Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4681-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4681-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quality control and correction method for air temperature data from a citizen science weather station network in Leuven, Belgium
Division Forest, Nature and Landscape, University of Leuven (KU
Leuven), Celestijnenlaan 200E-2411, 3001 Leuven, Belgium
Maarten Reyniers
Royal Meteorological Institute of Belgium, Ringlaan 3, 1180
Brussels, Belgium
Raf Aerts
Risk and Health Impact Assessment, Sciensano (Belgian Institute of
Health), Juliette Wytsmanstraat 14,1050 Brussels, Belgium
Division Ecology, Evolution and Biodiversity Conservation, University
of Leuven (KU Leuven), Kasteelpark Arenberg 31-2435, 3001 Leuven, Belgium
Ben Somers
Division Forest, Nature and Landscape, University of Leuven (KU
Leuven), Celestijnenlaan 200E-2411, 3001 Leuven, Belgium
KU Leuven Urban Studies Institute, University of Leuven (KU Leuven),
Parkstraat 45-3609, 3000 Leuven, Belgium
Related authors
No articles found.
Johanna Van Passel, Koenraad Van Meerbeek, Paulo N. Bernardino, Wanda De Keersmaecker, Stef Lhermitte, Bianca F. Rius, and Ben Somers
EGUsphere, https://doi.org/10.5194/egusphere-2025-4148, https://doi.org/10.5194/egusphere-2025-4148, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The Amazon forest is important for carbon storage, but climate change might push parts of it towards a tipping point into a degraded state. By studying satellite trends and tree diversity across different spatial scales, we found a larger tipping risk at smaller spatial scales than for the whole region. We also found that higher tree diversity makes the forest more stable and thus less likely to tip, although the effect is relatively weak, highlighting the importance of protecting biodiversity.
Cited articles
Agentschap Digitaal Vlaanderen: 3D GRB, Geopunt [data set], https://www.geopunt.be/catalogus/datasetfolder/42ac31a7-afe6-44c4-a534-243814fe5b58,
last access: 1 March 2022.
Agentschap voor Natuur en Bos: Groenkaart Vlaanderen 2018, Geopunt [data set], https://www.geopunt.be/catalogus/datasetfolder/2c64ca0c-5053-4a66-afac-24d69b1a09e7, last access: 1 March 2022.
Aigang, L., Tianming, W., Shichang, K., and Deqian, P.: On the
Relationship between Latitude and Altitude Temperature Effects, in: 2009
International Conference on Environmental Science and Information
Application Technology, 55–58, https://doi.org/10.1109/ESIAT.2009.335,
2009.
Ahrens, C. D.: Meteorology Today: An Introduction to Weather, Climate, and
the Environment, 9th Edn., Brooks/Cole, 549 pp., 2009.
Arnfield, A. J.: Two decades of urban climate research: A review of
turbulence, exchanges of energy and water, and the urban heat island, Int.
J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859, 2003.
Båserud, L., Lussana, C., Nipen, T. N., Seierstad, I. A., Oram, L., and Aspelien, T.:
TITAN automatic spatial quality control of meteorological in-situ observations, Adv. Sci. Res., 17, 153–163, https://doi.org/10.5194/asr-17-153-2020, 2020.
Bassani, F., Garbero, V., Poggi, D., Ridolfi, L., Von Hardenberg, J., and
Milelli, M.: Urban Climate An innovative approach to select urban-rural
sites for Urban Heat Island analysis: the case of Turin (Italy), Urban
Clim., 42, 101099, https://doi.org/10.1016/j.uclim.2022.101099, 2022.
Beele, E., Reyniers, M., Aerts, R., and Somers, B.: Replication Data for:
Quality control and correction method for air temperature data from a
citizen science weather station network in Leuven, Belgium, KU Leuven RDR [data set],
https://doi.org/10.48804/SSRN3F, 2022.
Bell, S., Cornford, D., and Bastin, L.: How good are citizen weather
stations? Addressing a biased opinion, Weather, 70, 75–84,
https://doi.org/10.1002/wea.2316, 2015.
Brans, K. I., Tüzün, N., Sentis, A., De Meester, L., and Stoks, R.:
Cryptic eco-evolutionary feedback in the city: Urban evolution of prey
dampens the effect of urban evolution of the predator, J. Anim. Ecol., 91,
514–526, https://doi.org/10.1111/1365-2656.13601, 2022.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain,
B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms
contribute to air quality monitoring and exposure estimates?, Environ.
Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Chapman, L., Bell, C., and Bell, S.: Can the crowdsourcing data paradigm
take atmospheric science to a new level? A case study of the urban heat
island of London quantified using Netatmo weather stations, Int. J.
Climatol., 37, 3597–3605, https://doi.org/10.1002/joc.4940, 2017.
Chen, J., Saunders, K., and Whan, K.: Quality control and bias adjustment of
crowdsourced wind speed observations, Q. J. Roy. Meteor. Soc., 147,
3647–3664, https://doi.org/10.1002/qj.4146, 2021.
Cornes, R. C., Dirksen, M., and Sluiter, R.: Correcting citizen-science air
temperature measurements across the Netherlands for short wave radiation
bias, Meteorol. Appl., 27, 1–16, https://doi.org/10.1002/met.1814, 2020.
Demografie: https://leuven.incijfers.be/dashboard/dashboard/demografie, last
access: 15 December 2021.
Demoury, C., Aerts, R., Vandeninden, B., Van Schaeybroeck, B., and De
Clercq, E. M.: Impact of Short-Term Exposure to Extreme Temperatures on
Mortality: A Multi-City Study in Belgium, Int. J. Env. Res. Pub.
He., 19, 3763,
https://doi.org/10.3390/ijerph19073763, 2022.
Demuzere, M., Hankey, S., Mills, G., Zhang, W., Lu, T., and Bechtel, B.:
Combining expert and crowd-sourced training data to map urban form and
functions for the continental US, Sci. Data, 7, 1–13,
https://doi.org/10.1038/s41597-020-00605-z, 2020.
De Ridder, K., Lauwaet, D., and Maiheu, B.: UrbClim – A fast urban boundary
layer climate model, Urban Clim., 12, 21–48,
https://doi.org/10.1016/j.uclim.2015.01.001, 2015.
De Troeyer, K., Bauwelinck, M., Aerts, R., Profer, D., Berckmans, J.,
Delcloo, A., Hamdi, R., Van Schaeybroeck, B., Hooyberghs, H., Lauwaet, D.,
Demoury, C., and Van Nieuwenhuyse, A.: Heat related mortality in the two
largest Belgian urban areas: A time series analysis, Environ. Res., 188,
109848, https://doi.org/10.1016/j.envres.2020.109848, 2020.
de Vos, L., Leijnse, H., Overeem, A., and Uijlenhoet, R.: The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam, Hydrol. Earth Syst. Sci., 21, 765–777, https://doi.org/10.5194/hess-21-765-2017, 2017.
de Vos, L., Leijnse, H., Overeem, A., and Uijlenhoet, R.: Quality Control
for Crowdsourced Personal Weather Stations to Enable Operational Rainfall
Monitoring, Geophys. Res. Lett., 46, 8820–8829,
https://doi.org/10.1029/2019GL083731, 2019.
de Vos, L., Droste, A. M., Zander, M. J., Overeem, A., Leijnse, H., Heusinkveld,
B. G., Steeneveld, G. J., and Uijlenhoet, R.: Hydrometeorological monitoring
using opportunistic sensing networks in the Amsterdam metropolitan area,
B. Am. Meteorol. Soc., 101, E167–E185,
https://doi.org/10.1175/BAMS-D-19-0091.1, 2020.
EEA: Assessing air quality through citizen science, Copenkagen, 63 pp.,
https://doi.org/10.2800/619, 2019.
ESRI World Topographic Map:
http://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f,
last access: 1 March 2022.
Feichtinger, M., Wit, R. De, Goldenits, G., Kolejka, T., and Hollósi,
B.: Urban Climate Case-study of neighborhood-scale summertime urban air
temperature for the City of Vienna using crowd-sourced data, Urban Clim.,
32, 1–12, https://doi.org/10.1016/j.uclim.2020.100597, 2020.
Fenner, D., Meier, F., Bechtel, B., Otto, M., and Scherer, D.: Intra and
inter “local climate zone” variability of air temperature as observed by
crowdsourced citizen weather stations in Berlin, Germany, Meteorol.
Z., 26, 525–547, https://doi.org/10.1127/metz/2017/0861, 2017.
Fenner, D., Bechtel, B., Demuzere, M., Kittner, J., and Meier, F.: CrowdQC
+ – A Quality-Control for Crowdsourced Air-Temperature Observations
Enabling World-Wide Urban Climate Applications, Front. Environ. Sci., 9,
1–21, https://doi.org/10.3389/fenvs.2021.720747, 2021.
Hammerberg, K., Brousse, O., Martilli, A., and Mahdavi, A.: Implications of
employing detailed urban canopy parameters for mesoscale climate modelling:
a comparison between WUDAPT and GIS databases over Vienna, Austria, Int. J.
Climatol., 38, e1241–e1257, https://doi.org/10.1002/joc.5447, 2018.
Heaviside, C., Macintyre, H., and Vardoulakis, S.: The Urban Heat Island:
Implications for Health in a Changing Environment, Curr. Environ. Heal.
Rep., 4, 296–305, https://doi.org/10.1007/s40572-017-0150-3, 2017.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press,
https://doi.org/10.1017/9781009157896, 2021.
Jenkins, G.: A comparison between two types of widely used weather stations,
Weather, 69, 105–110, https://doi.org/10.1002/wea.2158, 2014.
Kidder, S. Q. and Essenwanger, O. M.: The Effect of Clouds and Wind on the
Difference in Nocturnal Cooling Rates between Urban and Rural Areas, J.
Appl. Meteorol., 34, 2440–2448,
https://doi.org/10.1175/1520-0450(1995)034<2440:TEOCAW>2.0.CO;2, 1995.
Kirk, P. J., Clark, M. R., and Creed, E.: Weather Observations Website,
Weather, 76, 47–49, https://doi.org/10.1002/wea.3856, 2020.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of
the Köppen-Geiger climate classification updated, Meteorol. Z.,
15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kousis, I., Pigliautile, I., and Pisello, A. L.: Intra-urban microclimate
investigation in urban heat island through a novel mobile monitoring system,
Sci. Rep., 11, 1–17, https://doi.org/10.1038/s41598-021-88344-y, 2021.
Lefebvre, W., Vercauteren, J., Schrooten, L., Janssen, S., Degraeuwe, B.,
Maenhaut, W., de Vlieger, I., Vankerkom, J., Cosemans, G., Mensink, C.,
Veldeman, N., Deutsch, F., Van Looy, S., Peelaerts, W., and Lefebre, F.:
Validation of the MIMOSA-AURORA-IFDM model chain for policy support:
Modeling concentrations of elemental carbon in Flanders, Atmos. Environ.,
45, 6705–6713, https://doi.org/10.1016/j.atmosenv.2011.08.033, 2011.
Leuven.cool: https://www.leuven.cool/, last access: 15 December 2020.
Longman, R. J., Giambelluca, T. W., Nullet, M. A., Frazier, A. G., Kodama,
K., Crausbay, S. D., Krushelnycky, P. D., Cordell, S., Clark, M. P., Newman,
A. J., and Arnold, J. R.: Compilation of climate data from heterogeneous
networks across the Hawaiian Islands, Sci. Data, 5, 180012,
https://doi.org/10.1038/sdata.2018.12, 2018.
Mandement, M. and Caumont, O.: Contribution of personal weather stations to the observation of deep-convection features near the ground, Nat. Hazards Earth Syst. Sci., 20, 299–322, https://doi.org/10.5194/nhess-20-299-2020, 2020.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Meier, F., Fenner, D., Grassmann, T., Otto, M., and Scherer, D.:
Crowdsourcing air temperature from citizen weather stations for urban
climate research, Urban Clim., 19, 170–191,
https://doi.org/10.1016/j.uclim.2017.01.006, 2017.
Muller, C. L., Chapman, L., Johnston, S., Kidd, C., Illingworth, S., Foody,
G., Overeem, A., and Leigh, R. R.: Crowdsourcing for climate and atmospheric
sciences: Current status and future potential, Int. J. Climatol., 35,
3185–3203, https://doi.org/10.1002/joc.4210, 2015.
Napoly, A., Grassmann, T., Meier, F., and Fenner, D.: Development and
Application of a Statistically-Based Quality Control for Crowdsourced Air
Temperature Data, Front. Earth Sci., 6, 1–16,
https://doi.org/10.3389/feart.2018.00118, 2018.
Nipen, T. N., Seierstad, I. A., Lussana, C., Kristiansen, J., and Hov,
Ø.: Adopting citizen observations in operational weather prediction,
B. Am. Meteorol. Soc., 101, E43–E57,
https://doi.org/10.1175/BAMS-D-18-0237.1, 2020.
Oke, T. R.: City size and the urban heat island, Atmos. Environ., 7, 769–779, 1973.
Qian, Y., Zhou, W., Hu, X., and Fu, F.: The Heterogeneity of Air Temperature
in Urban Residential Neighborhoods and Its Relationship with the Surrounding
Greenspace, Remote Sens., 10, 965, https://doi.org/10.3390/rs10060965, 2018.
Rizwan, A. M., Dennis, L. Y. C., and Lia, C.: A review on the generation,
determination and mitigation of Urban Heat Island, J. Environ. Sci., 20,
120–128, https://doi.org/10.1016/S1001-0742(08)60019-4, 2008.
RMI: Klimaatstatistieken van de Belgische gemeenten: Leuven, Royal Meteorological Institute of Belgium, Leuven, 5 pp., https://www.meteo.be/resources/climatology/climateCity/pdf/climate_INS24062_9120_nl.pdf (last access: 14 October 2022), 2020.
Sgoff, C., Acevedo, W., Paschalidi, Z., Ulbrich, S., Bauernschubert, E.,
Kratzsch, T., and Potthast, R.: Assimilation of crowd-sourced surface
observations over Germany in a regional weather prediction system, Q. J. Roy.
Meteor. Soc., 148, 1752–1767, https://doi.org/10.1002/qj.4276, 2022.
Sotelino, L. G., De Coster, N., Beirinckx, P., and Peeters, P.: Intercomparison of Shelters in the RMI AWS Network, WMO-CIMO, P1_26, Geneva, Switzerland, https://www.wmocimo.net/wp-content/uploads/P1_26_Sotelino_teco_2018_lgs.pdf (last access: 14 October 2022), 2018.
Stewart, I. D.: A systematic review and scientific critique of methodology
in modern urban heat island literature, Int. J. Climatol., 31, 200–217,
https://doi.org/10.1002/joc.2141, 2011.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900,
https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
UN, Population Division: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420), New York, United Nations, 126 pp., https://population.un.org/wup/publications/Files/WUP2018-Report.pdf (last access: 14 October 2022), 2019
Venter, Z. S., Chakraborty, T., and Lee, X.: Crowdsourced air temperatures
contrast satellite measures of the urban heat island and its mechanisms,
Sci. Adv., 7, 1–9,
https://doi.org/10.1126/sciadv.abb9569, 2021.
Verdonck, M. L., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J.,
Schneider, A., Dewulf, R., and Van Coillie, F.: The potential of local
climate zones maps as a heat stress assessment tool, supported by simulated
air temperature data, Landscape Urban Plan., 178, 183–197,
https://doi.org/10.1016/j.landurbplan.2018.06.004, 2018.
Vlaamse Overheid – Departement Omgeving – Afdeling Vlaams Planbureau voor
Omgeving: Landgebruik – Vlaanderen – toestand 2019:
https://www.geopunt.be/catalogus/datasetfolder/fe979929-a2b5-4353-94c5-608c4b109dc6,
last access: 1 March 2022.
Weather Observations Website – Belgium: https://wow.meteo.be/nl/, last access: 1 March 2022.
WMO: Guide to meteorological instruments and methods of observation, Volume
I – Measurement of Meteorological Variables, Geneva, 573 pp., https://library.wmo.int/doc_num.php?explnum_id=10616 (last access: 14 October 2022), 2018.
Yang, Q., Huang, X., Yang, J., and Liu, Y.: The relationship between land
surface temperature and artificial impervious surface fraction in 682 global
cities: Spatiotemporal variations and drivers, Environ. Res. Lett., 16, 024032,
https://doi.org/10.1088/1748-9326/abdaed, 2021.
Short summary
This paper presents crowdsourced data from the Leuven.cool network, a citizen science network of around 100 low-cost weather stations distributed across Leuven, Belgium. The temperature data have undergone a quality control (QC) and correction procedure. The procedure consists of three levels that remove implausible measurements while also correcting for between-station and station-specific temperature biases.
This paper presents crowdsourced data from the Leuven.cool network, a citizen science network of...
Altmetrics
Final-revised paper
Preprint