin Basoa, Sebastián Tolvett, Nicolás Huneeus, Laura Gallardo, and Benjamín Gómez
Earth Syst. Sci. Data, 14, 1359–1376, https://doi.org/10.5194/essd-14-1359-2022, https://doi.org/10.5194/essd-14-1359-2022, 2022
Short summary
Short summary
This paper presents a detailed estimate of on-road vehicle emissions for Chile, between 1990–2020, and an analysis of emission trends for greenhouse gases and local pollutants. Data are disaggregated by type of vehicle and region at 0.01° × 0.01°. While the vehicle fleet grew 5-fold, CO2 emissions increased at a lower rate and local pollutants decreased. These trends can be explained by changes in improved vehicle technologies, better fuel quality and enforcement of emission standards.
Alessandro Flammini, Xueyao Pan, Francesco Nicola Tubiello, Sally Yue Qiu, Leonardo Rocha Souza, Roberta Quadrelli, Stefania Bracco, Philippe Benoit, and Ralph Sims
Earth Syst. Sci. Data, 14, 811–821, https://doi.org/10.5194/essd-14-811-2022, https://doi.org/10.5194/essd-14-811-2022, 2022
Short summary
Short summary
Fossil-fuel-based energy used in agriculture, for crop and livestock production as well as in fisheries, generates significant amounts of greenhouse gases (GHG), which are typically not accounted for within the agriculture sector of national GHG inventories. Using activity data from UNSD and IEA, we construct a new database of energy use in agriculture and related emissions, covering the period 1970–2019 by country and by fossil fuel type, including emissions from electricity used on the farm.
Tao Zhang, Yuyu Zhou, Zhengyuan Zhu, Xiaoma Li, and Ghassem R. Asrar
Earth Syst. Sci. Data, 14, 651–664, https://doi.org/10.5194/essd-14-651-2022, https://doi.org/10.5194/essd-14-651-2022, 2022
Short summary
Short summary
We generated a global seamless 1 km daily (mid-daytime and mid-nighttime) land surface temperature (LST) dataset (2003–2020) using MODIS LST products by proposing a spatiotemporal gap-filling framework. The average root mean squared errors of the gap-filled LST are 1.88°C and 1.33°C, respectively, in mid-daytime and mid-nighttime. The global seamless LST dataset is unique and of great use in studies on urban systems, climate research and modeling, and terrestrial ecosystem studies.
Nicolás Álamos, Nicolás Huneeus, Mariel Opazo, Mauricio Osses, Sebastián Puja, Nicolás Pantoja, Hugo Denier van der Gon, Alejandra Schueftan, René Reyes, and Rubén Calvo
Earth Syst. Sci. Data, 14, 361–379, https://doi.org/10.5194/essd-14-361-2022, https://doi.org/10.5194/essd-14-361-2022, 2022
Short summary
Short summary
This study presents the first high-resolution national inventory of anthropogenic emissions for Chile (Inventario Nacional de Emisiones Antropogénicas, INEMA). Emissions for vehicular, industrial, energy, mining and residential sectors are estimated for the period 2015–2017 and spatially distributed onto a high-resolution grid (1 × 1 km). This inventory will support policies seeking to mitigate climate change and improve air quality by providing qualified scientific spatial emission information.
Paula Castesana, Melisa Diaz Resquin, Nicolás Huneeus, Enrique Puliafito, Sabine Darras, Darío Gómez, Claire Granier, Mauricio Osses Alvarado, Néstor Rojas, and Laura Dawidowski
Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, https://doi.org/10.5194/essd-14-271-2022, 2022
Short summary
Short summary
This work presents the results of the first joint effort of South American and European researchers to generate regional maps of emissions. The PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3, and SO2) from anthropogenic sources in the region for the period 2014–2016. This was developed on the basis of the CAMS-GLOB-ANT v4.1 dataset, enriching it with derived data from locally available emission inventories for Argentina, Chile, and Colombia.
Xunhe Zhang, Shujian Wang, Yongkai Huang, Zunyi Xie, and Ming Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-16, https://doi.org/10.5194/essd-2022-16, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Photovoltaic (PV) power plants has been increasingly built across the world to mitigate climate change. A map of the PV power plants is important for policy management and environmental assessment. We established a map of PV power plants in China by 2020, covering a total area of 2917 square kilometers. Based on the derived map, we found that most PV power plants were sited on cropland. In addition, the installation of PV power plants has generally decreased the vegetation cover.
Hou Jiang, Ling Yao, Ning Lu, Jun Qin, Tang Liu, Yujun Liu, and Chenghu Zhou
Earth Syst. Sci. Data, 13, 5389–5401, https://doi.org/10.5194/essd-13-5389-2021, https://doi.org/10.5194/essd-13-5389-2021, 2021
Short summary
Short summary
A multi-resolution (0.8, 0.3, and 0.1 m) photovoltaic (PV) dataset is established using satellite and aerial images. The dataset contains 3716 samples of PVs installed on various land and rooftop types. The dataset can support multi-scale PV segmentation (e.g., concentrated PVs, distributed ground PVs, and fine-grained rooftop PVs) and cross applications between different resolutions (e.g., from satellite to aerial samples and vice versa), as well as other research related to PVs.
Margarita Choulga, Greet Janssens-Maenhout, Ingrid Super, Efisio Solazzo, Anna Agusti-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Monica Crippa, Hugo Denier van der Gon, Richard Engelen, Diego Guizzardi, Jeroen Kuenen, Joe McNorton, Gabriel Oreggioni, and Antoon Visschedijk
Earth Syst. Sci. Data, 13, 5311–5335, https://doi.org/10.5194/essd-13-5311-2021, https://doi.org/10.5194/essd-13-5311-2021, 2021
Short summary
Short summary
People worry that growing man-made carbon dioxide (CO2) concentrations lead to climate change. Global models, use of observations, and datasets can help us better understand behaviour of CO2. Here a tool to compute uncertainty in man-made CO2 sources per country per year and month is presented. An example of all sources separated into seven groups (intensive and average energy, industry, humans, ground and air transport, others) is presented. Results will be used to predict CO2 concentrations.
Jan C. Minx, William F. Lamb, Robbie M. Andrew, Josep G. Canadell, Monica Crippa, Niklas Döbbeling, Piers M. Forster, Diego Guizzardi, Jos Olivier, Glen P. Peters, Julia Pongratz, Andy Reisinger, Matthew Rigby, Marielle Saunois, Steven J. Smith, Efisio Solazzo, and Hanqin Tian
Earth Syst. Sci. Data, 13, 5213–5252, https://doi.org/10.5194/essd-13-5213-2021, https://doi.org/10.5194/essd-13-5213-2021, 2021
Short summary
Short summary
We provide a synthetic dataset on anthropogenic greenhouse gas (GHG) emissions for 1970–2018 with a fast-track extension to 2019. We show that GHG emissions continued to rise across all gases and sectors. Annual average GHG emissions growth slowed, but absolute decadal increases have never been higher in human history. We identify a number of data gaps and data quality issues in global inventories and highlight their importance for monitoring progress towards international climate goals.
S. Enrique Puliafito, Tomás R. Bolaño-Ortiz, Rafael P. Fernandez, Lucas L. Berná, Romina M. Pascual-Flores, Josefina Urquiza, Ana I. López-Noreña, and María F. Tames
Earth Syst. Sci. Data, 13, 5027–5069, https://doi.org/10.5194/essd-13-5027-2021, https://doi.org/10.5194/essd-13-5027-2021, 2021
Short summary
Short summary
GEAA-AEIv3.0M atmospheric emissions inventory is the first high-spatial-resolution inventory (approx. 2.5 km × 2.5 km) with monthly variability from 1995 to 2020, including greenhouse gases, ozone precursors, acidifying gases, and particulate matter, from all Argentine productive activities. The main benefit of GEAA-AEIv3.0M is to map emissions with better temporal resolution to support air quality and climate modeling, to evaluate pollutant mitigation strategies by Argentine decision makers.
Sekou Keita, Catherine Liousse, Eric-Michel Assamoi, Thierno Doumbia, Evelyne Touré N'Datchoh, Sylvain Gnamien, Nellie Elguindi, Claire Granier, and Véronique Yoboué
Earth Syst. Sci. Data, 13, 3691–3705, https://doi.org/10.5194/essd-13-3691-2021, https://doi.org/10.5194/essd-13-3691-2021, 2021
Short summary
Short summary
This inventory fills the gap in African regional inventories, providing biofuel and fossil fuel emissions that take into account African specificities. It could be used for air quality modeling. We show that all pollutant emissions are globally increasing during the period 1990–2015. Also, West Africa and East Africa emissions are largely due to domestic fire and traffic activities, while southern Africa and northern Africa emissions are largely due to industrial and power plant sources.
Albana Kona, Fabio Monforti-Ferrario, Paolo Bertoldi, Marta Giulia Baldi, Georgia Kakoulaki, Nadja Vetters, Christian Thiel, Giulia Melica, Eleonora Lo Vullo, Alessandra Sgobbi, Christofer Ahlgren, and Brieuc Posnic
Earth Syst. Sci. Data, 13, 3551–3564, https://doi.org/10.5194/essd-13-3551-2021, https://doi.org/10.5194/essd-13-3551-2021, 2021
Short summary
Short summary
The Global Covenant of Mayors for Climate & Energy (GCoM), the largest international initiative to promote climate action at the city level, has collected a large amount of information on urban greenhouse gas emissions.
Here we present the harmonised, completed and verified GCoM emission dataset, originating from 6200 cities among its signatories, complemented with a set of useful ancillary data. This knowledge will contribute to covering the lack of consistent datasets of cities' emissions.
Steffen Beirle, Christian Borger, Steffen Dörner, Henk Eskes, Vinod Kumar, Adrianus de Laat, and Thomas Wagner
Earth Syst. Sci. Data, 13, 2995–3012, https://doi.org/10.5194/essd-13-2995-2021, https://doi.org/10.5194/essd-13-2995-2021, 2021
Short summary
Short summary
A catalog of point sources of nitrogen oxides was created using satellite observations of NO2. Key for the identification of point sources was the divergence, i.e., the difference between upwind and downwind levels of NO2.
The catalog lists 451 locations, of which 242 could be automatically matched to power plants. Other point sources are metal smelters, cement plants, or industrial areas. The catalog thus allows checking and improving of existing emission inventories.
Rui Guo, Jiaoyue Wang, Longfei Bing, Dan Tong, Philippe Ciais, Steven J. Davis, Robbie M. Andrew, Fengming Xi, and Zhu Liu
Earth Syst. Sci. Data, 13, 1791–1805, https://doi.org/10.5194/essd-13-1791-2021, https://doi.org/10.5194/essd-13-1791-2021, 2021
Short summary
Short summary
Using a life-cycle approach, we estimated the CO2 process emission and uptake of cement materials produced and consumed from 1930 to 2019; ~21 Gt of CO2, about 55 % of the total process emission, had been abated through cement carbonation. China contributed the greatest to the cumulative uptake, with more than 6 Gt (~30 % of the world total), while ~59 %, or more than 12 Gt, of the total uptake was attributed to mortar. Cement CO2 uptake makes up a considerable part of the human carbon budget.
Dennis Gilfillan and Gregg Marland
Earth Syst. Sci. Data, 13, 1667–1680, https://doi.org/10.5194/essd-13-1667-2021, https://doi.org/10.5194/essd-13-1667-2021, 2021
Alison R. Marklein, Deanne Meyer, Marc L. Fischer, Seongeun Jeong, Talha Rafiq, Michelle Carr, and Francesca M. Hopkins
Earth Syst. Sci. Data, 13, 1151–1166, https://doi.org/10.5194/essd-13-1151-2021, https://doi.org/10.5194/essd-13-1151-2021, 2021
Short summary
Short summary
Dairy cow farms produce half of California's (CA) methane (CH4) emissions. Current CH4 emission inventories lack regional variation in management and are inadequate to assess CH4 mitigation measures. We develop a spatial database of CH4 emissions for CA dairy farms including farm-scale herd demographics and management data. This database is useful to predict CH4 emission reductions from mitigation efforts, to compare with atmospheric CH4 observations and to attribute emissions to specific farms.
Xiaohui Lin, Wen Zhang, Monica Crippa, Shushi Peng, Pengfei Han, Ning Zeng, Lijun Yu, and Guocheng Wang
Earth Syst. Sci. Data, 13, 1073–1088, https://doi.org/10.5194/essd-13-1073-2021, https://doi.org/10.5194/essd-13-1073-2021, 2021
Short summary
Short summary
CH4 is a potent greenhouse gas, and China’s anthropogenic CH4 emissions account for a large proportion of global total emissions. However, the existing estimates either focus on a specific sector or lag behind real time by several years. We collected and analyzed 12 datasets and compared them to reveal the spatiotemporal changes and their uncertainties. We further estimated the emissions from 1990–2019, and the estimates showed a robust trend in recent years when compared to top-down results.
Johannes Gütschow, M. Louise Jeffery, Annika Günther, and Malte Meinshausen
Earth Syst. Sci. Data, 13, 1005–1040, https://doi.org/10.5194/essd-13-1005-2021, https://doi.org/10.5194/essd-13-1005-2021, 2021
Short summary
Short summary
Climate policy analysis needs scenarios of future greenhouse gas emission to assess countries' emission targets and current trends. The models generating these scenarios work on a regional resolution. Scenarios are often made available only on a very coarse regional resolution. In this paper we use per country projections of gross domestic product (GDP) from the Shared Socio-Economic Pathways (SSPs) to derive country-level data from published regional emission scenarios.
Marc Guevara, Oriol Jorba, Carles Tena, Hugo Denier van der Gon, Jeroen Kuenen, Nellie Elguindi, Sabine Darras, Claire Granier, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 13, 367–404, https://doi.org/10.5194/essd-13-367-2021, https://doi.org/10.5194/essd-13-367-2021, 2021
Short summary
Short summary
The temporal variability of atmospheric emissions is linked to changes in activity patterns, emission processes and meteorology. Accounting for the change in temporal emission characteristics is a key aspect for modelling the trends of air pollutants. This work presents a dataset of global and European emission temporal profiles to be used for air quality modelling purposes. The profiles were constructed considering the influences of local sociodemographic factors and climatological conditions.
Erin E. McDuffie, Steven J. Smith, Patrick O'Rourke, Kushal Tibrewal, Chandra Venkataraman, Eloise A. Marais, Bo Zheng, Monica Crippa, Michael Brauer, and Randall V. Martin
Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, https://doi.org/10.5194/essd-12-3413-2020, 2020
Short summary
Short summary
Global emission inventories are vital to understanding the impacts of air pollution on the environment, human health, and society. We update the open-source Community Emissions Data System (CEDS) to provide global gridded emissions of seven key air pollutants from 1970–2017 for 11 source sectors and multiple fuel types, including coal, solid biofuel, and liquid oil and natural gas. This dataset includes both monthly global gridded emissions and annual national totals.
Robbie M. Andrew
Earth Syst. Sci. Data, 12, 2411–2421, https://doi.org/10.5194/essd-12-2411-2020, https://doi.org/10.5194/essd-12-2411-2020, 2020
Short summary
Short summary
India is the world's third-largest emitter of carbon dioxide and is developing rapidly. While India has pledged an emissions-intensity reduction as its contribution to the Paris Agreement, the country does not regularly report emissions statistics, making tracking progress difficult. Here I compile monthly energy and industrial activity data, allowing for the production of estimates of India's CO2 emissions by month and calendar year.
Robbie M. Andrew
Earth Syst. Sci. Data, 12, 1437–1465, https://doi.org/10.5194/essd-12-1437-2020, https://doi.org/10.5194/essd-12-1437-2020, 2020
Short summary
Short summary
There are now several global datasets with estimates of global CO2 emissions from fossil sources, but the totals from these differ. Sometimes the range of these estimates has been used to indicate uncertainty in global emissions. In this paper I discuss the reasons why these datasets differ, particularly their different system boundaries: which emissions sources are included and which are omitted. Analysis is both qualitative and quantitative.
André-Marie Dendievel, Brice Mourier, Alexandra Coynel, Olivier Evrard, Pierre Labadie, Sophie Ayrault, Maxime Debret, Florence Koltalo, Yoann Copard, Quentin Faivre, Thomas Gardes, Sophia Vauclin, Hélène Budzinski, Cécile Grosbois, Thierry Winiarski, and Marc Desmet
Earth Syst. Sci. Data, 12, 1153–1170, https://doi.org/10.5194/essd-12-1153-2020, https://doi.org/10.5194/essd-12-1153-2020, 2020
Short summary
Short summary
Polychlorinated biphenyl indicators (ΣPCBi) from sediment cores, bed and flood deposits, suspended particulate matter, and dredged sediments along the major French rivers (1945–2018) are compared with socio-hydrological drivers. ΣPCBi increased from 1945 to the 1990s due to urban and industrial emissions. It gradually decreased with the implementation of regulations. Specific ΣPCBi fluxes reveal the amount of PCB-polluted sediment transported by French rivers to European seas over 40 years.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Robbie M. Andrew
Earth Syst. Sci. Data, 11, 1675–1710, https://doi.org/10.5194/essd-11-1675-2019, https://doi.org/10.5194/essd-11-1675-2019, 2019
Short summary
Short summary
Global production of cement has grown very rapidly in recent years, and, after fossil fuels and land-use change, it is the third-largest source of society's emissions of carbon dioxide. This paper draws on a large variety of available datasets, prioritising official data and emission factors, to produce both global and country-level estimates of these
processemissions from cement production.
Cited articles
Andres, R. J., Marland, G., Fung, I., and Matthews, E.: A 1∘ × 1∘ distribution of carbon dioxide emissions from fossil
fuel consumption and cement manufacture, 1950–1990, Global Biogeochem. Cy., 10, 419–429, https://doi.org/10.1029/96GB01523, 1996.
Andres, R. J., Boden, T. A., and Higdon, D. M.: Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example, Atmos. Chem. Phys., 16, 14979–14995, https://doi.org/10.5194/acp-16-14979-2016, 2016a.
Andres, R. J., Boden, T. A., and Marland, G.: Monthly Fossil-Fuel CO2
Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree
Longitude, ESS-DIVE [data set], https://doi.org/10.3334/CDIAC/ffe.MonthlyMass.2016, 2016b.
Asefi-Najafabady, S., Rayner, P. J., Gurney, K. R., McRobert, A., Song, Y.,
Coltin, K., Huang, J., Elvidge, C., and Baugh, K.: A multiyear, global
gridded fossil fuel CO2 emission data product: Evaluation and analysis of
results, J. Geophys. Res.-Atmos., 119, 10213–10231,
https://doi.org/10.1002/2013JD021296, 2014.
Baiocchi, G., Creutzig, F., Minx, J., and Pichler, P.-P.: A spatial typology of human settlements and their CO2 emissions in England, Global Environmental Change, 34, 13–21, https://doi.org/10.1016/j.gloenvcha.2015.06.001, 2015.
Basu, S., Lehman, S. J., Miller, J. B., Andrews, A. E., Sweeney, C., Gurney,
K. R., Xu, X., Southon, J., and Tans, P. P.: Estimating US fossil fuel CO2
emissions from measurements of 14C in atmospheric CO2, P.
Natl. Acad. Sci. USA, 117, 13300–13307, https://doi.org/10.1073/pnas.1919032117, 2020.
Baur, A. H., Lauf, S., Förster, M., and Kleinschmit, B.: Estimating greenhouse gas emissions of European cities – Modeling emissions with only one spatial and one socioeconomic variable, Sci. Total Environ., 520, 49–58, https://doi.org/10.1016/j.scitotenv.2015.03.030, 2015.
Bun, R., Hamal, K., Gusti, M., and Bun, A.: Spatial GHG inventory at the regional level: accounting for uncertainty, Climatic Change, 103, 227–244, https://doi.org/10.1007/s10584-010-9907-5, 2010.
Bun, R., Nahorski, Z., Horabik-Pyzel, J., Danylo, O., See, L., Charkovska,
N., Topylko, P., Halushchak, M., Lesiv, M., Valakh, M., and Kinakh, V.:
Development of a high-resolution spatial inventory of greenhouse gas
emissions for Poland from stationary and mobile sources, Mitig.
Adapt. Strat. Gl., 24, 853–880, https://doi.org/10.1007/s11027-018-9791-2,
2019.
Chen, G., Shan, Y., Hu, Y., Tong, K., Wiedmann, T., Ramaswami, A., Guan, D., Shi, L., and Wang, Y.: Review on City-Level Carbon Accounting, Environ. Sci. Technol., 53, 5545–5558, https://doi.org/10.1021/acs.est.8b07071, 2019a.
Chen, S., Liu, Z., Chen, B., Zhu, F., Fath, B. D., Liang, S., Su, M., and Yang, J.: Dynamic carbon emission linkages across boundaries, Earth's Future, 7, 197–209, https://doi.org/10.1029/2018EF000811, 2019b.
Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J., and Vignati, E.: Fossil CO2 and GHG emissions of all world countries, Publications Office of the European Union, Luxembourg, EUR 29849 EN JRC117610, https://doi.org/10.2760/687800, 2019.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M.,
Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution
temporal profiles in the Emissions Database for Global Atmospheric Research,
Sci. Data, 7, 121, https://doi.org/10.1038/s41597-020-0462-2, 2020.
Davis, K. J., Deng, A., Lauvaux, T., Miles, N. L., Richardson, S. J.,
Sarmiento, D. P., Gurney, K. R., Hardesty, R. M., Bonin, T. A., Brewer, W.
A., Lamb, B. K., Shepson, P. B., Harvey, R. M., Cambaliza, M. O., Sweeney,
C., Turnbull, J. C., Whetstone, J., and Karion, A.: The Indianapolis Flux
Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission
measurements, Elementa, 5, 21, https://doi.org/10.1525/elementa.188, 2017.
Dijkstra, E. W.: A note on two problems in connexion with graphs, Numer.
Math., 1, 269–271, https://doi.org/10.1007/BF01386390, 1959.
Douglas, D. H. and Peucker, T. K.: ALGORITHMS FOR THE REDUCTION OF THE
NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE,
Cartographica: The International Journal for Geographic Information and
Geovisualization, 10, 112–122, https://doi.org/10.3138/FM57-6770-U75U-7727, 1973.
Elguindi, N., Granier, C., Stavrakou, T., Darras, S., Bauwens, M., Cao, H.,
Chen, C., Denier van der Gon, H. A. C., Dubovik, O., Fu, T. M., Henze, D.
K., Jiang, Z., Keita, S., Kuenen, J. J. P., Kurokawa, J., Liousse, C.,
Miyazaki, K., Müller, J.-F., Qu, Z., Solmon, F., and Zheng, B.:
Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions
From Bottom-Up Inventories, Top-Down Estimates, and Emission Scenarios,
Earth's Future, 8, e2020EF001520, https://doi.org/10.1029/2020EF001520, 2020.
Fong, W. K., Sotos, M., Doust, M., Schultz, S., Marques, A., and Deng-Beck,
C.: Global Protocol for Community-Scale Greenhouse Gas Emission Inventories,
WRI, C40 Cities, and ICLEI, available at: http://www.ghgprotocol.org/city-accounting (last access: 1 January 2022), 2016.
Fu, M., Kelly, J. A., and Clinch, J. P.: Estimating annual average daily traffic and transport emissions for a national road network: A bottom-up methodology for both nationally-aggregated and spatially-disaggregated results, J. Transp. Geogr., 58, 186–195, https://doi.org/10.1016/j.jtrangeo.2016.12.002, 2017.
Gately, C. K. and Hutyra, L. R.: CMS: CO2 Emissions from Fossil Fuels Combustion, ACES Inventory for Northeastern USA [data set], https://doi.org/10.3334/ORNLDAAC/1501, 2018.
Gaughan, A. E., Oda, T., Sorichetta, A., Stevens, F. R., Bondarenko, M.,
Bun, R., Krauser, L., Yetman, G., and Nghiem, S. V.: Evaluating nighttime
lights and population distribution as proxies for mapping anthropogenic CO2
emission in Vietnam, Cambodia and Laos, Environmental Research
Communications, 1, 091006, https://doi.org/10.1088/2515-7620/ab3d91, 2019.
Ghosh, S., Mueller, K., Prasad, K., and Whetstone, J.: Accounting for
Transport Error in Inversions: An Urban Synthetic Data Experiment, Earth and
Space Science, 8, e2020EA001272, https://doi.org/10.1029/2020EA001272, 2021.
Grassi, G., House, J., Kurz, W. A., Cescatti, A., Houghton, R. A., Peters,
G. P., Sanz, M. J., Viñas, R. A., Alkama, R., Arneth, A., Bondeau, A.,
Dentener, F., Fader, M., Federici, S., Friedlingstein, P., Jain, A. K.,
Kato, E., Koven, C. D., Lee, D., Nabel, J. E. M. S., Nassikas, A. A.,
Perugini, L., Rossi, S., Sitch, S., Viovy, N., Wiltshire, A., and Zaehle,
S.: Reconciling global-model estimates and country reporting of
anthropogenic forest CO2 sinks, Nat. Clim. Change, 8, 914–920,
https://doi.org/10.1038/s41558-018-0283-x, 2018.
Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., and de la Rue du Can, S.: High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States, Environ. Sci. Technol., 43, 5535–5541, https://doi.org/10.1021/es900806c, 2009.
Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., and Abdul-Massih, M.: Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City, Environ. Sci. Technol., 46, 12194–12202, https://doi.org/10.1021/es3011282, 2012.
Gurney, K. R., Patarasuk, R., Liang, J., Song, Y., O'Keeffe, D., Rao, P., Whetstone, J. R., Duren, R. M., Eldering, A., and Miller, C.: The Hestia fossil fuel CO2 emissions data product for the Los Angeles megacity (Hestia-LA), Earth Syst. Sci. Data, 11, 1309–1335, https://doi.org/10.5194/essd-11-1309-2019, 2019.
Gurney, K. R., Song, Y., Liang, J., and Roest, G.: Toward Accurate, Policy-Relevant Fossil Fuel CO2 Emission Landscapes, Environ. Sci. Technol., 54, 9896–9907, https://doi.org/10.1021/acs.est.0c01175, 2020a.
Gurney, K. R., Liang, J., Patarasuk, R., Song, Y., Huang, J., and Roest, G.: The Vulcan Version 3.0 High-Resolution Fossil Fuel CO2 Emissions for the United States, J. Geophys. Res.-Atmos., 125, e2020JD032974, https://doi.org/10.1029/2020JD032974, 2020b.
Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G., Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., and Hostert, P.: High-Resolution Maps of Material Stocks in Buildings and Infrastructures in Austria and Germany, Environ. Sci. Technol., 55, 3368–3379, https://doi.org/10.1021/acs.est.0c05642, 2021.
Harris, S., Weinzettel, J., Bigano, A., and Källmén, A.: Low carbon
cities in 2050? GHG emissions of European cities using production-based and
consumption-based emission accounting methods, J. Clean. Prod., 248, 119206, https://doi.org/10.1016/j.jclepro.2019.119206, 2020.
Hecht, R., Kunze, C., and Hahmann, S.: Measuring Completeness of Building
Footprints in OpenStreetMap over Space and Time, ISPRS Int. Geo-Inf., 2, 1066–1091, https://doi.org/10.3390/ijgi2041066, 2013.
Heinonen, J., Ottelin, J., Ala-Mantila, S., Wiedmann, T., Clarke, J., and Junnila, S.: Spatial consumption-based carbon footprint assessments – A review of recent developments in the field, J. Clean. Prod., 256, 120335, https://doi.org/10.1016/j.jclepro.2020.120335, 2020.
Hogue, S., Marland, E., Andres, R. J., Marland, G., and Woodard, D.: Uncertainty in gridded CO2 emissions estimates, Earth's Future, 4, 225–239, https://doi.org/10.1002/2015EF000343, 2016.
Hsu, Y.-K., VanCuren, T., Park, S., Jakober, C., Herner, J., FitzGibbon, M., Blake, D. R., and Parrish, D. D.: Methane emissions inventory verification in southern California, Atmos. Environ., 44, 1–7, https://doi.org/10.1016/j.atmosenv.2009.10.002, 2010.
Hutchins, M. G., Colby, J. D., Marland, G., and Marland, E.: A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States, Mitig. Adapt. Strat. Gl., 22, 947–972, https://doi.org/10.1007/s11027-016-9709-9, 2017.
IPCC: Guidelines for National Greenhouse Gas Inventories, vol. 4, chap. 4, IGES, Toyko, available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (last access: 1 January 2022), 2006.
Jones, M. W., Andrew, R. M., Peters, G. P., Janssens-Maenhout, G., De-Gol, A. J., Ciais, P., Patra, P. K., Chevallier, F., and Le Quéré, C.: Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018, Scientific Data, 8, 2, https://doi.org/10.1038/s41597-020-00779-6, 2021.
Kim, J., Shusterman, A. A., Lieschke, K. J., Newman, C., and Cohen, R. C.: The BErkeley Atmospheric CO2 Observation Network: field calibration and evaluation of low-cost air quality sensors, Atmos. Meas. Tech., 11, 1937–1946, https://doi.org/10.5194/amt-11-1937-2018, 2018.
Kona, A., Monforti-Ferrario, F., Bertoldi, P., Baldi, M. G., Kakoulaki, G., Vetters, N., Thiel, C., Melica, G., Lo Vullo, E., Sgobbi, A., Ahlgren, C., and Posnic, B.: Global Covenant of Mayors, a dataset of greenhouse gas emissions for 6200 cities in Europe and the Southern Mediterranean countries, Earth Syst. Sci. Data, 13, 3551–3564, https://doi.org/10.5194/essd-13-3551-2021, 2021.
Kramel, D., Muri, H., Kim, Y., Lonka, R., Nielsen, J. B., Ringvold, A. L.,
Bouman, E. A., Steen, S., and Strømman, A. H.: Global Shipping Emissions
from a Well-to-Wake Perspective: The MariTEAM Model, Environ. Sci.
Technol., 55, 15040–15050, https://doi.org/10.1021/acs.est.1c03937, 2021.
Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058, https://doi.org/10.5194/acp-13-11019-2013, 2013.
Lauvaux, T., Gurney, K. R., Miles, N. L., Davis, K. J., Richardson, S. J.,
Deng, A., Nathan, B. J., Oda, T., Wang, J. A., Hutyra, L., and Turnbull, J.:
Policy-Relevant Assessment of Urban CO2 Emissions, Environ. Sci. Technol., 54, 10237–10245, https://doi.org/10.1021/acs.est.0c00343,
2020.
Liu, Z., Wang, F., Tang, Z., and Tang, J.: Predictions and driving factors of production-based CO2 emissions in Beijing, China, Sustain. Cities Soc., 53, 101909, https://doi.org/10.1016/j.scs.2019.101909, 2020a.
Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B.,
Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang,
Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., Han, T.,
Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y.,
Zhong, H., Kang, C., Zhang, N., Chen, B., Xi, F., Liu, M., Bréon, F.-M.,
Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. M., He, K., and
Schellnhuber, H. J.: Near-real-time monitoring of global CO2 emissions
reveals the effects of the COVID-19 pandemic, Nat. Commun., 11,
5172, https://doi.org/10.1038/s41467-020-18922-7, 2020b.
Long, Z., Zhang, Z., Liang, S., Chen, X., Ding, B., Wang, B., Chen, Y., Sun,
Y., Li, S., and Yang, T.: Spatially explicit carbon emissions at the county
scale, Resources, Conservation and Recycling, 173, 105706, https://doi.org/10.1016/j.resconrec.2021.105706, 2021.
Mallia, D. V., Mitchell, L. E., Kunik, L., Fasoli, B., Bares, R., Gurney, K.
R., Mendoza, D. L., and Lin, J. C.: Constraining Urban CO2 Emissions Using
Mobile Observations from a Light Rail Public Transit Platform, Environ.
Sci. Technol., 54, 15613–15621, https://doi.org/10.1021/acs.est.0c04388, 2020.
Maurice, L. Q., Hockstad, L., Höhne, N., Hupe, J., Lee, D. S., and
Rypdal, K.: Chapter 2.3: Mobile Combustion. Section 6: Civil aviation, in:
2006 IPCC Guidelines for National Greenhouse Gas Inventories, 56–74, available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (last access: 1 January 2022), 2006.
Meng, L., Graus, W., Worrell, E., and Huang, B.: Estimating CO2 (carbon
dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological
Satellite Program's Operational Linescan System) nighttime light imagery:
Methodological challenges and a case study for China, Energy, 71, 468–478,
https://doi.org/10.1016/j.energy.2014.04.103, 2014.
Milojevic-Dupont, N., Hans, N., Kaack, L. H., Zumwald, M., Andrieux, F., de Barros Soares, D., Lohrey, S., Pichler, P.-P., and Creutzig, F.: Learning from urban form to predict building heights, PLOS ONE, 15, e0242010, https://doi.org/10.1371/journal.pone.0242010, 2020.
Minx, J., Baiocchi, G., Wiedmann, T., Barrett, J., Creutzig, F., Feng, K., Frster, M., Pichler, P.-P., Weisz, H., and Hubacek, K.: Carbon footprints of cities and other human settlements in the UK, Environ. Res. Lett., 8, 35039, https://doi.org/10.1088/1748-9326/8/3/035039, 2013.
Moran, D.: OpenGHGMap – Europe – CO2 Emissions in 108,000 European Cities
(2018_20210907a), Zenodo [data set],
https://doi.org/10.5281/zenodo.5482480, 2021.
Moran, D. D., Kanemoto, K., Jiborn, M., Wood, R., Többen, J., Seto, K. C., Többen, J., and Seto, K. C.: Carbon footprints of 13 000 cities, Environ. Res. Lett., 13, 064041, https://doi.org/10.1088/1748-9326/aac72a, 2018.
Mueller, K. L., Lauvaux, T., Gurney, K. R., Roest, G., Ghosh, S., Gourdji,
S. M., Karion, A., DeCola, P., and Whetstone, J.: An emerging GHG estimation
approach can help cities achieve their climate and sustainability goals,
Environ. Res. Lett., 16, 084003, https://doi.org/10.1088/1748-9326/ac0f25, 2021.
Nangini, C., Peregon, A., Ciais, P., Weddige, U., Vogel, F., Wang, J., Bron,
F.-M., Bachra, S., Wang, Y., Gurney, K., Yamagata, Y., Appleby, K.,
Telahoun, S., Canadell, J. G., Grbler, A., Dhakal, S., and Creutzig, F.: A
global dataset of CO2 emissions and ancillary data related to emissions for
343 cities, Scientific Data, 6, 180280, https://doi.org/10.1038/sdata.2018.280, 2019.
NASA OCO-2 Mission Homepage: Homepage, available at: https://www.nasa.gov/mission_pages/oco2/index.html, last
access: 23 August 2021.
Nassar, R., Napier-Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel,
F. R., and Deng, F.: Improving the temporal and spatial distribution of CO2
emissions from global fossil fuel emission data sets, J. Geophys. Res.-Atmos., 118, 917–933, https://doi.org/10.1029/2012JD018196,
2013.
Neumann, K., Elbersen, B. S., Verburg, P. H., Staritsky, I., Pérez-Soba, M., de Vries, W., and Rienks, W. A.: Modelling the spatial distribution of livestock in Europe, Landscape Ecol., 24, 1207, https://doi.org/10.1007/s10980-009-9357-5, 2009.
Oda, T. and Maksyutov, S.: A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmos. Chem. Phys., 11, 543–556, https://doi.org/10.5194/acp-11-543-2011, 2011.
Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions, Earth Syst. Sci. Data, 10, 87–107, https://doi.org/10.5194/essd-10-87-2018, 2018.
Osses, M., Rojas, N., Ibarra, C., Valdebenito, V., Laengle, I., Pantoja, N., Osses, D., Basoa, K., Tolvett, S., Huneeus, N., Gallardo, L., and Gómez, B.: High-definition spatial distribution maps of on-road transport exhaust emissions in Chile, 1990–2020, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-218, in review, 2021.
Ott, L., Sellers, P. J., Schimel, D., Moore III, B., O'Dell, C., Crowell,
S., Kawa, S. R., Pawson, S., Chatterjee, A., Baker, D. F., and Schuh, A. E.:
NASA's Carbon Cycle OSSE Initiative – Informing future space-based observing
strategies through advanced modeling and data assimilation, American
Geophysical Union, Fall Meeting 2017, New Orleans, 11–17 Dec 2017, abstract #GC51C-0817, available at: https://ui.adsabs.harvard.edu/abs/2017AGUFMGC51C0817O, (last access: 1 January 2022), 2017.
Patarasuk, R., Gurney, K., O'Keeffe, D., Song, Y., Huang, J., Rao, P., Buchert, M., Lin, J. C., Mendoza, D., and Ehleringer, J. R.: Urban high-resolution fossil fuel CO2 emissions quantification and exploration of emission drivers for potential policy applications, Urban Ecosyst., 19, 1013–1039, https://doi.org/10.1007/s11252-016-0553-1, 2016.
Peled, Y. and Fishman, T.: Estimation and mapping of the material stocks of buildings of Europe: a novel nighttime lights-based approach, Resour. Conserv. Recy., 169, 105509, https://doi.org/10.1016/j.resconrec.2021.105509, 2021.
Petrescu, A. M. R., Peters, G. P., Janssens-Maenhout, G., Ciais, P., Tubiello, F. N., Grassi, G., Nabuurs, G.-J., Leip, A., Carmona-Garcia, G., Winiwarter, W., Höglund-Isaksson, L., Günther, D., Solazzo, E., Kiesow, A., Bastos, A., Pongratz, J., Nabel, J. E. M. S., Conchedda, G., Pilli, R., Andrew, R. M., Schelhaas, M.-J., and Dolman, A. J.: European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data, Earth Syst. Sci. Data, 12, 961–1001, https://doi.org/10.5194/essd-12-961-2020, 2020.
Plant, G., Kort, E. A., Floerchinger, C., Gvakharia, A., Vimont, I., and Sweeney, C.: Large fugitive methane emissions from urban centers along the US East Coast, Geophys. Res. Lett., 46, 8500–8507, https://doi.org/10.1029/2019GL082635, 2019.
Rafiq, T., Duren, R. M., Thorpe, A. K., Foster, K., Patarsuk, R., Miller, C. E., and Hopkins, F. M.: Attribution of methane point source emissions using airborne imaging spectroscopy and the Vista-California methane infrastructure dataset, Environ. Res. Lett., 15, 124001, https://doi.org/10.1088/1748-9326/ab9af8, 2020.
Ramaswami, A. and Chavez, A.: What metrics best reflect the energy and
carbon intensity of cities? Insights from theory and modeling of 20 US
cities, Environ. Res. Lett., 8, 035011,
https://doi.org/10.1088/1748-9326/8/3/035011, 2013.
Ramaswami, A., Tong, K., Canadell, J. G., Jackson, R. B., Stokes, E., Dhakal, S., Finch, M., Jittrapirom, P., Singh, N., Yamagata, Y., Yewdall, E., Yona, L., and Seto, K. C.: Carbon analytics for net-zero emissions sustainable cities, Nature Sustainability, 4, 460–463, https://doi.org/10.1038/s41893-021-00715-5, 2021.
Ramer, U.: An iterative procedure for the polygonal approximation of plane
curves, Comput. Vision Graph., 1, 244–256, https://doi.org/10.1016/S0146-664X(72)80017-0, 1972.
Rayner, P. J., Raupach, M. R., Paget, M., Peylin, P., and Koffi, E.: A new
global gridded data set of CO2 emissions from fossil fuel combustion:
Methodology and evaluation, J. Geophys. Res., 115, D19306, https://doi.org/10.1029/2009JD013439, 2010.
Roest, G. S., Gurney, K. R., Miller, S. M., and Liang, J.: Informing urban climate planning with high resolution data: the Hestia fossil fuel CO2 emissions for Baltimore, Maryland, Carbon Balance and Management, 15, 22, https://doi.org/10.1186/s13021-020-00157-0, 2020.
Shan, Y., Guan, D., Liu, J., Mi, Z., Liu, Z., Liu, J., Schroeder, H., Cai,
B., Chen, Y., Shao, S., and Zhang, Q.: Methodology and applications of city
level CO2 emission accounts in China, J. Clean. Prod., 161,
1215–1225, https://doi.org/10.1016/j.jclepro.2017.06.075, 2017.
Shan, Y., Guan, D., Hubacek, K., Zheng, B., Davis, S. J., Jia, L., Liu, J.,
Liu, Z., Fromer, N., Mi, Z., Meng, J., Deng, X., Li, Y., Lin, J., Schroeder,
H., Weisz, H., and Schellnhuber, H. J.: City-level climate change mitigation
in China, Science Advances, 4, 10, https://doi.org/10.1126/sciadv.aaq0390, 2018.
Solazzo, E., Crippa, M., Guizzardi, D., Muntean, M., Choulga, M., and Janssens-Maenhout, G.: Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases, Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021, 2021.
Townsend-Small, A., Tyler, S. C., Pataki, D. E., Xu, X., and Christensen, L. E.: Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions, J. Geophys. Res.-Atmos., 117, D07308, https://doi.org/10.1029/2011JD016826, 2012.
Turnbull, J. C., Karion, A., Davis, K. J., Lauvaux, T., Miles, N. L.,
Richardson, S. J., Sweeney, C., McKain, K., Lehman, S. J., Gurney, K. R.,
Patarasuk, R., Liang, J., Shepson, P. B., Heimburger, A., Harvey, R., and
Whetstone, J.: Synthesis of Urban CO2 Emission Estimates from Multiple
Methods from the Indianapolis Flux Project (INFLUX), Environ. Sci. Technol., 53, 287–295, https://doi.org/10.1021/acs.est.8b05552, 2019.
Wang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y., Chen, H., Shen, G. F., Wang, B., Li, W., Zhang, Y. Y., Lu, Y., Zhu, D., Chen, Y. C., Liu, X. P., Wang, W. T., Wang, X. L., Liu, W. X., Li, B. G., and Piao, S. L.: High-resolution mapping of combustion processes and implications for CO2 emissions, Atmos. Chem. Phys., 13, 5189–5203, https://doi.org/10.5194/acp-13-5189-2013, 2013.
Wang, S., Liu, X., Zhou, C., Hu, J., and Ou, J.: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities, Appl. Energ., 185, 189–200, https://doi.org/10.1016/j.apenergy.2016.10.052, 2017.
Wennberg, P. O., Mui, W., Wunch, D., Kort, E. A., Blake, D. R., Atlas, E. L., Santoni, G. W., Wofsy, S. C., Diskin, G. S., Jeong, S., and Fischer, M. L.: On the Sources of Methane to the Los Angeles Atmosphere, Environ. Sci. Technol., 46, 9282–9289, https://doi.org/10.1021/es301138y, 2012.
Whetstone, J. R.: Advances in urban greenhouse gas flux quantification: The
Indianapolis Flux Experiment (INFLUX), Elementa: Science of the
Anthropocene, 6, 24, https://doi.org/10.1525/elementa.282, 2018.
Wiedmann, T., Chen, G., Owen, A., Lenzen, M., Doust, M., Barrett, J., and Steele, K.: Three-scope carbon emission inventories of global cities, J. Ind. Ecol., 25, 735–750, https://doi.org/10.1111/jiec.13063, 2021.
Woodard, D., Branham, M., Buckingham, G., Hogue, S., Hutchins, M., Gosky, R., Marland, G., and Marland, E.: A spatial uncertainty metric for anthropogenic CO2 emissions, Greenhouse Gas Measurement and Management, 4, 139–160, https://doi.org/10.1080/20430779.2014.1000793, 2014.
WRI, C40, and ICLEI: Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC) – An Accounting and Reporting Standard for Cities v1.1, World Resources Institute, C40 Cities Climate Leadership Group and ICLEI Local Governments for Sustainability, 2014.
Wu, D., Lin, J. C., Oda, T., and Kort, E. A.: Space-based quantification of
per capita CO2 emissions from cities, Environ. Res. Lett., 15,
035004, https://doi.org/10.1088/1748-9326/ab68eb, 2020.
Yanto, J. and Liem, R. P.: Aircraft fuel burn performance study: A
data-enhanced modeling approach, Transport. Res. D-Tr. E., 65, 574–595, https://doi.org/10.1016/j.trd.2018.09.014, 2018.
Zheng, B., Cheng, J., Geng, G., Wang, X., Li, M., Shi, Q., Qi, J., Lei, Y.,
Zhang, Q., and He, K.: Mapping anthropogenic emissions in China at 1 km
spatial resolution and its application in air quality modeling, Sci.
Bull., 66, 612–620, https://doi.org/10.1016/j.scib.2020.12.008, 2021a.
Zheng, H., Többen, J., Dietzenbacher, E., Moran, D., Meng, J., Wang, D., and Guan, D.: Entropy-based Chinese city-level MRIO table framework, Econ. Syst. Res., 1–26, https://doi.org/10.1080/09535314.2021.1932764, 2021b.
Short summary
This paper presents the modeling methods used for the website https://openghgmap.net, which provides estimates of CO2 emissions for 108 000 European cities.
This paper presents the modeling methods used for the website https://openghgmap.net, which...