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Abstract. The growing trend toward urbanisation and the increasingly frequent occurrence of extreme weather
events emphasise the need for further monitoring and understanding of weather in cities. In order to gain infor-
mation on these intra-urban weather patterns, dense high-quality atmospheric measurements are needed. Crowd-
sourced weather stations (CWSs) could be a promising solution to realise such monitoring networks in a cost-
efficient way. However, due to their nontraditional measuring equipment and installation settings, the quality of
datasets from these networks remains an issue. This paper presents crowdsourced data from the “Leuven.cool”
network, a citizen science network of around 100 low-cost weather stations (Fine Offset WH2600) distributed
across Leuven, Belgium (50◦52′ N, 4◦42′ E). The dataset is accompanied by a newly developed station-specific
temperature quality control (QC) and correction procedure. The procedure consists of three levels that remove
implausible measurements while also correcting for inter-station (between-station) and intra-station (station-
specific) temperature biases by means of a random forest approach. The QC method is evaluated using data from
four WH2600 stations installed next to official weather stations belonging to the Royal Meteorological Institute
of Belgium (RMI). A positive temperature bias with a strong relation to the incoming solar radiation was found
between the CWS data and the official data. The QC method is able to reduce this bias from 0.15± 0.56 to
0.00± 0.28 K. After evaluation, the QC method is applied to the data of the Leuven.cool network, making it a
very suitable dataset to study local weather phenomena, such as the urban heat island (UHI) effect, in detail.
(https://doi.org/10.48804/SSRN3F, Beele et al., 2022).
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1 Introduction

More than 50 % of the world’s population currently lives in
urban areas, and this number is expected to grow to 70 % by
2050 (UN, 2019). Keeping this growing urbanisation trend
in mind and knowing that both the frequency and intensity
of extreme weather events will increase (IPCC, 2021), it be-
comes clear that both cities and their citizens are vulnera-
ble to climate change. To plan efficient mitigation and adap-
tation measures and, hence, mitigate future risks, informa-
tion on intra-urban weather patterns is needed (Kousis et al.,
2021). Therefore, dense high-quality atmospheric measure-
ments are becoming increasingly important to investigate the
heterogeneous urban climate. However, due to their high in-
stallation and maintenance costs as well as their strict siting
instructions (WMO, 2018), official weather station networks
are sparse. As a result, most cities only have one official sta-
tion, or they may even lack an official station (Muller et al.,
2015). Belgium only counts around 30 official weather sta-
tions distributed across a surface area of 30 689 km2; a to-
tal of 18 of these weather stations (Sotelino et al., 2018) are
owned and operated by the Royal Meteorological Institute of
Belgium (RMI). These classical observation networks oper-
ate at a synoptic scale and are, thus, not suitable to observe
city-specific or intra-urban weather phenomena such as the
urban heat island (UHI) effect (Chapman et al., 2017).

The UHI can be measured using a number of methods.
Fixed pairs of stations (e.g. Bassani et al., 2022; Oke, 1973)
or mobile transect approaches (e.g. Kousis et al., 2021) have
traditionally been used to quantify this phenomenon. How-
ever, both methods are not ideal: pairs of stations lack de-
tailed spatial information, whereas transects often miss a
temporal component (Chapman et al., 2017; Heaviside et al.,
2017). Other studies have quantified the UHI using remote
sensing data derived from thermal sensors. Such methods
can provide spatially continuous data over large geographical
extents but are limited to land surface temperatures (LSTs)
(Arnfield, 2003; Qian et al., 2018). As opposed to LSTs, the
canopy air temperature (Tair) is more closely related to hu-
man health and comfort (Arnfield, 2003). Nevertheless, find-
ing the relationship between LST and Tair is known to be
rather difficult, and results have been inconsistent (Yang et
al., 2021). Numerical simulation models (e.g. UrbClim, De
Ridder et al., 2015; SURFEX, Masson et al., 2013) in which
air temperature is continuously modelled over space and time
could be a possible solution. However, these models still have
some drawbacks: due to the computational power capacity,
these models only take a limited number of variables into
account, making them less suitable for real-life applications
(Rizwan et al., 2008); additionally, they often lack observa-
tional data to train and validate their simulations (Heaviside
et al., 2017).

The rise of crowdsourced air temperature data, especially
in urban areas, could be a promising solution to bridge this
knowledge gap (Muller et al., 2015). Such data are obtained

via a large number of nontraditional sensors, mostly set up
by citizens (i.e. citizen science) (Muller et al., 2015; Bell
et al., 2015). Crowdsourced datasets have already been suc-
cessfully used for monitoring air temperature (Chapman et
al., 2017; de Vos et al., 2020; Fenner et al., 2017; Napoly
et al., 2018; Meier et al., 2017; Hammerberg et al., 2018;
Feichtinger et al., 2020), rainfall (de Vos et al., 2019, 2020,
2017), wind speed (Chen et al., 2021; de Vos et al., 2020)
and air pollution (EEA, 2019; Castell et al., 2017) within
complex urban settings. However, due to their nontraditional
measuring equipment and installation settings, the quality of
datasets from these networks remains an issue (Bell et al.,
2015; Napoly et al., 2018; Chapman et al., 2017; Meier et
al., 2017; Muller et al., 2015; Cornes et al., 2020; Nipen et
al., 2020). Quality uncertainty arises due to several issues:
(1) calibration issues in which the sensor could be biased ei-
ther before the installation or due to drift over time, (2) de-
sign flaws in which the design of the station makes it sus-
ceptible to inaccurate observations, (3) communication and
software errors leading to incorrect or missing data, (4) in-
complete metadata (Bell et al., 2015), and (5) unsuitable in-
stallation locations (Feichtinger et al., 2020; Cornes et al.,
2020).

Recent studies have, therefore, highlighted the importance
of performing data quality control in data processing appli-
cations (Båserud et al., 2020; Longman et al., 2018), espe-
cially before analysing crowdsourced air temperature data
(Bell et al., 2015; Jenkins, 2014; Chapman et al., 2017; Meier
et al., 2017; Napoly et al., 2018; Cornes et al., 2020; Nipen
et al., 2020; Feichtinger et al., 2020). Jenkin (2014) and Bell
et al. (2015) both conducted a field comparison in which
multiple crowdsourced weather stations (CWSs) were com-
pared with official (and thus professional) observation net-
works. Both found a profound positive instrument temper-
ature bias during daytime with a strong relation to the in-
coming solar radiation. Thus, the use of crowdsourced data
requires quality assurance and quality control (QA/QC) in
order to both remove gross errors and correct station-specific
instrument biases (Bell et al., 2015). Using the findings of
Bell et al. (2015) as a basis, Cornes et al. (2020) corrected
crowdsourced air temperature data across the Netherlands
using radiation from satellite imagery and background tem-
perature data from official stations belonging to the Royal
Netherlands Meteorological Institute (KNMI). To investigate
the UHI in London, UK, Chapman et al. (2017) used Ne-
tatmo weather stations and removed crowdsourced observa-
tions that deviated from the mean of all stations by more
than 3 standard deviations. Meier et al. (2017) developed a
detailed QC procedure for Netatmo stations using reference
data from two official observation networks in Berlin, Ger-
many. The QC consists of four steps, each identifying and
removing suspicious temperature data. Their methods high-
light the need for standard, calibrated and quality-checked
sensors in order to assess the quality of crowdsourced data
(Cornes et al., 2020; Chapman et al., 2017; Meier et al.,
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2017). Such official sensors are, however, not present in most
cities, hindering the transferability of these QC methods. To
this end, Napoly et al. (2018) developed a statistically based
QC method for Netatmo stations that was independent of of-
ficial networks (the CrowdQC R package). The QC method
was developed on data from Berlin (Germany) and Toulouse
(France), and it was later applied to Paris (France) to demon-
strate the transferability of this method. The procedure con-
sists of four main and three optional QC levels, removing
suspicious values, correcting for elevation differences and in-
terpolating single missing values. As the CrowdQC-filtered
dataset still contained some radiative errors, Feichtinger et
al. (2020) combined the methods of Napoly et al. (2018) and
Meier et al. (2017) to study a high-temperature period in Vi-
enna in August 2018. Most recently, Fenner et al. (2021) pre-
sented the CrowdQC+ QC R package, which is a further de-
velopment of the existing CrowdQC package developed by
Napoly et al. (2018). The core enhancements deal with ra-
diative errors and sensor response time issues (Fenner et al.,
2021).

Current QC studies mostly identify and remove implausi-
ble temperature measurements (Chapman et al., 2017; Meier
et al., 2017; Napoly et al., 2018), instead of correcting for
known temperature biases (Cornes et al., 2020). We do, how-
ever, know that both the siting and the design of CWSs can
introduce such a bias. By parameterising this bias, it can be
learned and corrected for, thereby limiting the number of
observations that is eliminated (Bell et al., 2015). Addition-
ally, most QC procedures require data from official networks
(Cornes et al., 2020; Chapman et al., 2017; Meier et al.,
2017), although most cities do not have such measurements
available (Muller et al., 2015). Lastly, previous research has
also noted that biases can be station-specific; this is because
the design of a CWS is an important uncertainty source (Bell
et al., 2015), and it indicates the need for station-specific
quality control methods. Thus, there is a need for station-
specific quality control and correction methods, independent
of official weather station networks.

Here, we report on a statistically based QC method for
the crowdsourced air temperature data of the “Leuven.cool”
network, a citizens science network of around 100 weather
stations distributed across private gardens and (semi-) public
locations in Leuven, Belgium. The Leuven.cool network is a
uniform network in the sense that only one weather station
type (Fine Offset WH2600) is used for the entire network.
To our knowledge, no quality control method has been devel-
oped for this sensor type. The stations were installed follow-
ing a strict protocol, lots of metadata are available, and both
the dataflow and station siting are continuously controlled.
This novel QC method removes implausible measurements,
while also correcting for inter-station (between-station) and
intra-station (station-specific) temperature biases. The QC
method only needs an official network during its develop-
ment and evaluation stage. Afterwards, the method can be
applied independently of the official network that was used

in the development phase. Transferring the method to other
networks or regions would require the recalibration of the
QC parameters. After applying this quality control and cor-
rection method, the crowdsourced Leuven.cool dataset be-
comes suitable to monitor local weather phenomena such as
the urban heat island (UHI) effect.

The paper is organised as follows. Section 2 describes
materials and methods, providing information on the study
area, the crowdsourced (Leuven.cool) dataset and the offi-
cial reference dataset. The development of the quality control
method is explained in Sect. 3. In Sect. 4 the newly developed
QC method is first tested on four crowdsourced stations in-
stalled next to three official stations from the Royal Meteoro-
logical Institute of Belgium (RMI). This allows us to quantify
the data quality improvement after every QC level. In Sect. 5
the QC method is applied to a network of CWSs in Leuven,
Belgium. Section 6 briefly focusses on the application po-
tential of the dataset. Concluding remarks are summarised in
Sect. 7.

2 Materials and methods

2.1 Study area

The QC method is developed for a citizens science weather
station network, Leuven.cool, based in Leuven, Belgium
(50◦52′39′′ N, 4◦42′16′′ E; 65 m a.s.l.). The Leuven.cool
project is a close collaboration between the University of
Leuven (KU Leuven), the city of Leuven and the RMI that
aims to measure the microclimate in Leuven and gain knowl-
edge on the mitigating effects of green and blue infrastruc-
tures (Leuven.cool, 2020). Leuven has a warm temperate cli-
mate with no dry season and a warm summer (Cfb), no in-
fluence from mountains or seas, and overall weak topogra-
phy (Kottek et al., 2006). It is the capital and largest city of
the province of Flemish Brabant and is situated in the Flem-
ish region of Belgium, 25 km east of Brussels, the capital of
Belgium. The city comprises the districts of Leuven, Hev-
erlee, Kessel-Lo, Wilsele and Wijgmaal, covering an area
of 56.63 km2. The main characteristics of the study area are
summarised in Table 1.

2.2 Leuven.cool dataset

Data from the Leuven.cool citizens science network are pre-
sented in this paper. The crowdsourced weather station net-
work consists of 106 weather stations distributed across
Leuven and surroundings. The meteorological variables are
measured by low-cost WH2600 wireless digital consumer
weather stations produced by the manufacturer Fine Offset
(Fig. 1). The station specifications, as defined by the manu-
facturer, are summarised in Appendix A1. The weather sta-
tion consists of an outdoor unit (sensor array) and a base sta-
tion. The outdoor sensor array measures temperature (in ◦C,
add 273.15 for K), humidity (%), precipitation (mm), wind
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Table 1. Main characteristics of the study area Leuven.

Climate

Annual min/mean/max daily temperature (◦C) 6.9/11.2/15.5 Leuven, 1991–2020 (RMI, 2020)
Mean annual rainfall (mm yr−1) 780.7 Leuven, 1991–2020 (RMI, 2020)
Köppen classification Cfb Kottek et al. (2006)

Demographics

Size (km2) 56.63 Fig. 2
Population 101 315 Demografie (2021)

speed (m s−1), wind direction (◦), solar radiation (W m−2)
and UV (–) every 16 s. This outdoor sensor array transmits its
measurements wirelessly, via the 868 MHz radiofrequency,
to the base station. This base station needs both power and
internet (via a LAN connection) in order to send the data to a
server. The data are forwarded to the Weather Observations
Website (Kirk et al., 2020), a crowdsourcing platform initi-
ated and managed by the UK Met Office. RMI participates
in this initiative and operates its own WOW portal (Weather
Observations Website – Belgium, 2022). The outdoor unit is
powered by three rechargeable batteries which are recharged
by a small built-in solar panel. A radiation shield protects
both the temperature and humidity sensors from extreme
weather conditions and direct exposure to solar radiation.

From July 2019 onwards, the weather stations were dis-
tributed along an urban gradient, from green (private) gar-
dens to public grey locations, following a sampling design
based on the concept of local climate zones (LCZs) (Fig. 2)
(Stewart and Oke, 2012). This LCZ scheme was originally
developed as an objective tool for classifying urban–rural
gradients, thereby capturing important urban morphologi-
cal characteristics (Verdonck et al., 2018). Stewart and Oke
(2012) formally define these zones as “regions of uniform
surface cover, structure, material, and human activity that
span hundreds of meters to several kilometres in horizontal
scale”.

Stewart and Oke (2012) define 17 LCZ classes, divided
into 10 urban LCZs (1–10) and 7 natural LCZs (A–G). A
LCZ map for Leuven was developed using a supervised ran-
dom forest classification approach based on fine-scale land
use, building height, building density and green ratio data.
Details on this LCZ map are available in Appendix B. Table 2
summarises the LCZs present in Leuven and the number of
weather stations in each LCZ class.

It can be noted that the weather stations are not evenly dis-
tributed across the different LCZ classes, and the number of
weather station within a LCZ class also does not represent
the spatial coverage of this LCZ class. Due to the complex
urban settings in which the network is deployed, practical
limitations apply to the eligible locations for installation. We
rely on citizens, private companies and government institu-
tions giving permission to install a weather station on their

Table 2. LCZs present in Leuven and the number of weather sta-
tions in each LCZ class.

LCZ ID LCZ description No. stations (106)

LCZ 2 Compact mid-rise 20
LCZ 3 Compact low-rise 7
LCZ 4 Open high-rise 3
LCZ 5 Open mid-rise 24
LCZ 6 Open low-rise 19
LCZ 8 Large low-rise 2
LCZ 9 Sparsely built 16
LCZ A Dense trees 0
LCZ B Scattered trees 10
LCZ D Low plants 4
LCZ E Bare rock or paved 0
LCZ G Water 1

property. Further, the middle-sized city of Leuven does not
contain all available LCZ classes. In the urban context, com-
pact high-rise, lightweight low-rise and heavy industry are
missing. In the natural context, brush or shrub vegetation and
bare soil or sand are not present in sufficiently large areas
(Table 2). Furthermore, the number of stations within more
natural settings is restricted due to the technical limitations
of the weather stations; as previously stated, each outdoor
unit needs a base station (with both power and LAN connec-
tion) within 50–100 m in order to transmit its data. Lastly,
the network was implemented with the intention of gaining
knowledge on the mitigating effect of green and blue infras-
tructures within urban settings. Thus, the weather station net-
work mostly focusses on urban classes.

The weather stations were installed according to a strict
protocol. In private gardens, the weather stations were in-
stalled at 2 m height using a steel pole with a length of
2.70 m. Dry concrete was used to anchor the pole into the
soil at a depth of 70 cm. Following the station’s guidelines,
stations were installed in an open location within the garden,
at least 1 m from interfering objects, such as nearby buildings
and trees. In order to maximise the absorption of solar radia-
tion by the solar panel and to ensure correct measurements of
wind direction and precipitation, the weather station was lev-
elled horizontally and the solar panel of the weather station
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Figure 1. The WH2600 wireless digital weather station outdoor unit (a) at Mathieu de Layensplein in Leuven (LC-105) and (b) next to the
official AWS equipment in Humain (LC-R05) (photograph credit: Maarten Reyniers).

was directed towards the south. Weather stations located on
public impervious surfaces were installed on available light
poles using specially designed L-structures to avoid direct
contact with the pole. For security reasons, an installation
height between 3 and 4 m was used.

The data are currently available from July 2019
(2019Q3) until December 2021 (2021Q4)
(https://doi.org/10.48804/SSRN3F, Beele et al., 2022).
The dataset can be downloaded in periods of 3 months
and is, thus, available for each quarter. The raw 16 s mea-
surements are aggregated (temporally averaged) to 10 min
observations. This is done for three reasons: (1) an extremely
high temporal resolution of 16 s is too high for most meteoro-
logical analyses, (2) the aggregation to 10 min observations
is necessary to exclude the natural small-scale variability
and noise in the observations, and, most importantly, (3) the
reference dataset of official measurement is only available at
a 10 min resolution. After resampling the data, some basic
data manipulation steps are performed to obtain the correct
units and resolution for every meteorological variable. The
final dataset contains air temperature with the three quality
level stages (see the following sections), relative humidity,
dew point temperature, solar radiation, rain intensity, daily
rain sum, wind direction and wind speed. We must stress that
only the air temperature measurements undergo a quality
check and correction procedure, as further explained in the
next sections. The variables other than temperature are,
however, used in the correction procedure. A qualitative
assessment of the data quality of these variables is in
included in Appendix C.

The maintenance of the network is controlled by PhD stu-
dents and the technical staff at the Division of Forest, Nature
and Landscape at KU Leuven with support from the RMI. As
most of the weather stations are installed in private gardens,
volunteers also keep an eye out for generic problems (e.g.
leaves in the rain gauge).

Table 3. Specifics of the Leuven.cool low-cost reference stations.

Station ID Location Installation date

LC-R01 Uccle 11 Sep 2018
LC-R02 Uccle 2 Sep 2019
LC-R04 Diepenbeek 6 Nov 2019
LC-R05 Humain 20 Aug 2020

2.3 Reference dataset

Standard, calibrated and quality-controlled reference mea-
surements are used to develop the QC method and evaluate
its performance. As no official measurements are available in
Leuven, we used data from three official RMI stations in Uc-
cle (6447–50.80◦ N, 04.26◦ E; altitude 100 m), Diepenbeek
(6477–50.92◦ N, 5.45◦ E; altitude 39 m) and Humain (6472–
50.19◦ N, 5.26◦ E; altitude 295 m) (Fig. 2).

The meteorological observation network of the RMI con-
sists of 18 automatic weather stations (AWS), ensuring con-
tinuous data collection and limiting human error. These
weather stations report meteorological parameters, such as
air pressure, temperature, relative humidity, precipitation
(quantity and duration), wind (speed, gust and direction),
sunshine duration, short-wave solar radiation and infrared
radiation, every 10 min. The AWS network is set up accord-
ing to the World Meteorological Organization (WMO) guide-
lines (WMO, 2018).

As there is no AWS available in the region of Leuven,
four low-cost WH2600 weather stations were installed next
to the official and more professional equipment of the RMI in
Uccle, Diepenbeek and Humain. Because these stations will
serve as a reference, they have been defined as LC-R01, LC-
R02, LC-R04 and LC-R05 (Table 3). LC-R03 was installed
for a short time in Diepenbeek, but it has been removed due
to communication problems and is not taken into account in
further analysis. Since January 2020, the oldest reference sta-
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Table 4. Terminology of datasets and stations used in this paper.

Terminology Description

LC-X The Leuven.cool (WH2600) stations installed in the study area (area of Leuven, Belgium)
LC-R The Leuven.cool (WH2600) stations installed next to the official weather stations operated by RMI.
AWS The automatic weather stations owned and operated by RMI. In our study, the AWSs in Uccle, Diepenbeek and

Humain are used.

tion LC-R01 is no longer active. This set-up enables us to
calculate the temperature difference or bias between the low-
cost reference stations and the official RMI stations in Uccle,
Diepenbeek and Humain.

In the rest of the paper, the terminology given in Table 4 is
used to refer to the different datasets and stations.

3 Description of the quality control and correction
method

The newly developed QC control method consists of three
levels (Table 5), mostly focussing on eliminating calibra-
tion issues, design flaws, and communication or software
errors. Due to the strict installation protocol used for the
Leuven.cool station network, some of the typical uncertainty
sources are discarded a priori. Both the location and meta-
data of each station were controlled by experts, eliminating
incomplete metadata or unsuitable installation locations. We
further know that the low-cost station used in this study has
some design flaws (e.g. under clear-sky and low-sun condi-
tions, both the radiation and thermometer sensors experience
shadow from the anemometer). Our correction method, how-
ever, is designed in such a way that these errors will be ac-
counted for.

The first QC level removes implausible values mostly
caused by software or communication errors. The second and
third level correct for temperature biases. Both fixed inter-
station (between-station) biases due to sensor calibration un-
certainties and variable intra-station (station-specific) biases
due to the station’s design and siting are parameterised and
corrected for.

3.1 Quality control level 1 – outlier detection

The outlier detection algorithm uses a flag system in which
every 10 min observation is assigned flag of 0, 1 or −1, re-
ferring to “no outlier”, “outlier” or “not enough information
to determine whether observation is an outlier” respectively.
The outlier detection method consists of three steps: a range
test, a temporal outlier test and a spatial outlier test. The
thresholds of the parameter settings used during each of these
steps are explained in Table 6. We used an iterative procedure
for threshold optimisation. Observations that received a flag
of 1 and are, thus, defined as outliers are set to NA in the

quality-controlled (QC) level 1 dataset; therefore, they are
not considered during the following QC levels.

3.1.1 QC level 1.1 – range outliers

During QC L1.1, a range test based on climatology is per-
formed. Range outliers can occur when a station is malfunc-
tioning or is installed in an incorrect location. However, the
latter has been largely eliminated by the installation proto-
col described in Sect. 2. Observations are flagged as 1 when-
ever they exceed the maxima or minima climate thresholds,
plus or minus an allowed deviation (Tmax/min_AWS± dev). In
this study, these thresholds are based on historical data from
nearby official weather stations, whereas the allowed devia-
tions from the climate thresholds are based on local knowl-
edge on environmental phenomena. The thresholds are cal-
culated as the maximum and minimum temperature from the
official AWS in Uccle within the 3-month period that is cur-
rently undergoing QC. Observations receive a flag equal to
−1 when no temperature observation is available.

3.1.2 QC level 1.2 – temporal outliers

In QC L1.2, temporal outliers are detected using both (a) a
step test and (b) a persistence test. Temporal outliers oc-
cur when an observation of a specific station is not in line
with the surrounding observations of this station. The step
test ensures that the change in magnitude between two con-
secutive observations lies within a certain interval; the test
checks the rate of change and flags unrealistic jumps in con-
secutive values. Flags are set to 1 when observations increase
more than 2.5 ◦C (TOaThresMax) or decrease more than 3 ◦C
(TOaThresMin) in 10 min. Such steep increases or decreases
in temperature are found when a station reconnects with its
receiver after a period of hitches. The values of TOaThresMin
and TOaThresMax differ for meteorological reasons. The cool-
ing down of air temperatures will, from a meteorological
point of view, occur faster (e.g. through the passing of a
cold front or thunderstorm) compared with the heating up of
air temperatures (Ahrens, 2009). Observations are assigned
a flag equal to −1 when the difference between sequential
observations cannot be calculated.

The persistence test, on the other hand, makes sure that
observations change minimally with time. Here, we de-
tect stations with connection issues, such as those transmit-
ting the same observation repeatedly. Observations changing
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Table 5. Quality control levels, criteria for data filtering and potential error sources for crowdsourced air temperature measurements.

Quality control level Description Potential error sources

L1 – outlier detection
L1.1 – range test Range check against climatological extremes Sensor malfunction
L1.2 – temporal outliers Ensure realistic change in magnitude between

consecutive observations of a specific station
Battery loss, server failure, connection issues,
sensor malfunction

L1.3 – spatial outliers Ensure realistic observation compared to neigh-
bouring stations

Battery loss, server failure, sensor malfunction,
outdoor sensor set up inside (not applicable in
our set-up due to the installation by team mem-
bers)

L2 – inter-station bias correction Model the fixed between-station temperature
bias

Sensor calibration issues

L3 – intra-station bias correction Model the variable station-specific temperature
bias

Design flaws, outdoor sensor set up in sunlit
area (no active ventilation)

Table 6. Parameter settings for QC level 1 – outlier detection.

Outlier parameter Value (unit) Description

Range outliers (ROs)

dev_reference 1 (◦C) Max deviation allowed between climatological min and max temperature of AWSs in Uc-
cle/Diepenbeek/Humain and LC-R stations in Uccle/Diepenbeek/Humain

dev 5 (◦C) Max deviation allowed between climatological min and max temperature of AWSs in Uccle and
LC-X stations in Leuven

Temporal outliers (TOs)

TOaThresMin −3 (◦C) Min difference allowed between sequential 10 min observations
TOaThresMax 2.5 (◦C) Max difference allowed between sequential 10 min observations
TObThresMin 0.05 (◦C) Min difference that should be noted in TObTimespan
TObTimespan 19 (–) Number of consecutive 10 min observations in which temperature should change with

TObThresMin

Spatial outliers (SOs)

range 2500 (m) Range used to define neighbouring stations
SOThresMin −3 (–) Min Z score allowed
SOThresMax 3 (–) Max Z score allowed
nstat 1 (–) Minimum requirement of measurements in range

less than 0.05 ◦C (TObThresMin) within 3 h (TObTimespan) are
flagged as 1. Whenever the difference between sequential ob-
servations cannot be calculated, an observation gets a flag
equal to −1.

3.1.3 QC level 1.3 – spatial outliers

QC L1.3 detects spatial outliers in the dataset. Spatial out-
liers occur when the observation of a specific station is too
different compared with the observations from neighbouring
stations. First, neighbouring stations are defined as stations
located within a 2.5 km radius (range). Next, the Z score or
standard score is calculated for each observation as follows:

Z =
x − µ

σ
, (1)

where x is the observed value, µ is the mean value and σ
is the standard deviation across all neighbours. This stan-
dard score can be explained as the number of standard de-
viations by which the observed value is above or below the
mean value of what is being observed. Whenever the Z score
is lower than −3 (SOThresMin) or higher than 3 (SOThresMax),
the observation is seen as a spatial outlier and receives a flag
equal to 1. When there are no neighbours available within the
predefined range or the Z score cannot be calculated, each
observation is flagged with −1.
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Figure 2. The Leuven.cool network (LC-X) with (a) LCZ classifi-
cation and (b) BBK (Bodembedekkingskaart; land use map) classi-
fication. (c) Belgium delineated by the three official regions (Flan-
ders, Wallonia and Brussels) with the location of Leuven and the
three RMI stations (AWSs) used in this study. The background map
is from Esri (ESRI World Topographic Map, 2022).

3.2 Quality control level 2 – inter-station bias correction

The second quality control level corrects the data for the fixed
offset or inter-station temperature bias between the weather
stations. This step is necessary because the temperature sen-
sors are only calibrated by the manufacturer, and small cal-
ibration differences are expected for this consumer-grade
weather sensor. Moreover, the Leuven.cool stations origi-
nate from different production batches, with possible hard-
ware changes in the electronics. Calibration tests between
multiple LC-X stations in the same controlled environment
were both technically and logistically infeasible. Simultane-
ous measurements are only available for two LC-R stations
(LC-R01 and LC-R02 at the Uccle AWS) for a period of
4 months, showing that sensor differences indeed exist and
are non-negligible. A temperature difference of 0.2 ◦C was
found, which cannot be explained by the resolution of the
temperature sensor (0.1 ◦C).

In order to quantify this inter-station temperature bias,
a rather pragmatic approach was followed to mimic a
controlled environment: we selected episodes for which
a similar temperature across the study area is expected.
Such episodes occur under breezy cloudy conditions with
no rainfall (Arnfield, 2003; Kidder and Essenwanger,
1995). We search the database for suitable episodes ev-
ery 6 months. Data are currently available from July 2019
until December 2021. As a consequence, we have looked
for episodes during five 6-month periods: 2019S2 (July–
December 2019), 2020S1 (January–June 2020), 2020S2
(July–December 2020), 2021S1 (January–June 2021) and
2021S2 (July–December 2021). All 10 min observations are
resampled to 2 h observations, and the mean temperature,
wind speed, radiation and rainfall are calculated across all
weather stations. Next, suitable episodes are found by se-
lecting episodes during which the average rainfall inten-
sity equals 0 mm h−1 and the average radiation lies below
100 W m−2. The selected episodes are ordered by average
wind speed and are limited to the top 10 results.

For these episodes, one can assume that the temperature is
very uniform over the study area and is solely controlled by
altitude (Aigang et al., 2009). In reality, only episodes with a
high correlation between temperature and altitude (> 0.7) are
retained. By regressing temperature versus altitude for every
episode and calculating the residuals (i.e. the difference be-
tween the observed and predicted temperature), a fixed offset
for each station and every episode is obtained. Finally, the
median offset across all episodes is considered to be the true
offset for each station. These offsets are subtracted from the
QC level 1 temperature data in order to obtain the corrected
QC level 2 temperature data.

3.3 Quality control level 3 – intra-station bias correction

During the third quality control level, the QC level 2 tem-
perature data are further corrected for the variable intra-
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station temperature biases. This bias is present in the data
because the measurements are made with nonstandard equip-
ment, in contrast to the AWS measurements (e.g. passive in-
stead of active ventilation and the dimension of the Stevenson
screen). These biases change during day- and night-time as
well as according to their local environment (e.g. radiation
and wind speed patterns) (Bell et al., 2015).

By identifying the climatic variables mostly correlated
with the temperature bias between the low-cost reference sta-
tions (LC-R stations) and the official RMI stations in Uccle,
Diepenbeek and Humain (AWSs), a predictor for tempera-
ture bias is created. To produce a robust model, data from all
low-cost reference stations (LC-R01, LC-R02, LC-R04 and
LC-R05), ranging from their installation date until December
2021, were used simultaneously to create a predictor for the
intra-station temperature bias.

For the construction of a predictor model, the dataset was
randomly split in training (0.60) and validation (0.40) data.
The training data were used to train simple regression mod-
els, multiple regression models, random forest (RF) mod-
els and boosted regression trees (BRTs). As previous re-
search (Bell et al., 2015; Jenkins, 2014; Cornes et al., 2020)
has shown that both radiation and wind speed highly influ-
ence the temperature bias, the simple and multiple regres-
sion models are mostly based on these variables. A previous
study by Bell et al. (2015) also suggested that past radia-
tion measurements, using an exponential weighting, are an
even better prediction of the temperature bias, resulting in
an advanced correction model (Bell et al., 2015). The poten-
tial predictor models are validated using the validation data,
ensuring a fair evaluation of the model. The coefficient of
determination (R2) and root-mean-square error (RMSE) are
calculated to identify the optimal prediction model for the
temperature bias. After validation, the prediction model can
be applied to the weather station network in Leuven (LC-X),
thereby providing a temperature bias for each observation of
every station as a function of its local climatic conditions.
The predicted temperature bias is subtracted from the QC
level 2 temperature data to obtain the QC level 3 corrected
temperature dataset.

3.3.1 The intra-station temperature bias

The overall temperature bias (i.e. all LC-R stations together)
between the LC-R and the AWS data has a mean value of
0.10 ◦C and a standard deviation of 0.55 ◦C (Fig. 3). By split-
ting up the temperature bias for day (radiation > 0 W m−2)
and night (radiation = 0 W m−2), a positive mean tempera-
ture bias during daytime (0.32 ◦C) and a negative mean tem-
perature bias during night-time (−0.10 ◦C) is obtained. Fig-
ure 3 further suggests a higher standard deviation during day-
time (0.61 ◦C) compared with night-time (0.37 ◦C), both with
a remarkably skewed (and opposite) distribution.

To get a better understanding of the monthly and daily pat-
terns of this temperature bias, Fig. 4a shows the mean tem-

perature bias as a function of month and hour of the day. The
stations show clear diurnal and seasonal patterns, confirming
the positive temperature bias during daytime and the nega-
tive temperature bias during night-time previously observed
in Fig. 3. In general, we see a positive bias that is high around
midday and is more pronounced during the summer months,
lasting for several hours during the day. The night-time tem-
perature bias is low for all months. A temperature bias of
0 ◦C is reached for every month at a certain time of the day;
however, the specific time at which this minimal temperature
bias occurs depends on the season.

Figure 4b shows the mean temperature bias as a function
of wind speed and radiation. As expected, a positive temper-
ature bias is noticed for high-solar-radiation and low-wind-
speed conditions. The rather strange high values at low ra-
diation and high wind speed can be explained as outliers
(Fig. 4c). Figure 4c shows the sample size of each cell. Af-
ter removing cells with a sample size lower than 10, the final
graph is obtained (Fig. 4d). The shallow local minimum seen
around noon during the summer months (Fig. 4a) and the fact
that the largest biases are found in the middle of the radiation
range rather than at the top (Fig. 4d) are probably related to
the station design itself. Two effects are at play here: (1) the
placement of the radiation sensor and (2) the placement of the
temperature sensor. With respect to effect (1), certainly for
lower solar elevations (during winter), the wind vane casts
its shadow on the radiation sensor for a short time during
the day. With respect to effect (2), which we might consider
more important, the temperature sensor is more shaded by
the body of the station (during all seasons) around midday
(highest radiation).

3.3.2 Building a predictor for the intra-station
temperature bias

A correlation matrix between the temperature bias and other
meteorological variables, measured by the low-cost weather
station, is calculated (Table 7). The values indicate how the
temperature bias will change under different meteorological
conditions.

The most correlated variable is radiation (0.49) directly
followed by humidity (−0.48), temperature (0.41), dew point
temperature (0.18) and wind speed (−0.01). As expected,
taking the past radiation measurements into account further
improves the correlation, reaching a maximum value when
considering the last 60 min (0.56). An exponential weight-
ing, giving higher importance to the radiation measurements
closer to the temperature measurement, was used. This vari-
able is further denoted as radiation60 (Rad60).

The variables listed in Table 7 were used to build a predic-
tor for the temperature bias. For this purpose, multiple mod-
els were calibrated in which the temperature bias is described
as a function of only one or multiple meteorological vari-
ables. In the following (Table 8 and Fig. 5), only the models
with the best performance are shown. Figure 5 shows the un-
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Figure 3. Histograms of the temperature bias between the low-cost reference stations (LC-R stations) and the official RMI stations (AWSs)
for day and night (a), with daytime defined by radiation > 0 W m−2 (b) and night-time defined by radiation = 0 W m−2 (c). Mean biases
and their standard deviations are given above the graphs. Note that the ranges on the y axis differ for the different subplots. The temperature
bias was calculated for all measurements between the installation date of each LC-R and December 2021.

Figure 4. Temperature bias (◦C) as a function of hour of the day and month of the year for all LC-R stations (a); temperature bias (◦C) as a
function of radiation and wind speed for all LC-R stations (b); temperature bias (◦C) as a function of radiation and wind speed for all LC-R
stations, where the values written in each cell signify the sample size (c); and temperature bias (◦C) as a function of radiation and wind speed
for all LC-R stations, where cells with a sample size lower than 10 are not shown in the graph (d). Note that the ranges on the y axis differ
for the different subplots. Background colours, ranging from blue (−1.7 ◦C) to red (1.7 ◦C), represent the temperature bias. The temperature
bias was calculated for all measurements between the installation date of each LC-R station and December 2021.

corrected temperature bias (panel a) as well as the corrected
temperature biases after validation with six different models:
a simple linear regression with the past radiation (panel b);
a multiple linear regression with the past radiation and wind
speed (panel c); a multiple linear regression with the past ra-
diation and humidity (panel d); a multiple linear regression
with the past radiation, wind speed and humidity (panel e);

and a random forest model (panel f) and a boosted regres-
sion trees model (panel g) including temperature, dew point
temperature, humidity, radiation, radiation60, wind speed, al-
titude, month and hour.

A simple linear regression based on the past radiation is
already sufficient to suppress the mean temperature bias.
Adding additional variables to the model, such as wind
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Table 7. The Pearson correlation matrix of temperature bias with other meteorological variables measured by the low-cost station.

Temperature Dew point temperature Humidity Radiation Radiation60 Wind speed

0.41 0.18 −0.48 0.49 0.56 −0.01

Figure 5. The uncorrected temperature bias (a) and the corrected temperature bias after validation with a simple linear regression with the
past radiation (b); a multiple linear regression with the past radiation and wind speed (c); a multiple linear regression with the past radiation
and humidity (d); a multiple linear regression with the past radiation, humidity and wind speed (e); and a random forest model (f) and
a boosted regression trees model (g) including temperature, dew point temperature, humidity, radiation, radiation60, wind speed, altitude,
month and hour. Mean biases and their standard deviations are given above the graphs. Note that the ranges on the y axis differ for the
different subplots.

speed, humidity or both is statistically significant but only
further decreases the RMSE by 0.003–0.008 ◦C. The RF and
BRT models result in an RMSE of 0.279 and 0.319 and an
R2 value of 0.741 and 0.658 respectively, indicating a better
precision and more robust models.

The RF prediction of temperature bias showed the best
results. By splitting the results up for day (radiation
> 0 W m−2) and night (radiation = 0 W m−2) (Fig. 6), a
smaller standard deviation of the bias during night-time
(0.25) compared with daytime (0.31) is obtained. This differ-
entiation between night and day is only for illustrative pur-
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Figure 6. The corrected Tbias after validation with the RF model for daytime (a) and night-time (b). Mean biases and their standard deviations
are given above the graphs. Note that the ranges on the y axis differ for the different subplots.

Table 8. The coefficient of determination (R2) and root-mean-
square error (RMSE) of the different models.

Model R2 RMSE

Radiation60 0.321 0.450
Radiation60 and wind speed 0.327 0.448
Radiation60 and humidity 0.336 0.445
Radiation60, wind speed and humidity 0.342 0.443
Random forest 0.741 0.279
Boosted regression trees 0.658 0.319

poses; only one RF was built for both day and night. The
statistical details of the RF model are further summarised in
Table 9.

4 Evaluation of the quality control and correction
method

To evaluate the quality of the developed QC method, it is
first applied to the four low-cost WH2600 stations (LC-R sta-
tions) (Table 3) installed next to the official measuring equip-
ment in Uccle, Diepenbeek and Humain (AWSs). Comparing
this LC-R dataset with the AWS dataset allows us to inves-
tigate the improvement or deterioration of the data quality
after each QC level.

4.1 Quality control level 1 – outlier detection

For QC L1.1, the range outliers are detected by com-
paring the temperature of each LC-R station with the

climatic thresholds set by its nearby official AWS
(Tmax/min_AWS± dev_reference). As can be seen from Ta-
ble 6, the deviation allowed from the climatic thresholds is
smaller for the LC-R stations compared with the LC-X sta-
tions in the study area. This is due to the fact that the LC-R
stations are installed next to the official AWSs; thus, no envi-
ronmental factors should be taken into account. The tempo-
ral outliers are detected in QC L1.2 by comparing the rate of
change between consecutive observations with the thresholds
defined in Table 6. In QC L1.3, spatial outliers are detected
using the Z score. We should, however, stress that this anal-
ysis is not ideal because every reference station only has one
neighbour – the official AWS station. Only LC-R01 and LC-
R02, located in Uccle, have two neighbours during a period
of 4 months, when both stations were active simultaneously.

The results show no spatial outliers for the LC-R stations.
Some observations are, however, highlighted as range or tem-
poral outliers. Table 10 summarises the number and per-
centage of observations flagged as 1. These observations are
set to NA, resulting in the temperature dataset with quality
level 1. The temperature profiles of the LC-R stations ver-
sus the official AWS temperature (Fig. 7; solid versus dashed
grey line) highlight observations defined as range or tempo-
ral outliers using circles or squares respectively. Scatterplots
in which the temperature of the LC-R stations is compared
to the temperature of the AWSs (Fig. 8) use the same layout.
The temperature difference between the LC-R stations and
the AWSs (1T = TLC-R−TAWS) is calculated as an effective
quality measure.

The results show only a few range outlier and even no
spatial outliers for the LC-R stations. The procedure does,
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Table 9. Statistical details of the RF temperature bias prediction model.

Formula Tbias ∼ QC L2 temperature + humidity + dew point temperature + radiation + radiation60 +
wind speed + altitude + month + hour

Number of trees 500
Number of variables tried at each split 3
Mean of squared residuals 0.091
Percentage of variance explained (%) 69.5

Figure 7. Temperature profile of LC-R stations in (a) Uccle (LC-R01 and LC-R02), (b) Diepenbeek (LC-R04) and (c) Humain (LC-R05).
The grey dashed line represents the official AWS temperature of a specific location. Observations defined as range outliers are symbolised by
a circle, and temporal outliers are symbolised by a square. The temperature profiles include all measurements between the installation date
of each LC-R and December 2021.
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Figure 8. Scatterplots of LC-R versus AWS temperature for each reference station, (a) LC-R01, (b) LC-R02, (c) LC-R04 and (d) LC-R05, at
QC level 0. Observations defined as range outliers are symbolised by a red circle, and temporal outliers are symbolised by a red square. The
identity line is shown in black. The colour scale indicates the density of observations, with white indicating the highest and black indicating
the lowest. The scatterplots include all measurements between the installation date of each LC-R and December 2021.

Table 10. Number and percentage of observations flagged as out-
liers during QC level 1.

QC level No. of flagged Percentage of
observations flagged observations (%)

QC L1.1 – range test 21 0.006
QC L1.2 – temporal outliers 180 0.048
QC L1.3 – spatial outliers 0 0.000

Total 201 0.054

however, highlight 180 observations as temporal outliers
(Table 10). These observations were highlighted during the
persistence test: 180 observations change less than 0.05 ◦C
within 2 h. With only 0.054 % of the observations flagged
as outliers, we can conclude that the LC-R dataset does not
contain a lot of outliers. Because of their importance in this
QC method, especially in QC L3, these reference stations

are indeed closely monitored, thereby preventing and min-
imising the occurrence of outliers. As only 0.054 % of the
data were set to NA, no difference in the 1T statistics oc-
curred. Thus, the histograms in Fig. 9 represent the data
with both QC level 0 and QC level 1. The mean tempera-
ture difference± standard deviation for all reference stations
is 0.15± 0.56 ◦C.

Reference station LC-R01 only has a small positive mean
1T , whereas the mean1T values of LC-R02 and especially
LC-R05 are remarkably higher. The mean 1T of LC-R04
equals zero. The standard deviations of LC-R04 and L-R05
are noticeably smaller than those of LC-R01 and LC-R02
(Fig. 9). As expected, the temperature difference between the
LC-R stations and the AWSs is not constant and is correlated
with other variables. A higher difference is obtained during
the summer months (Fig. 10) under low-cloud and low-wind-
speed conditions (Fig. 11).
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Figure 9. Histograms of temperature difference (1T = TLC-R−TAWS) for each reference station, (a) LC-R01, (b) LC-R02, (c) LC-R04 (d)
and LC-R05, at QC level 0 and QC level 1. The mean differences and their standard deviations are given above the graphs. Note that the
ranges on the y axis differ for the different subplots. The temperature difference was calculated for all measurements between the installation
date of each LC-R and December 2021.

Figure 10. Temperature difference (1T = TLC-R− TAWS) as a function of hour of the day and month of the year for each reference
station, (a) LC-R01, (b) LC-R02, (c) LC-R04 and (d) LC-R05, at QC level 1. Background colours, ranging from blue (−1.7 ◦C) to red
(1.7 ◦C), represent the 1T . The temperature difference was calculated for all measurements between the installation date of each LC-R and
December 2021.

4.2 Quality control level 2 – inter-station bias correction

During QC level 2, temperatures are corrected for the fixed
offset between stations or the inter-station bias, due to in-
trinsic sensor differences at the level of the electronics. The
proposed methodology of searching for episodes with a very
uniform temperature field over the study area (see Sect. 3)
cannot be applied here due to the large distance between the
three locations with LC-R stations.

Here, we selected episodes for which we expect a similar
temperature between the LC-R stations and the AWSs. This

occurs again under breezy cloudy conditions with no rainfall
(Fig. 11). For each reference station, all 10 min observations
are resampled to 2 h observations, and the mean temperature,
wind speed, radiation and rainfall are calculated. Next, suit-
able episodes are found by selecting episodes in which the
average rainfall intensity equals 0 mm h−1 and the average
radiation lies below 100 W m−2. The selected episodes are
ordered by average wind speed and are limited to the top 10
results. The mean LC-R and AWS temperature is calculated
for each episode, and an offset between both is then calcu-
lated. Finally, the median offset across all episodes is con-
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Figure 11. Temperature difference (1T = TLC-R− TAWS) as a function of radiation and wind speed for each reference station, (a) LC-
R01, (b) LC-R02, (c) LC-R04 and (d) LC-R05, at QC level 1. Cells with a sample size lower than 10 are not shown in the graph. Note that
the ranges on the y axis differ for the different subplots. Background colours, ranging from blue (−1.7 ◦C) to red (1.7 ◦C), represent the1T .
The temperature difference was calculated for all measurements between the installation date of each LC-R and December 2021.

Figure 12. Offsets during the selected episodes (dots), showing the median offset (diamond) and its error bar (mean± standard deviation)
for each reference station (LC-R). For reference, the zero line is plotted in red.

sidered to be the true offset for each station. These offsets
are subtracted from the QC L1 temperature data in order to
obtain a corrected temperature: the QC level 2 dataset.

Reference stations LC-R01 and LC-R04 have a small
negative offset, equal to −0.029 and −0.072 ◦C respec-
tively. Stations LC-R02 and LC-R05 have positive and no-
tably larger offsets, equal to 0.113 and 0.243 ◦C respectively
(Fig. 12).

To check the quality improvement of QC level 2, the tem-
perature difference (1T = TLC-R−TAWS) between the LC-R
stations and the AWSs is again calculated for every station
(Fig. 13). Reference stations LC-R01 and LC-R04 show a

small increase in their mean 1T ; however, the mean 1T of
LC-R02 and LC-R05 decreases. As a result, the 1T of all
stations becomes more equal. As QC level 2 only added a
fixed temperature offset, the standard deviations of all 1T
values remain the same. The inter-station bias correction fur-
ther highlights the seasonal and daily pattern of the 1T , es-
pecially for reference station LC-R05 (Fig. 14).

4.3 Quality control level 3 – intra-station bias correction

From Sect. 3, we recall that the random forest prediction of
temperature bias showed the best results After applying this
prediction model on the reference dataset (LC-R), a level
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Figure 13. Same as Fig. 9 but for QC level 2.

Figure 14. Same as Fig. 10 but for QC level 2.

3 corrected temperature is obtained for each LC-R station.
These results could be biased because the RF model is trained
on 60 % of the LC-R dataset and then applied to the complete
LC-R dataset. To account for this, we applied the predic-
tion model to both the complete dataset and the test dataset
(which was not used for training the model). The outcome for
each LC-R is listed in Appendix D. It can be noted that mean
T difference remains equal for both datasets, and the stan-
dard deviation does slightly increase by 0.5 to 0.7 ◦C when
using the test dataset. The results below are based on the test
dataset only.

To evaluate the quality improvement of QC level 3, the
temperature difference (1T = TLC-R− TAWS) between the
LC-R stations and the AWSs is again calculated for ev-
ery station (Fig. 15). Histograms of the temperature show

a mean 1T of almost 0 ◦C for each reference station, and
the standard deviation clearly decreased compared with QC
level 2 (Fig. 13). When the 1T is plotted as a function
of each month and hour of the day, one can notice that
the diurnal and seasonal pattern is completely corrected for
(Fig. 16). Moreover, the effects of wind speed and radia-
tion are effectively eliminated (Fig. 17). The mean temper-
ature difference± standard deviation for all LC-R stations is
0.00± 0.28 ◦C.
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Figure 15. Same as Fig. 9 but for QC level 3.

Figure 16. Same as Fig. 10 but for QC level 3.

5 Application of the QC method to the stations in
the study area

In this section, the newly developed QC method is applied
to the low-cost stations of the Leuven.cool network (LC-
X). The Leuven.cool dataset currently ranges from July 2019
(2019Q3) until December 2021 (2021Q4). The QC method
is performed four times per year, each time for a period of
3 months.

5.1 Quality control level 1 – outlier detection

During QC level 1, range, temporal and spatial outliers are
removed using climatological thresholds from Uccle, neigh-
bouring observations (i.e. circumjacent/surrounding observa-

tions from the same station) and neighbouring stations (i.e.
simultaneous observations from neighbouring stations) re-
spectively. If no official weather station is available, thresh-
olds can be based on existing climate classification maps.
Table 11 summarises the number of observations flagged as
outliers in each step. For each year, only between 0.5 % and
1 % of the data are defined as outliers and thus eliminated,
indicating that the raw data quality is rather good compared
with other citizens science networks.

The simple spatial outliers test performed by Chapman
et al. (2017) yielded comparable results: 1.5 % of the data
were omitted in this study. Other studies have reported a
much higher fraction of eliminated data: Meier et al. (2017)
only kept 47 % of the raw data after conducting their four-
step QC analysis, and Napoly et al. (2018) and Feichtinger
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Figure 17. Same as Fig. 11 but for QC level 3.

Table 11. Number and percentage of observations flagged as outliers during QC level 1 for 2019 Q3–Q4, 2020 Q1–Q4 and 2021 Q1–Q4 for
all LC-X measurements.

QC level No. 2019 % 2019 No. 2020 % 2020 No. 2021 % 2021

QC L1.1 – range test 0 0.000 9 0.000 26 0.000
QC L1.2 – temporal outliers: step 22 0.001 276 0.006 169 0.003
QC L1.2 – temporal outliers: persistence 796 0.039 1216 0.025 4796 0.092
QC L1.3 – spatial outliers 11 769 0.581 31 846 0.658 26 186 0.503

Total 12 587 0.621 33 317 0.689 31 177 0.599

et al. (2020) kept 58 % and 55 % of the data respectively.
CrowdQC+, as a further development of CrowdQC, results
in an even lower data availability: only 30 % of the raw data
remain after the QC (Fenner et al., 2021). These high num-
bers of omitted data can, however, be explained by (1) a great
number of CWSs being installed indoors (not applicable in
our set-up) and, thus, lacking the typical diurnal tempera-
ture patterns, and (2) radiative errors due to solar radiation
exposure of poorly designed devices, resulting in very high
temperature observations (Napoly et al., 2018; Fenner et al.,
2021). In the QC method presented in this paper, calibration
and radiative errors are, however, corrected for during QC
level 2 and 3, rather than being omitted.

5.2 Quality control level 2 – inter-station bias correction

In QC level 2, a fixed offset for each weather station is ob-
tained. These offsets, induced by the intrinsic differences in
the level of the sensors’ electronics, are subtracted from the
station’s temperature, thereby accounting for calibration er-
rors. The obtained offsets, the median offset and its error bar
(mean± standard deviation) are plotted in Fig. 18 for each
station. The mean offset of all stations equals 0.010 ◦C. Sta-
tion LC-102 has the highest offset (0.349 ◦C), whereas sta-

tion LC-074 has the lowest offset (−0.220 ◦C). It can be no-
ticed that the error bars of most stations are rather small,
which reinforces our confidence in a valid determination of
the fixed calibration offset.

For stations that were not active during one of the selected
timeframes, we were not able to determine their calibration
offset (stations LC-003, LC-096, LC-108, LC-109, LC-114,
LC-124, LC-125, LC-127 and LC-128). As a consequence,
no corrected temperature could be calculated, meaning that
those stations are not considered during the following QC
level (QC level 3). The search for episodes should be ex-
tended with upcoming periods of 6 months in order to resolve
this problem.

5.3 Quality control level 3 – intra-station bias correction

In QC level 3, the random forest model is applied to each
temperature observation of all LC-X stations in order to ob-
tain a site- and time-specific prediction of its temperature
bias. As expected, this prediction shows the same pattern
as seen for the LC-R stations: generally, we see a positive
bias that peaks around midday and is more pronounced dur-
ing both summer months and low-cloud and low-wind-speed
conditions (Fig. 19). Note that the actual bias calculation in
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Figure 18. Offsets during the selected episodes (grey dots), the median offset (black diamond) and its error bar (mean± standard deviation)
for each LC-X station active during at least one episode. For reference, the zero line is plotted in red.

QC level 3 is performed for every timestamp and every LC-X
station separately using the other weather variables measured
by the station, as input for the RF model. After subtracting
this temperature bias from the observed temperature, the cor-
rected temperature for each station is obtained.

These results are in line with the findings of Jenkins (2014)
and Bell et al. (2015): both found a significant positive in-
strument temperature bias during daytime with a strong re-
lation to the incoming solar radiation for multiple types of
crowdsourced weather stations. To our knowledge, prior to
our study, only Cornes et al. (2020) had used the findings of
Bell et al. (2015) to actually correct crowdsourced air tem-
perature data. Radiation from satellite imagery and back-
ground temperature data from official stations were used
to parameterise the short-wave radiation bias; as a conse-
quence, no correction was performed for night-time. The data
correction has reduced the error from ±0.2–0.8 to ±0.2–
0.4 ◦C. These results are comparable with our results, al-
though slightly smaller errors of only ±0.23–0.30 ◦C are ob-
tained here (Fig. 15). Cornes et al. (2020) did suggest the in-
corporation of wind speed as an additional covariate in order
to incorporate the effect of passive ventilation. The random
forest model described in this study does include additional
covariates, including wind speed, but most importantly only
needs data from the weather station itself. No satellite im-
agery nor official stations are needed once the random forest
model is built. Cornes et al. (2020) further highlighted the
need for station-specific quality controls in order to remove
the confounding effect of different instrument types. With the

use of a unique station type, we aimed at minimising such ef-
fects in our dataset. QC level 2 (Sect. 5.2) showed that these
effects were indeed limited.

5.4 Overall impact of the QC method on the dataset

To assess the impact of the different QC stages on the
global dataset, several violin boxplots were created on both
a monthly and yearly base. Figure 20 illustrates the monthly
violin plots for 2019, 2020 and 2021 at each quality control
level. Table 12 summarises the mean monthly temperature
and its standard deviation for each quality control level.

The violin plots and the accompanying mean temperature
and standard deviation do not change much over the different
QC levels. As QC level 1 removes outliers from the dataset,
we would expect a lower standard deviation for QC level 1
compared with QC level 0. Figure 20 does indicate the re-
moval of some outliers, but Table 12 does not confirm the
expected decrease in the standard deviation. This can be ex-
plained by the low percentage of observations defined as out-
liers: for each year, only 0.5 % to 1 % of the data were de-
fined as outlier. Due to the strict installation protocol, most
errors were already eliminated upfront. If errors do occur as
the result of a station malfunction, they are quickly resolved
because the dataflow and station siting are continuously con-
trolled.

During QC level 2, each station is corrected for its inter-
station temperature bias. As both positive and negative bi-
ases, ranging from 0.349 to−0.220 ◦C, are possible, no clear
change in the mean temperature is expected between QC
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Figure 19. (a) Prediction of the temperature bias (◦C) as a function of hour of the day and month of the year for all LC-X stations and (b)
prediction of the temperature bias (◦C) as a function of radiation and wind speed for all LC-X stations, although cells with a sample size
lower than 10 are not shown in the latter graph. Background colours, ranging from blue (−1.7 ◦C) to red (1.7 ◦C), represent the temperature
bias. The prediction of the temperature bias was calculated for all LC-X measurements from July 2019 to December 2021.

level 1 and QC level 2. Because this QC level corrects each
station with a fixed offset, the standard deviation should stay
the same. Both of these assumptions are confirmed by Fig. 20
and Table 12.

During the QC level 3, we do see a clear change in mean
temperature and standard deviation. For the summer months,
a reduction in the mean temperature and standard devia-
tion of up to −0.40 and −0.36 ◦C is noted respectively. The
change in the standard deviation shows a monthly pattern
with a higher reduction during the summer months and al-
most no change during winter. The change in mean temper-
ature is not as consistent and seems dependent on the ob-
served temperatures. A higher reduction in mean tempera-
ture is noted for the hot summers of 2019 and 2020 com-
pared with the rather cold summer of 2021. These results can
easily be explained by the daily and seasonal patterns of the
predicted temperature bias (Fig. 19).

6 Application potential of the quality-controlled and
corrected Leuven.cool dataset

A validation of the proposed QC method showed that it can
reduce the mean temperature difference and standard devia-
tion from 0.15± 0.56 to 0.00± 0.28 ◦C. The QC method can
correct the temperature difference equally across different
hours of the day and months of the year (Fig. 16) as well as
under different radiation and wind speed conditions (Fig. 17).

The quality-controlled Leuven.cool dataset enables a de-
tailed comparison with other crowdsourced datasets for
which less or even no metadata are available. As such,
the Leuven.cool stations can serve as gatekeepers for other
crowdsourced observations. In the past, this role has been
limited to standard weather station networks which mostly
only have a limited number of observations available (Chap-
man et al., 2017).

Numerous studies have shown that the UHI effect causes
night-time temperature differences of up 6 to 9 ◦C during
clear nights (Chapman et al., 2017; Venter et al., 2021; Stew-
art, 2011; Napoly et al., 2018; Feichtinger et al., 2020). These
thresholds are much higher than the mean bias obtained after
correction. Thus, the dense quality-controlled Leuven.cool
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Figure 20. Monthly violin plots of temperature data (◦C) of all LC-X stations at quality control level 0 (raw data), level 1 (outliers removed),
level 2 (inter-station bias correction) and level 3 (intra-station bias correction) for 2019 Q3–Q4 (a), 2020 Q1–Q4 (b) and 2021 Q1–Q4 (c).

dataset allows for microscale modelling of urban weather
patterns, including the UHI (Chapman et al., 2017; de Vos
et al., 2020; Napoly et al., 2018; Feichtinger et al., 2020). As
such high-quality datasets contain measurements with both
high spatial and temporal resolution, they can easily be used
to obtain spatially continuous temperature patterns across a
region (e.g. Napoly et al., 2018; Feichtinger et al., 2020). In-
terpolation methods based on single pairs of stations or mo-
bile transect methods are much less trustworthy (Napoly et
al., 2018). Dense weather station networks can be used to
investigate the inter- and intra-LCZ variability within a city
(Fenner et al., 2017; Verdonck et al., 2018). The dataset can
further help investigate the relation between temperature and

human and ecosystem health (e.g. Demoury et al., 2022; De
Troeyer et al., 2020) as well as their effect on evolutionary
processes (e.g. Brans et al., 2022).

The dataset can also help refine existing weather forecast
models which are currently mostly based on official rural ob-
servations (Sgoff et al., 2022). Nipen et al. (2020) showed
that the inclusion of citizen observations improves the ac-
curacy of short-term temperature forecasts in regions where
official stations are sparse. Mandement and Caumont (2020)
used crowdsourced weather stations to improve the observa-
tion and prediction of convection patterns near the ground.
After quality control and correction, the wind (Chen et al.,
2021) and precipitation measurements (de Vos et al., 2019)
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Table 12. The mean monthly temperature (◦C) and its standard deviation (SD) for all LC-X stations at quality control level 0 (raw data),
level 1 (outliers removed), level 2 (inter-station bias correction) and level 3 (intra-station bias correction).

QC level 0 QC level 1 QC level 2 QC level 3 1L0–L3

Mean T SD Mean T SD Mean T SD Mean T SD Mean T SD

2019

7 20.95 6.21 20.93 6.23 20.96 6.23 20.54 5.89 −0.40 −0.32
8 19.82 5.32 19.81 5.33 19.84 5.34 19.53 4.96 −0.29 −0.36
9 15.08 3.99 15.08 3.99 15.08 3.99 14.91 3.76 −0.17 −0.23
10 12.26 3.93 12.25 3.93 12.26 3.93 12.22 3.83 −0.04 −0.10
11 6.54 3.70 6.53 3.70 6.54 3.70 6.54 3.68 0.00 −0.03
12 6.12 3.65 6.12 3.65 6.12 3.65 6.15 3.65 0.03 0.00

2020

1 6.21 3.68 6.20 3.68 6.21 3.68 6.21 3.66 0.00 −0.02
2 7.57 3.33 7.57 3.33 7.57 3.33 7.56 3.29 −0.02 −0.05
3 7.62 3.76 7.62 3.77 7.62 3.76 7.49 3.69 −0.13 −0.07
4 12.89 5.97 12.88 5.97 12.88 5.97 12.55 5.71 −0.33 −0.26
5 14.95 6.10 14.94 6.11 14.93 6.10 14.58 5.79 −0.37 −0.32
6 18.60 5.38 18.60 5.38 18.61 5.39 18.26 5.05 −0.35 −0.33
7 18.79 4.66 18.79 4.67 18.80 4.67 18.47 4.36 −0.33 −0.30
8 21.55 6.00 21.54 6.00 21.52 6.00 21.18 5.63 −0.37 −0.37
9 16.54 5.28 16.53 5.28 16.54 5.28 16.35 5.01 −0.19 −0.27
10 11.88 2.86 11.88 2.86 11.87 2.85 11.84 2.79 −0.05 −0.08
11 9.08 4.34 9.07 4.34 9.07 4.34 9.05 4.31 −0.03 −0.03
12 5.79 3.63 5.78 3.63 5.79 3.62 5.80 3.62 0.01 0.00

2021

1 3.58 2.95 3.57 2.96 3.57 2.95 3.58 2.94 0.01 −0.02
2 5.59 6.88 5.59 6.89 5.59 6.88 5.50 6.84 −0.09 −0.04
3 7.55 4.84 7.55 4.84 7.51 4.80 7.40 4.61 −0.16 −0.23
4 7.80 4.95 7.80 4.95 7.78 4.96 7.60 4.76 −0.21 −0.20
5 12.30 4.75 12.30 4.75 12.29 4.76 12.10 4.52 −0.20 −0.23
6 19.70 5.11 19.70 5.11 19.69 5.12 19.37 4.77 −0.33 −0.34
7 18.72 3.64 18.71 3.64 18.71 3.65 18.48 3.29 −0.23 −0.34
8 17.51 3.53 17.51 3.54 17.51 3.54 17.38 3.22 −0.13 −0.31
9 16.88 4.52 16.87 4.52 16.86 4.52 16.68 4.26 −0.20 −0.26
10 11.68 3.55 11.67 3.55 11.66 3.56 11.63 3.44 −0.05 −0.11
11 6.38 3.29 6.37 3.29 6.36 3.29 6.37 3.26 −0.01 −0.03
12 5.90 3.92 5.89 3.92 5.88 3.93 5.90 3.92 0.00 0.00

can also be useful to improve detection and forecasting. Fur-
ther, the Leuven.cool dataset could be a useful input in air
pollution prediction models (e.g. Immission Frequency Dis-
tribution, IFD, model, Lefebvre et al., 2011).

7 Code and data availability

All data described in this paper and the scripts used to de-
sign, evaluate and apply the QC method are stored in RDR,
the KU Leuven Research Data Repository, and are accessi-
ble via the following DOI: https://doi.org/10.48804/SSRN3F
(Beele et al., 2022). The dataset is accompanied by an
extensive README file explaining the content of the
dataset. The dataset includes a metadata file (01_Meta-

data.csv), the actual observations for every 3 months/quar-
ter (LC_YYYYQX.csv), and the R scripts needed to build
and apply the QC method (LC-R_QCL1-2-3.Rmd and LC-
X_QCL1-2-3.Rmd). The metadata file contains information
on weather station coordinates, altitude above sea level, in-
stallation height, LCZ class, dominant land cover, mean sky
view factor (SVF) and mean building height in a buffer of
10 m around each weather station. Coordinates have been
rounded to three significant figures for privacy reasons. The
actual observations are given as 10 min aggregates and in-
clude relative humidity [%], dew point temperature [◦C],
number of 16 s observations in 10 min aggregate, solar radia-
tion [W m−2], rain intensity [mm h−1], daily rain sum [mm],
wind direction [◦], wind speed [m s−1], date [YYYY-MM-
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DD], year [YYYY], month [MM], day [DD], hour [HH],
minute [MM], weighted radiation during last the 60 min
[W m−2], temperature at QC level 0 [◦C], temperature at QC
level 1 [◦C], temperature at QC level 2 [◦C] and temperature
at QC level 3 [◦C].

8 Conclusions

This study presents the data from the citizen science weather
station network Leuven.cool, which consists of around 100
weather stations in the city of Leuven, Belgium. The crowd-
sourced weather stations (Fine Offset WH2600) are dis-
tributed across Leuven and surroundings, and they have
been measuring the local climate since July 2019. The
dataset is accompanied by a newly developed station-specific
temperature quality control procedure. The quality control
method consists of three levels that remove implausible mea-
surements while also correcting for inter-station (between-
station) and intra-station (station-specific) temperature bi-
ases. This QC method combines the suggestions of pre-
viously developed methods but improves them by correct-
ing aberrant temperature observations rather than removing
them. As a result, more data can be retained, allowing re-
searchers to study the highly heterogeneous urban climate
in all its detail. Moreover, the QC method uses information
from the crowdsourced data itself and only requires refer-
ence data from official stations during its development and
evaluation stage. Afterwards, the method can be applied in-
dependently of the official network that was used in the de-

velopment phase. Transferring the method to other networks
or regions would require the recalibration of the QC param-
eters. Specifically, for QC L1.1, some indication of climate
thresholds is needed. QC L1.3 and QC L2 require a dense
weather station network; thus, the QC method is less suitable
for single or few stations. For QC L3, a large amount of other
data (e.g. radiation and wind speed) are needed. The random
forest model is, however, easily adaptable to the parameters
that are available.

A validation of the proposed QC method was carried out
on four Leuven.cool stations installed next to official equip-
ment, and it showed that the QC method is able to reduce
the mean temperature difference± standard deviation from
0.15± 0.56 to 0.00± 0.28 ◦C. The quality-controlled Leu-
ven.cool dataset enables a detailed comparison with other
crowdsourced datasets for which less or even no metadata
is available. The dense dataset further allows for microscale
modelling of urban weather patterns, such as the UHI, and
can help identify the relation between temperature and hu-
man and ecosystem health as well as their effect on evolu-
tionary processes. Lastly, the dataset could be used to refine
existing forecast models, which are currently mostly based
on official rural observations. Knowing that both the fre-
quency and intensity of heat waves will only increase dur-
ing the upcoming years, dense high-quality datasets such as
Leuven.cool will become highly valuable for studying local
climate phenomena, planning efficient mitigation and adap-
tation measures, and mitigating future risks.
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Appendix A: Specifications of the WH2600 digital
weather station

The technical specifications of the Fine Offset WH2600
weather station are given in Table A1.

Table A1. Technical specifications of the Fine Offset WH2600 weather station, as given by the manufacturer.

Transmission distance in open field 100 m
Temperature range −40 to 60 ◦C
Temperature accuracy ±1◦C
Temperature resolution 0.1 ◦C
Relative humidity range 1 %–99 %
Relative humidity accuracy ±5 %
Rain volume range 0–9999 mm
Rain volume accuracy ±10 %
Rain volume resolution 0.3 mm (if rain volume < 1000 mm)

1 mm (if rain volume > 1000 mm)
Wind speed range 0–50 m s−1

Wind speed accuracy ±1 m s−1 (if wind speed< 5 m s−1)
±10 % (if wind speed > 5 m s−1)

Light range 0–400 k lux
Light accuracy ±15 %
Measuring interval 16 s
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Appendix B: Specifications of the LCZ map

The LCZ map was created using a supervised random forest
classification approach based on fine-scale land use, building
height, building density and green ratio data within R. The
input data used for the creation of the LCZ map are listed in
Table B1. All input datasets were rasterised and cropped to a
spatial resolution of 100 m.

A 15 km× 15 km grid area was drawn around the city cen-
tre of Leuven. Within this grid area, training polygons for 12
LCZ types (7 urban LCZs and 5 natural LCZs) were drawn.
The delineation of the urban training areas was based on the
same input data layers. The threshold values used during this
process are further described in Fig. B1. The training areas
are plotted in Fig. B2.

The training polygons were randomly split in training
(0.7) and validation (0.3) data. Subsequently, a random forest
model was trained and validated using both datasets. A ma-
jority filter with a 3× 3 matrix (3× 3 moving window) was
applied using the focal function in R to obtain a more realis-
tic and clustered LCZ map (Demuzere et al., 2020). The LCZ
map was projected to ESPG:31370 – Belge Lambert 72 us-
ing the projectRaster function and nearest-neighbour method
in R.

The resulting LCZ map has an overall accuracy of 0.79 and
a kappa coefficient (κ) equal to 0.76. The confusion matrix
is presented in Table B2.

Table B1. Input data used for the creation of the LCZ map.

Input data Dataset Source

Land use Land use data Flanders, 10 m, 2019 Vlaamse Overheid – Departement Omgeving – Afdeling Vlaams Plan-
bureau voor Omgeving (2022)

Building height 3D GRB, 2015 Agentschap Digitaal Vlaanderen (2022)
Building density 3D GRB, 2015 Agentschap Digitaal Vlaanderen (2022)
Green ratio Green map Flanders, 1 m, 2018 Agentschap voor Natuur en Bos (2022)

Figure B1. Decision tree used to delineate training areas for urban LCZ classes.
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Figure B2. Training areas used for the creation of the LCZ map. Delineation is based on land use, building height, building density and
green ratio data. The background map is from Esri (ESRI World Topographic Map, 2022).

Table B2. Confusion matrix LCZ map. The matrix summarises the number of cells wrongly or correctly classified for each LCZ class. The
user accuracy (UA) and producer accuracy (PA) for each LCZ class and the overall accuracy are also included. For each LCZ, the number of
cells correctly classified are shown in bold.

LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ 9 LCZ 11 LCZ 12 LCZ 14 LCZ 15 LCZ 17 Total UA (%)

LCZ 2 7.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 77.8
LCZ 3 1.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 9.0 77.8
LCZ 4 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 100.0
LCZ 5 5.0 6.0 0.0 15.0 15.0 3.0 0.0 0.0 0.0 0.0 2.0 0.0 46.0 32.6
LCZ 6 0.0 1.0 0.0 0.0 27.0 5.0 1.0 0.0 0.0 0.0 0.0 0.0 34.0 79.4
LCZ 8 0.0 0.0 0.0 0.0 0.0 49.0 0.0 0.0 0.0 0.0 0.0 0.0 49.0 100.0
LCZ 9 0.0 0.0 0.0 0.0 0.0 1.0 40.0 1.0 0.0 0.0 0.0 0.0 42.0 95.2
LCZ 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.0 9.0 0.0 0.0 0.0 53.0 83.0
LCZ 12 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 9.0 0.0 0.0 5.0 18.0 50.0
LCZ 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.0 0.0 0.0 29.0 100.0
LCZ 15 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 2.0 0.0 4.0 50.0
LCZ 17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 9.0 100.0

Total 13.0 15.0 6.0 15.0 42.0 59.0 43.0 47.0 18.0 29.0 5.0 14.0 306.0
PA (%) 53.8 46.7 66.7 100.0 64.3 83.1 93.0 93.6 50.0 100.0 40.0 64.3 79.1
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Appendix C: Quality control of other Leuven.cool
variables

A qualitative assessment of the data quality was performed
by making scatterplots of these variables for the LC-R sta-
tions compared to the AWSs (Fig. C1).

Overall, the measured parameters are within the accuracy
given by the manufacturer. There are, however, deviations in
the wind and radiation measurement that are attributable to
the small location differences (of the order of metres) be-
tween the LC-R stations and the official sensors. For wind,
we compared the LC-R data with professional 2 m wind mea-
surements, but this height is in fact not the standard measure-
ment height for wind because too many ground effects are
still in play at this height. With respect to radiation, we pre-
viously mentioned the design flaw regarding the wind vane
casting a shadow, but high nearby trees can also influence the
measurements for low solar elevations (in the case of LC-
R01 and LC-R02).

Figure C1.
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Figure C1.
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Figure C1. Scatterplots of LC-R versus AWS dew point temperature, humidity, radiation and wind speed for each reference station: LC-
R01, LC-R02, LC-R04 and LC-R05. The identity line is shown in black. The colour scale indicates the density of observations, with yellow
indicating the highest and purple indicating the lowest. The scatterplots include all measurements between the installation date of each LC-R
and December 2021. For each variable, the same ranges are used on the x and y axes.
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Appendix D: Application of the RF model on the
LC-R dataset

In Sect. 5, the RF model is applied to the LC-R dataset to
obtain a corrected temperature for each observation. These
results could be biased because the RF model is trained on
60 % of the LC-R dataset and then applied to the complete
LC-R dataset. To account for this, we applied the predic-
tion model to both the complete dataset and the test dataset
(which was not used for training the model). The outcome
for each LC-R is listed in Table D1. It can be noted that
mean T difference remains equal for both datasets, and the
standard deviation does slightly increase by 0.5 to 0.7 ◦C
when using the test dataset only. The mean temperature dif-
ference± standard deviation for all LC-R stations increases
from 0.00± 0.22 to 0.00± 0.28 ◦C.

For comparison, the histograms and heat maps of the tem-
perature difference (1T = TLC-R−TAWS) using the complete
and test dataset only have been added in Figs. D1, D2 and
D3. Only slight differences (smaller than 0.1 ◦C) exist be-
tween the 1T for the complete dataset and 1T for the test
dataset. The diurnal and seasonal pattern is still corrected for
(Fig. D2). Moreover, the effects of wind speed and radiation
are effectively eliminated (Fig. D3).

Table D1. Comparison of the obtained T difference (1T =
TLC-R−TAWS) when using the test LC-R dataset and the complete
LC-R dataset.

LC-R 1T for test dataset 1T for complete dataset

LC-R01 0.01± 0.30 ◦C 0.01± 0.24 ◦C
LC-R02 0.00± 0.30 ◦C 0.00± 0.23 ◦C
LC-R04 0.00± 0.26 ◦C 0.00± 0.20 ◦C
LC-R05 0.00± 0.23 ◦C 0.00± 0.18 ◦C

Mean 0.00± 0.28 ◦C 0.00± 0.22 ◦C
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Figure D1. Same as Fig. 9 but for QC level 3. Comparison between 1T for the test dataset (a–d) and 1T for the complete dataset (e–h).
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Figure D2. Same as Fig. 10 but for QC level 3. Comparison between 1T for the test dataset (a–d) and 1T for the complete dataset (e–h).
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Figure D3. Same as Fig. 11 but for QC level 3. Comparison between 1T for the test dataset (a–d) and 1T for the complete dataset (e–h).

Author contributions. All authors contributed to the design of
the weather station network. EB and MR practically implemented
the design and collected the CWS data, MR assembled AWS data,
and EB processed all of the data used. All authors contributed to the
design of the QC method; EB did the programming for the QC.
EB carried out all analyses and primarily wrote the manuscript.
All authors discussed the results and contributed to writing the
manuscript.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors thank the many people who
have contributed to the establishment and maintenance of the Leu-
ven.cool project. In particular, we are grateful to all citizens and
private companies of/within Leuven who voluntary made their gar-
den/terrain available for our research. We also wish to thank Tim
Guily (city of Leuven) and Hanne Wouters (Leuven 2030) for
their logistic support as well as Margot Verhulst, Jordan Rodriguez
Milis, Remi Chevalier, Jingli Yan, Floris Abrams, Jonas Verellen
and Lennert Destadsbader (KU Leuven) for their technical support
during the realisation of the network. We further thank Clémence
Dereux, who developed a basis for the random forest correction
model as a RMI job student in 2019. Lastly, we are grateful to Rafail
Varonos (Leuven 2030) for ICT support. The protocol of this study
was approved by the Social and Societal Ethics Committee of KU
Leuven (G-2019 06 1674). The weather stations used in this study
were sponsored by both the city of Leuven and KU Leuven. Eva
Beele holds an SB doctoral fellowship from the Research Founda-
tion – Flanders (FWO; grant no. 1SE0621N).

Earth Syst. Sci. Data, 14, 4681–4717, 2022 https://doi.org/10.5194/essd-14-4681-2022



E. Beele et al.: Quality control and correction method for air temperature data 4715

Financial support. This research has been supported by the Re-
search Foundation – Flanders (FWO; grant no. 1SE0621N).

Review statement. This paper was edited by David Carlson and
reviewed by Daniel Fenner and one anonymous referee.

References

Agentschap Digitaal Vlaanderen: 3D GRB, Geopunt [data
set], https://www.geopunt.be/catalogus/datasetfolder/
42ac31a7-afe6-44c4-a534-243814fe5b58, last access: 1
March 2022.

Agentschap voor Natuur en Bos: Groenkaart Vlaanderen 2018,
Geopunt [data set], https://www.geopunt.be/catalogus/
datasetfolder/2c64ca0c-5053-4a66-afac-24d69b1a09e7, last
access: 1 March 2022.

Aigang, L., Tianming, W., Shichang, K., and Deqian, P.: On
the Relationship between Latitude and Altitude Temperature
Effects, in: 2009 International Conference on Environmen-
tal Science and Information Application Technology, 55–58,
https://doi.org/10.1109/ESIAT.2009.335, 2009.

Ahrens, C. D.: Meteorology Today: An Introduction to Weather,
Climate, and the Environment, 9th Edn., Brooks/Cole, 549 pp.,
2009.

Arnfield, A. J.: Two decades of urban climate research: A review of
turbulence, exchanges of energy and water, and the urban heat is-
land, Int. J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859,
2003.

Båserud, L., Lussana, C., Nipen, T. N., Seierstad, I. A., Oram, L.,
and Aspelien, T.: TITAN automatic spatial quality control of me-
teorological in-situ observations, Adv. Sci. Res., 17, 153–163,
https://doi.org/10.5194/asr-17-153-2020, 2020.

Bassani, F., Garbero, V., Poggi, D., Ridolfi, L., Von Harden-
berg, J., and Milelli, M.: Urban Climate An innovative ap-
proach to select urban-rural sites for Urban Heat Island anal-
ysis: the case of Turin (Italy), Urban Clim., 42, 101099,
https://doi.org/10.1016/j.uclim.2022.101099, 2022.

Beele, E., Reyniers, M., Aerts, R., and Somers, B.: Replica-
tion Data for: Quality control and correction method for
air temperature data from a citizen science weather station
network in Leuven, Belgium, KU Leuven RDR [data set],
https://doi.org/10.48804/SSRN3F, 2022.

Bell, S., Cornford, D., and Bastin, L.: How good are citizen weather
stations? Addressing a biased opinion, Weather, 70, 75–84,
https://doi.org/10.1002/wea.2316, 2015.

Brans, K. I., Tüzün, N., Sentis, A., De Meester, L., and Stoks,
R.: Cryptic eco-evolutionary feedback in the city: Urban evolu-
tion of prey dampens the effect of urban evolution of the preda-
tor, J. Anim. Ecol., 91, 514–526, https://doi.org/10.1111/1365-
2656.13601, 2022.

Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U.,
Fishbain, B., Broday, D., and Bartonova, A.: Can commer-
cial low-cost sensor platforms contribute to air quality mon-
itoring and exposure estimates?, Environ. Int., 99, 293–302,
https://doi.org/10.1016/j.envint.2016.12.007, 2017.

Chapman, L., Bell, C., and Bell, S.: Can the crowdsourcing data
paradigm take atmospheric science to a new level? A case
study of the urban heat island of London quantified using
Netatmo weather stations, Int. J. Climatol., 37, 3597–3605,
https://doi.org/10.1002/joc.4940, 2017.

Chen, J., Saunders, K., and Whan, K.: Quality control and bias ad-
justment of crowdsourced wind speed observations, Q. J. Roy.
Meteor. Soc., 147, 3647–3664, https://doi.org/10.1002/qj.4146,
2021.

Cornes, R. C., Dirksen, M., and Sluiter, R.: Correcting citizen-
science air temperature measurements across the Netherlands
for short wave radiation bias, Meteorol. Appl., 27, 1–16,
https://doi.org/10.1002/met.1814, 2020.

Demografie: https://leuven.incijfers.be/dashboard/dashboard/
demografie, last access: 15 December 2021.

Demoury, C., Aerts, R., Vandeninden, B., Van Schaeybroeck,
B., and De Clercq, E. M.: Impact of Short-Term Expo-
sure to Extreme Temperatures on Mortality: A Multi-City
Study in Belgium, Int. J. Env. Res. Pub. He., 19, 3763,
https://doi.org/10.3390/ijerph19073763, 2022.

Demuzere, M., Hankey, S., Mills, G., Zhang, W., Lu, T., and Bech-
tel, B.: Combining expert and crowd-sourced training data to
map urban form and functions for the continental US, Sci. Data,
7, 1–13, https://doi.org/10.1038/s41597-020-00605-z, 2020.

De Ridder, K., Lauwaet, D., and Maiheu, B.: UrbClim – A fast
urban boundary layer climate model, Urban Clim., 12, 21–48,
https://doi.org/10.1016/j.uclim.2015.01.001, 2015.

De Troeyer, K., Bauwelinck, M., Aerts, R., Profer, D., Berck-
mans, J., Delcloo, A., Hamdi, R., Van Schaeybroeck, B., Hooy-
berghs, H., Lauwaet, D., Demoury, C., and Van Nieuwen-
huyse, A.: Heat related mortality in the two largest Belgian ur-
ban areas: A time series analysis, Environ. Res., 188, 109848,
https://doi.org/10.1016/j.envres.2020.109848, 2020.

de Vos, L., Leijnse, H., Overeem, A., and Uijlenhoet, R.: The po-
tential of urban rainfall monitoring with crowdsourced automatic
weather stations in Amsterdam, Hydrol. Earth Syst. Sci., 21,
765–777, https://doi.org/10.5194/hess-21-765-2017, 2017.

de Vos, L., Leijnse, H., Overeem, A., and Uijlenhoet, R.: Quality
Control for Crowdsourced Personal Weather Stations to Enable
Operational Rainfall Monitoring, Geophys. Res. Lett., 46, 8820–
8829, https://doi.org/10.1029/2019GL083731, 2019.

de Vos, L., Droste, A. M., Zander, M. J., Overeem, A., Lei-
jnse, H., Heusinkveld, B. G., Steeneveld, G. J., and Uijlenhoet,
R.: Hydrometeorological monitoring using opportunistic sensing
networks in the Amsterdam metropolitan area, B. Am. Mete-
orol. Soc., 101, E167–E185, https://doi.org/10.1175/BAMS-D-
19-0091.1, 2020.

EEA: Assessing air quality through citizen science, Copenkagen,
63 pp., https://doi.org/10.2800/619, 2019.

ESRI World Topographic Map: http://www.arcgis.com/home/item.
html?id=30e5fe3149c34df1ba922e6f5bbf808f, last access: 1
March 2022.

Feichtinger, M., Wit, R. De, Goldenits, G., Kolejka, T., and
Hollósi, B.: Urban Climate Case-study of neighborhood-
scale summertime urban air temperature for the City of
Vienna using crowd-sourced data, Urban Clim., 32, 1–12,
https://doi.org/10.1016/j.uclim.2020.100597, 2020.

Fenner, D., Meier, F., Bechtel, B., Otto, M., and Scherer,
D.: Intra and inter “local climate zone” variability of air

https://doi.org/10.5194/essd-14-4681-2022 Earth Syst. Sci. Data, 14, 4681–4717, 2022

https://www.geopunt.be/catalogus/datasetfolder/42ac31a7-afe6-44c4-a534-243814fe5b58
https://www.geopunt.be/catalogus/datasetfolder/42ac31a7-afe6-44c4-a534-243814fe5b58
https://www.geopunt.be/catalogus/datasetfolder/2c64ca0c-5053-4a66-afac-24d69b1a09e7
https://www.geopunt.be/catalogus/datasetfolder/2c64ca0c-5053-4a66-afac-24d69b1a09e7
https://doi.org/10.1109/ESIAT.2009.335
https://doi.org/10.1002/joc.859
https://doi.org/10.5194/asr-17-153-2020
https://doi.org/10.1016/j.uclim.2022.101099
https://doi.org/10.48804/SSRN3F
https://doi.org/10.1002/wea.2316
https://doi.org/10.1111/1365-2656.13601
https://doi.org/10.1111/1365-2656.13601
https://doi.org/10.1016/j.envint.2016.12.007
https://doi.org/10.1002/joc.4940
https://doi.org/10.1002/qj.4146
https://doi.org/10.1002/met.1814
https://leuven.incijfers.be/dashboard/dashboard/demografie
https://leuven.incijfers.be/dashboard/dashboard/demografie
https://doi.org/10.3390/ijerph19073763
https://doi.org/10.1038/s41597-020-00605-z
https://doi.org/10.1016/j.uclim.2015.01.001
https://doi.org/10.1016/j.envres.2020.109848
https://doi.org/10.5194/hess-21-765-2017
https://doi.org/10.1029/2019GL083731
https://doi.org/10.1175/BAMS-D-19-0091.1
https://doi.org/10.1175/BAMS-D-19-0091.1
https://doi.org/10.2800/619
http://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f
http://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f
https://doi.org/10.1016/j.uclim.2020.100597


4716 E. Beele et al.: Quality control and correction method for air temperature data

temperature as observed by crowdsourced citizen weather
stations in Berlin, Germany, Meteorol. Z., 26, 525–547,
https://doi.org/10.1127/metz/2017/0861, 2017.

Fenner, D., Bechtel, B., Demuzere, M., Kittner, J., and
Meier, F.: CrowdQC + – A Quality-Control for Crowd-
sourced Air-Temperature Observations Enabling World-Wide
Urban Climate Applications, Front. Environ. Sci., 9, 1–21,
https://doi.org/10.3389/fenvs.2021.720747, 2021.

Hammerberg, K., Brousse, O., Martilli, A., and Mahdavi, A.: Im-
plications of employing detailed urban canopy parameters for
mesoscale climate modelling: a comparison between WUDAPT
and GIS databases over Vienna, Austria, Int. J. Climatol., 38,
e1241–e1257, https://doi.org/10.1002/joc.5447, 2018.

Heaviside, C., Macintyre, H., and Vardoulakis, S.: The Ur-
ban Heat Island: Implications for Health in a Chang-
ing Environment, Curr. Environ. Heal. Rep., 4, 296–305,
https://doi.org/10.1007/s40572-017-0150-3, 2017.

IPCC: Climate Change 2021: The Physical Science Basis. Con-
tribution of Working Group I to the Sixth Assessment Re-
port of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Con-
nors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Gold-
farb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi,
O., Yu, R., and Zhou, B., Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, in press,
https://doi.org/10.1017/9781009157896, 2021.

Jenkins, G.: A comparison between two types of
widely used weather stations, Weather, 69, 105–110,
https://doi.org/10.1002/wea.2158, 2014.

Kidder, S. Q. and Essenwanger, O. M.: The Effect of
Clouds and Wind on the Difference in Nocturnal Cool-
ing Rates between Urban and Rural Areas, J. Appl.
Meteorol., 34, 2440–2448, https://doi.org/10.1175/1520-
0450(1995)034<2440:TEOCAW>2.0.CO;2, 1995.

Kirk, P. J., Clark, M. R., and Creed, E.: Weather Observations
Website, Weather, 76, 47–49, https://doi.org/10.1002/wea.3856,
2020.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.:
World map of the Köppen-Geiger climate classification up-
dated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-
2948/2006/0130, 2006.

Kousis, I., Pigliautile, I., and Pisello, A. L.: Intra-urban mi-
croclimate investigation in urban heat island through a
novel mobile monitoring system, Sci. Rep., 11, 1–17,
https://doi.org/10.1038/s41598-021-88344-y, 2021.

Lefebvre, W., Vercauteren, J., Schrooten, L., Janssen, S., De-
graeuwe, B., Maenhaut, W., de Vlieger, I., Vankerkom, J., Cose-
mans, G., Mensink, C., Veldeman, N., Deutsch, F., Van Looy,
S., Peelaerts, W., and Lefebre, F.: Validation of the MIMOSA-
AURORA-IFDM model chain for policy support: Modeling con-
centrations of elemental carbon in Flanders, Atmos. Environ.,
45, 6705–6713, https://doi.org/10.1016/j.atmosenv.2011.08.033,
2011.

Leuven.cool: https://www.leuven.cool/, last access: 15 December
2020.

Longman, R. J., Giambelluca, T. W., Nullet, M. A., Frazier,
A. G., Kodama, K., Crausbay, S. D., Krushelnycky, P. D.,
Cordell, S., Clark, M. P., Newman, A. J., and Arnold, J.

R.: Compilation of climate data from heterogeneous net-
works across the Hawaiian Islands, Sci. Data, 5, 180012,
https://doi.org/10.1038/sdata.2018.12, 2018.

Mandement, M. and Caumont, O.: Contribution of personal
weather stations to the observation of deep-convection features
near the ground, Nat. Hazards Earth Syst. Sci., 20, 299–322,
https://doi.org/10.5194/nhess-20-299-2020, 2020.

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A.,
Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F.,
Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B.,
Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H.,
Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse,
M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf,
J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Sal-
gado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon,
B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and
ocean surface platform for coupled or offline simulation of earth
surface variables and fluxes, Geosci. Model Dev., 6, 929–960,
https://doi.org/10.5194/gmd-6-929-2013, 2013.

Meier, F., Fenner, D., Grassmann, T., Otto, M., and Scherer,
D.: Crowdsourcing air temperature from citizen weather sta-
tions for urban climate research, Urban Clim., 19, 170–191,
https://doi.org/10.1016/j.uclim.2017.01.006, 2017.

Muller, C. L., Chapman, L., Johnston, S., Kidd, C., Illing-
worth, S., Foody, G., Overeem, A., and Leigh, R. R.: Crowd-
sourcing for climate and atmospheric sciences: Current sta-
tus and future potential, Int. J. Climatol., 35, 3185–3203,
https://doi.org/10.1002/joc.4210, 2015.

Napoly, A., Grassmann, T., Meier, F., and Fenner, D.: Develop-
ment and Application of a Statistically-Based Quality Control for
Crowdsourced Air Temperature Data, Front. Earth Sci., 6, 1–16,
https://doi.org/10.3389/feart.2018.00118, 2018.

Nipen, T. N., Seierstad, I. A., Lussana, C., Kristiansen, J.,
and Hov, Ø.: Adopting citizen observations in operational
weather prediction, B. Am. Meteorol. Soc., 101, E43–E57,
https://doi.org/10.1175/BAMS-D-18-0237.1, 2020.

Oke, T. R.: City size and the urban heat island, Atmos. Environ., 7,
769–779, 1973.

Qian, Y., Zhou, W., Hu, X., and Fu, F.: The Heterogeneity of Air
Temperature in Urban Residential Neighborhoods and Its Re-
lationship with the Surrounding Greenspace, Remote Sens., 10,
965, https://doi.org/10.3390/rs10060965, 2018.

Rizwan, A. M., Dennis, L. Y. C., and Lia, C.: A review on the
generation, determination and mitigation of Urban Heat Island,
J. Environ. Sci., 20, 120–128, https://doi.org/10.1016/S1001-
0742(08)60019-4, 2008.

RMI: Klimaatstatistieken van de Belgische gemeenten: Leu-
ven, Royal Meteorological Institute of Belgium, Leuven,
5 pp., https://www.meteo.be/resources/climatology/climateCity/
pdf/climate_INS24062_9120_nl.pdf (last access: 14 October
2022), 2020.

Sgoff, C., Acevedo, W., Paschalidi, Z., Ulbrich, S., Bauernschu-
bert, E., Kratzsch, T., and Potthast, R.: Assimilation of crowd-
sourced surface observations over Germany in a regional weather
prediction system, Q. J. Roy. Meteor. Soc., 148, 1752–1767,
https://doi.org/10.1002/qj.4276, 2022.

Earth Syst. Sci. Data, 14, 4681–4717, 2022 https://doi.org/10.5194/essd-14-4681-2022

https://doi.org/10.1127/metz/2017/0861
https://doi.org/10.3389/fenvs.2021.720747
https://doi.org/10.1002/joc.5447
https://doi.org/10.1007/s40572-017-0150-3
https://doi.org/10.1017/9781009157896
https://doi.org/10.1002/wea.2158
https://doi.org/10.1175/1520-0450(1995)034<2440:TEOCAW>2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034<2440:TEOCAW>2.0.CO;2
https://doi.org/10.1002/wea.3856
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1038/s41598-021-88344-y
https://doi.org/10.1016/j.atmosenv.2011.08.033
https://www.leuven.cool/
https://doi.org/10.1038/sdata.2018.12
https://doi.org/10.5194/nhess-20-299-2020
https://doi.org/10.5194/gmd-6-929-2013
https://doi.org/10.1016/j.uclim.2017.01.006
https://doi.org/10.1002/joc.4210
https://doi.org/10.3389/feart.2018.00118
https://doi.org/10.1175/BAMS-D-18-0237.1
https://doi.org/10.3390/rs10060965
https://doi.org/10.1016/S1001-0742(08)60019-4
https://doi.org/10.1016/S1001-0742(08)60019-4
https://www.meteo.be/resources/climatology/climateCity/pdf/climate_INS24062_9120_nl.pdf
https://www.meteo.be/resources/climatology/climateCity/pdf/climate_INS24062_9120_nl.pdf
https://doi.org/10.1002/qj.4276


E. Beele et al.: Quality control and correction method for air temperature data 4717

Sotelino, L. G., De Coster, N., Beirinckx, P., and Peeters, P.:
Intercomparison of Shelters in the RMI AWS Network, WMO-
CIMO, P1_26, Geneva, Switzerland, https://www.wmocimo.net/
wp-content/uploads/P1_26_Sotelino_teco_2018_lgs.pdf (last
access: 14 October 2022), 2018.

Stewart, I. D.: A systematic review and scientific critique of
methodology in modern urban heat island literature, Int. J. Cli-
matol., 31, 200–217, https://doi.org/10.1002/joc.2141, 2011.

Stewart, I. D. and Oke, T. R.: Local climate zones for urban
temperature studies, B. Am. Meteorol. Soc., 93, 1879–1900,
https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.

UN, Population Division: World Urbanization Prospects: The
2018 Revision (ST/ESA/SER.A/420), New York, United Na-
tions, 126 pp., https://population.un.org/wup/publications/Files/
WUP2018-Report.pdf (last access: 14 October 2022), 2019

Venter, Z. S., Chakraborty, T., and Lee, X.: Crowdsourced
air temperatures contrast satellite measures of the ur-
ban heat island and its mechanisms, Sci. Adv., 7, 1–9,
https://doi.org/10.1126/sciadv.abb9569, 2021.

Verdonck, M. L., Demuzere, M., Hooyberghs, H., Beck,
C., Cyrys, J., Schneider, A., Dewulf, R., and Van Coil-
lie, F.: The potential of local climate zones maps as a
heat stress assessment tool, supported by simulated air
temperature data, Landscape Urban Plan., 178, 183–197,
https://doi.org/10.1016/j.landurbplan.2018.06.004, 2018.

Vlaamse Overheid – Departement Omgeving – Afdeling Vlaams
Planbureau voor Omgeving: Landgebruik – Vlaanderen –
toestand 2019: https://www.geopunt.be/catalogus/datasetfolder/
fe979929-a2b5-4353-94c5-608c4b109dc6, last access: 1 March
2022.

Weather Observations Website – Belgium: https://wow.meteo.be/
nl/, last access: 1 March 2022.

WMO: Guide to meteorological instruments and methods of ob-
servation, Volume I – Measurement of Meteorological Vari-
ables, Geneva, 573 pp., https://library.wmo.int/doc_num.php?
explnum_id=10616 (last access: 14 October 2022), 2018.

Yang, Q., Huang, X., Yang, J., and Liu, Y.: The relationship between
land surface temperature and artificial impervious surface frac-
tion in 682 global cities: Spatiotemporal variations and drivers,
Environ. Res. Lett., 16, 024032, https://doi.org/10.1088/1748-
9326/abdaed, 2021.

https://doi.org/10.5194/essd-14-4681-2022 Earth Syst. Sci. Data, 14, 4681–4717, 2022

https://www.wmocimo.net/wp-content/uploads/P1_26_Sotelino_teco_2018_lgs.pdf
https://www.wmocimo.net/wp-content/uploads/P1_26_Sotelino_teco_2018_lgs.pdf
https://doi.org/10.1002/joc.2141
https://doi.org/10.1175/BAMS-D-11-00019.1
https://population.un.org/wup/publications/Files/WUP2018-Report.pdf
https://population.un.org/wup/publications/Files/WUP2018-Report.pdf
https://doi.org/10.1126/sciadv.abb9569
https://doi.org/10.1016/j.landurbplan.2018.06.004
https://www.geopunt.be/catalogus/datasetfolder/fe979929-a2b5-4353-94c5-608c4b109dc6
https://www.geopunt.be/catalogus/datasetfolder/fe979929-a2b5-4353-94c5-608c4b109dc6
https://wow.meteo.be/nl/
https://wow.meteo.be/nl/
https://library.wmo.int/doc_num.php?explnum_id=10616
https://library.wmo.int/doc_num.php?explnum_id=10616
https://doi.org/10.1088/1748-9326/abdaed
https://doi.org/10.1088/1748-9326/abdaed

	Abstract
	Introduction
	Materials and methods
	Study area
	Leuven.cool dataset
	Reference dataset

	Description of the quality control and correction method
	Quality control level 1 – outlier detection
	QC level 1.1 – range outliers
	QC level 1.2 – temporal outliers
	QC level 1.3 – spatial outliers

	Quality control level 2 – inter-station bias correction
	Quality control level 3 – intra-station bias correction
	The intra-station temperature bias
	Building a predictor for the intra-station temperature bias


	Evaluation of the quality control and correction method
	Quality control level 1 – outlier detection
	Quality control level 2 – inter-station bias correction
	Quality control level 3 – intra-station bias correction

	Application of the QC method to the stations in the study area
	Quality control level 1 – outlier detection
	Quality control level 2 – inter-station bias correction
	Quality control level 3 – intra-station bias correction
	Overall impact of the QC method on the dataset

	Application potential of the quality-controlled and corrected Leuven.cool dataset
	Code and data availability
	Conclusions
	Appendix A: Specifications of the WH2600 digital weather station
	Appendix B: Specifications of the LCZ map
	Appendix C: Quality control of other Leuven.cool variables
	Appendix D: Application of the RF model on the LC-R dataset
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

