Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4339-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4339-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The biogeography of relative abundance of soil fungi versus bacteria in surface topsoil
Kailiang Yu
CORRESPONDING AUTHOR
Institute of Integrative Biology, ETH Zürich, Zürich,
Switzerland
Johan van den Hoogen
Institute of Integrative Biology, ETH Zürich, Zürich,
Switzerland
Zhiqiang Wang
Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
Colin Averill
Institute of Integrative Biology, ETH Zürich, Zürich,
Switzerland
Devin Routh
Institute of Integrative Biology, ETH Zürich, Zürich,
Switzerland
Gabriel Reuben Smith
Department of Biology, Stanford University, Stanford, California, USA
Institute of Integrative Biology, ETH Zürich, Zürich,
Switzerland
Rebecca E. Drenovsky
Biology Department, John Carroll University, University Heights, Ohio, USA
Kate M. Scow
Department of Land, Air and Water Resources, University of California,
Davis, California, USA
Fei Mo
College of Agronomy, Northwest A&F University, Shaanxi, China
Mark P. Waldrop
U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics
Science Center, Menlo Park, California, USA
Yuanhe Yang
State Key Laboratory of Vegetation and Environmental Change, Institute
of Botany, Chinese Academy of Sciences, Beijing, China
Weize Tang
South China Botanical Garden, University of Chinese Academy of Sciences, Beijing, China
Key Laboratory of Vegetation Restoration and Management of Degraded
Ecosystems, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
Franciska T. De Vries
Institute of Biodiversity and Ecosystem Dynamics, University of
Amsterdam, Amsterdam, the Netherlands
Richard D. Bardgett
Department of Earth and Environmental Sciences, University of
Manchester, Oxford Road, Manchester, UK
Peter Manning
Department of Biological Sciences, University of Bergen, Bergen, Norway
Felipe Bastida
CEBAS-CSIC, Department of Soil and Water Conservation, Campus
Universitario de Espinardo, Murcia, Spain
Sara G. Baer
Kansas Biological Survey and Department of Ecology & Evolutionary
Biology, University of Kansas, Lawrence, Kansas, USA
Elizabeth M. Bach
The Nature Conservancy, Nachusa Grasslands, Franklin Grove, IL, USA
Carlos García
CEBAS-CSIC, Department of Soil and Water Conservation, Campus
Universitario de Espinardo, Murcia, Spain
Qingkui Wang
Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of
Forest Ecology and Management, Institute of Applied Ecology, Shenyang,
China
Linna Ma
State Key Laboratory of Vegetation and Environmental Change, Institute
of Botany, Chinese Academy of Sciences, Beijing, China
Baodong Chen
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
Xianjing He
Key Laboratory of the Three Gorges Reservoir Region's
Eco-Environment, Ministry of Education, Chongqing University, Chongqing,
China
Sven Teurlincx
Department of Aquatic Ecology, Netherlands Institute of Ecology
(NIOO-KNAW), Wageningen, the Netherlands
Amber Heijboer
Biometris, Wageningen University & Research, Wageningen,
the Netherlands
Ecology and Biodiversity Group, Department of Biology, Institute of
Environmental Biology, Utrecht University, Padualaan, the Netherlands
James A. Bradley
School of Geography, Queen Mary University of London, London, E1 4NS,
UK
Thomas W. Crowther
CORRESPONDING AUTHOR
Institute of Integrative Biology, ETH Zürich, Zürich,
Switzerland
Related authors
No articles found.
Chaoxue Zhang, Na Li, and Linna Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-3080, https://doi.org/10.5194/egusphere-2025-3080, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Winter warming is increasing freeze-thaw cycles in grasslands, but how this affects N cycling remains unclear. We studied how freeze-thaw frequency impacts N availability in grasslands using 15N tracer. Results showed that frequent freeze-thaw release N but make it harder for most plants to access, instead benefiting soil microbes. Some cold-adapted grasses could still obtain N. These findings reveal how winter climate changes may reshape grassland community structure and productivity.
Lei Zhang, Lin Yang, Thomas W. Crowther, Constantin M. Zohner, Sebastian Doetterl, Gerard B. M. Heuvelink, Alexandre M. J.-C. Wadoux, A.-Xing Zhu, Yue Pu, Feixue Shen, Haozhi Ma, Yibiao Zou, and Chenghu Zhou
Earth Syst. Sci. Data, 17, 2605–2623, https://doi.org/10.5194/essd-17-2605-2025, https://doi.org/10.5194/essd-17-2605-2025, 2025
Short summary
Short summary
Current understandings of depth-dependent variations and controls of soil organic carbon turnover time (τ) at global, biome, and local scales remain incomplete. We used the state-of-the-art soil and root profile databases and satellite observations to generate new spatially explicit global maps of topsoil and subsoil τ, with quantified uncertainties for better user applications. The new insights from the resulting maps will facilitate efforts to model the carbon cycle and will support effective carbon management.
Jing-li Lu, Thomas W. Crowther, Manuel Delgado-Baquerizo, Wenjie Liu, Yamin Jiang, Hongyang Sun, and Zhiqiang Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-229, https://doi.org/10.5194/essd-2025-229, 2025
Preprint under review for ESSD
Short summary
Short summary
We used a global dataset to examine patterns and drivers of fungal necromass C (FNC), bacterial necromass C (BNC), and their ratio across agricultural and natural ecosystems. FNC contributed about twice as much as BNC to SOC in both systems, with higher contributions overall in agricultural soils. Soil C/N and clay content mainly drove FNC and BNC contributions, while elevation primarily influenced the FNC/BNC ratio.
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
Biogeosciences, 22, 1475–1493, https://doi.org/10.5194/bg-22-1475-2025, https://doi.org/10.5194/bg-22-1475-2025, 2025
Short summary
Short summary
Nitrogen concentrations in tree tissues (leaves, branches, stems, and roots) are related to photosynthesis, growth, and respiration and thus to vegetation carbon uptake. Our novel database allows us to identify the controls of tree tissue nitrogen concentrations in boreal and temperate forests, such as tree age/size, species, and climate. Changes therein will affect tissue nitrogen concentrations and thus also vegetation carbon uptake.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Yingping Wang, Julian Helfenstein, Yuanyuan Huang, Kailiang Yu, Zhiqiang Wang, Yongchuan Yang, and Enqing Hou
Earth Syst. Sci. Data, 13, 5831–5846, https://doi.org/10.5194/essd-13-5831-2021, https://doi.org/10.5194/essd-13-5831-2021, 2021
Short summary
Short summary
Our database of globally distributed natural soil total P (STP) concentration showed concentration ranged from 1.4 to 9630.0 (mean 570.0) mg kg−1. Global predictions of STP concentration increased with latitude. Global STP stocks (excluding Antarctica) were estimated to be 26.8 and 62.2 Pg in the topsoil and subsoil, respectively. Our global map of STP concentration can be used to constrain Earth system models representing the P cycle and to inform quantification of global soil P availability.
Jennifer M. Rhymes, Irene Cordero, Mathilde Chomel, Jocelyn M. Lavallee, Angela L. Straathof, Deborah Ashworth, Holly Langridge, Marina Semchenko, Franciska T. de Vries, David Johnson, and Richard D. Bardgett
SOIL, 7, 95–106, https://doi.org/10.5194/soil-7-95-2021, https://doi.org/10.5194/soil-7-95-2021, 2021
Cited articles
Anderegg, L. D. L., Anderegg, W. R. L., Abatzoglou, J., Hausladen, A. M., and
Berry, J. A.: Drought characteristics' role in widespread aspen forest
mortality across Colorado, USA, Glob. Chang. Biol., 19, 1526–1537,
https://doi.org/10.1111/gcb.12146, 2013.
Averill, C., Turner, B. L., and Finzi, A. C.: Mycorrhiza-mediated competition
between plants and decomposers drives soil carbon storage, Nature,
505, 543–545, https://doi.org/10.1038/nature12901, 2014.
Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L.,
Soudzilovskaia, N. A., Bodegom, P. M., Bengtsson-Palme, J., Anslan, S.,
Coelho, L. P., Harend, H., Huerta-Cepas, J., Medema, M. H., Maltz, M. R.,
Mundra, S., Olsson, P. A., Pent, M., Põlme, S., Sunagawa, S., Ryberg,
M., Tedersoo, L., and Bork, P.: Structure and function of the global topsoil
microbiome, Nature, 560, 233–237, https://doi.org/10.1038/s41586-018-0386-6,
2018.
Bardgett, R. D. and van der Putten, W. H.: Belowground biodiversity and
ecosystem functioning., Nature, 515, 505–511, https://doi.org/10.1038/nature13855,
2014.
Bardgett, R. D., Freeman, C., and Ostle, N. J.: Microbial contributions to
climate change through carbon cycle feedbacks, ISME J., 2, 805–814,
https://doi.org/10.1038/ismej.2008.58, 2008.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Caldwell, B. A.: Enzyme activities as a component of soil biodiversity: A review, Pedobiologia, 49, 637–644, https://doi.org/10.1016/j.pedobi.2005.06.003, 2005.
Chen, Y. L., Ding, J. Z., Peng, Y. F., Li, F., Yang, G. B., Liu, L., Qin, S.
Q., Fang, K., and Yang, Y. H.: Patterns and drivers of soil microbial
communities in Tibetan alpine and global terrestrial ecosystems, J.
Biogeogr., 43, 2027–2039, https://doi.org/10.1111/jbi.12806, 2016.
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D.,
Mo, L., Averill, C., and Maynard, D. S.: The global soil community and its
influence on biogeochemistry, Science, 365, eaav0550, https://doi.org/10.1126/science.aav0550,
2019.
Delgado-Baquerizo, M., Powell, J. R., Hamonts, K., Reith, F., Mele, P.,
Brown, M. V., Dennis, P. G., Ferrari, B. C., Fitzgerald, A., Young, A.,
Singh, B. K., and Bissett, A.: Circular linkages between soil biodiversity,
fertility and plant productivity are limited to topsoil at the continental
scale, New Phytol., 215, 1186–1196, https://doi.org/10.1111/nph.14634, 2017.
de Vries, F. T., Manning, P., Tallowin, J. R. B., Mortimer, S. R., Pilgrim,
E. S., Harrison, K. A., Hobbs, P. J., Quirk, H., Shipley, B., Cornelissen,
J. H. C., Kattge, J., and Bardgett, R. D.: Abiotic drivers and plant traits
explain landscape-scale patterns in soil microbial communities, Ecol. Lett.,
15, 1230–1239, https://doi.org/10.1111/j.1461-0248.2012.01844.x, 2012.
Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E., and Scow, K. M.: Land
use and climatic factors structure regional patterns in soil microbial
communities, Glob. Ecol. Biogeogr., 19, 27–39,
https://doi.org/10.1111/j.1466-8238.2009.00486.x, 2010a.
Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E., and Scow, K. M.: Land
use and climatic factors structure regional patterns in soil microbial
communities, Glob. Ecol. Biogeogr., 19, 27–39, https://doi.org/10.1111/j.1466-8238.2009.00486.x,
2010b.
Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., and Cleveland,
C. C.: Global patterns in belowground communities, Ecol. Lett., 12,
1238–1249, https://doi.org/10.1111/j.1461-0248.2009.01360.x, 2009.
Frindte, K., Pape, R., Werner, K., Löffler, J., and Knief, C.:
Temperature and soil moisture control microbial community composition in an
arctic–alpine ecosystem along elevational and micro-topographic gradients,
ISME J., 13, 2031–2043, https://doi.org/10.1038/s41396-019-0409-9, 2019.
Frostegård, Å., Tunlid, A., and Bååth, E.: Use and misuse of
PLFA measurements in soils, Soil Biol. Biochem., 43, 1621–1625,
https://doi.org/10.1016/j.soilbio.2010.11.021, 2011.
Glassman, S. I., Weihe, C., Li, J., Albright, M. B. N., Looby, C. I.,
Martiny, A. C., Treseder, K. K., Allison, S. D., and Martiny, J. B. H.:
Decomposition responses to climate depend on microbial community
composition, P. Natl. Acad. Sci. USA, 115, 11994–11999, https://doi.org/10.1073/pnas.1811269115,
2018.
He, L., Mazza Rodrigues, J. L., Soudzilovskaia, N. A., Barceló, M.,
Olsson, P. A., Song, C., Tedersoo, L., Yuan, F., Yuan, F., Lipson, D. A., and
Xu, X.: Global biogeography of fungal and bacterial biomass carbon in
topsoil, Soil Biol. Biochem., 151, 108024, https://doi.org/10.1016/j.soilbio.2020.108024, 2020.
Jangid, K., Williams, M. A., Franzluebbers, A. J., Schmidt, T. M., Coleman,
D. C., and Whitman, W. B.: Land-use history has a stronger impact on soil
microbial community composition than aboveground vegetation and soil
properties, Soil Biol. Biochem., 43, 2184–2193,
https://doi.org/10.1016/j.soilbio.2011.06.022, 2011.
Jenny, H.: Factors of Soil Formation, Soil Sci., 52, 415,
https://doi.org/10.1097/00010694-194111000-00009, 1941.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L.,
Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson, K.
M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S.
N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries,
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B.,
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S.,
and Ellsworth, D. S.: The fate of carbon in a mature forest under carbon
dioxide enrichment, Nature, 580, 227–231, https://doi.org/10.1038/s41586-020-2128-9, 2020.
Klamer, M. and Bååth, E.: Estimation of conversion factors for
fungal biomass determination in compost using ergosterol and PLFA
18:2ω6,9, Soil Biol. Biochem., 36, 57–65,
https://doi.org/10.1016/j.soilbio.2003.08.019, 2004.
Lavahun, M. F. E., Joergensen, R. G., and Meyer, B.: Activity and biomass of
soil microorganisms at different depths, Biol. Fertil. Soils, 23, 38–42,
https://doi.org/10.1007/BF00335816, 1996.
Liang, C., Amelung, W., Lehmann, J., and Kästner, M.: Quantitative
assessment of microbial necromass contribution to soil organic matter, Glob.
Chang. Biol., 25, 3578–3590, https://doi.org/10.1111/gcb.14781, 2019.
Locey, K. J. and Lennon, J. T.: Scaling laws predict global microbial
diversity, P. Natl. Acad. Sci. USA, 113, 5970–5975, https://doi.org/10.1073/pnas.1521291113,
2016.
Malik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J.,
Vazquez, P. G. M., Jehmlich, N., von Bergen, M., Griffiths, R. I., and
Gleixner, G.: Soil fungal: Bacterial ratios are linked to altered carbon
cycling, Front. Microbiol., 7, 1247, https://doi.org/10.3389/fmicb.2016.01247, 2016.
Moore, J. C. and William Hunt, H.: Resource compartmentation and the
stability of real ecosystems, Nature, 333, 261–263, https://doi.org/10.1038/333261a0, 1988.
Moore, J. C., McCann, K., Setälä, H., and De Ruiter, P. C.: Top-down
is bottom-up: Does predation in the rhizosphere regulate aboveground
dynamics?, Ecology, 84, 846–857, https://doi.org/10.1890/0012-9658(2003)084[0846:TIBDPI]2.0.CO;2,
2003.
Romero-Olivares, A. L., Allison, S. D., and Treseder, K. K.: Soil microbes
and their response to experimental warming over time: A meta-analysis of
field studies, Soil Biol. Biochem., 107, 32–40, https://doi.org/10.1016/j.soilbio.2016.12.026, 2017.
Rousk, J. and Bååth, E.: Fungal biomass production and turnover in
soil estimated using the acetate-in-ergosterol technique, Soil Biol.
Biochem., 39, 2173–2177, https://doi.org/10.1016/j.soilbio.2007.03.023, 2007.
Rousk, J., Brookes, P. C., and Bååth, E.: Contrasting soil pH effects
on fungal and bacterial growth suggest functional redundancy in carbon
mineralization, Appl. Environ. Microbiol., 75, 1589–1596,
https://doi.org/10.1128/AEM.02775-08, 2009.
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C.,
Caporaso, J. G., Knight, R., and Fierer, N.: Soil bacterial and fungal
communities across a pH gradient in an arable soil, ISME J., 4,
1340–1351, https://doi.org/10.1038/ismej.2010.58, 2010.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12,000 years
of human land use, P. Natl. Acad. Sci. USA, 114, 9575–9580,
https://doi.org/10.1073/pnas.1706103114, 2017.
Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2 on
the terrestrial carbon cycle, P. Natl. Acad. Sci. USA, 112, 436–441,
https://doi.org/10.1073/pnas.1407302112, 2015.
Sengupta, A., Fansler, S. J., Chu, R. K., Danczak, R. E., Garayburu-Caruso, V. A., Renteria, L., Song, H.-S., Toyoda, J., Wells, J., and Stegen, J. C.: Disturbance triggers non-linear microbe–environment feedbacks, Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, 2021.
Shi, Z., Crowell, S., Luo, Y., and Moore, B.: Model structures amplify
uncertainty in predicted soil carbon responses to climate change, Nat.
Commun., 9, 2171, https://doi.org/10.1038/s41467-018-04526-9, 2018.
Six, J., Frey, S. D., Thiet, R. K., and Batten, K. M.: Bacterial and Fungal
Contributions to Carbon Sequestration in Agroecosystems, Soil Sci. Soc. Am.
J., 70, 555, https://doi.org/10.2136/sssaj2004.0347, 2006.
Soares, M. and Rousk, J.: Microbial growth and carbon use efficiency in
soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry,
Soil Biol. Biochem., 131, 195–205, https://doi.org/10.1016/j.soilbio.2019.01.010, 2019.
Strickland, M. S. and Rousk, J.: Considering fungal: Bacterial dominance in
soils – Methods, controls, and ecosystem implications, Soil Biol. Biochem., 42, 1385–1395,
https://doi.org/10.1016/j.soilbio.2010.05.007, 2010.
Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., and Pacala, S.
W.: Microbe-driven turnover offsets mineral-mediated storage of soil carbon
under elevated CO2, Nat. Clim. Chang., 4, 1385–1395, https://doi.org/10.1038/nclimate2436, 2014.
Tagesson, T., Schurgers, G., Horion, S., Ciais, P., Tian, F., Brandt, M.,
Ahlström, A., Wigneron, J. P., Ardö, J., Olin, S., Fan, L., Wu, Z.,
and Fensholt, R.: Recent divergence in the contributions of tropical and
boreal forests to the terrestrial carbon sink, Nat. Ecol. Evol., 4, 202–209,
https://doi.org/10.1038/s41559-019-1090-0, 2020.
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S.,
Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A.,
Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T.,
Ratkowsky, D., Pritsch, K., Põldmaa, K., Piepenbring, M., Phosri, C.,
Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., Njouonkou,
A. L., Nilsson, R. H., Morgado, L. N., Mayor, J., May, T. W., Majuakim, L.,
Lodge, D. J., Lee, S., Larsson, K. H., Kohout, P., Hosaka, K., Hiiesalu, I.,
Henkel, T. W., Harend, H., Guo, L. D., Greslebin, A., Grelet, G., Geml, J.,
Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De Kesel, A.,
Dang, T., Chen, X., Buegger, F., Brearley, F. Q., Bonito, G., Anslan, S.,
Abell, S., and Abarenkov, K.: Global diversity and geography of soil fungi,
Science, 346, 1256688, https://doi.org/10.1126/science.1256688, 2014.
Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J.,
Craig, M. E., van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker,
B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, H., Evans, R.
D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, S., and Jackson, R.
B.: A trade-off between plant and soil carbon storage under elevated CO2,
Nature, 591, 599–603, https://doi.org/10.1038/s41586-021-03306-8, 2021.
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W.,
Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W.
S., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E.,
Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., Mauro
da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B. S.,
Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A.,
Korthals, G., Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton,
M., Marais, M., Martín, J. A. R., Matveeva, E., Mayad, E. H., Mulder,
C., Mullin, P., Neilson, R., Nguyen, T. A. D., Nielsen, U. N., Okada, H.,
Rius, J. E. P., Pan, K., Peneva, V., Pellissier, L., Carlos Pereira da
Silva, J., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann,
S., Moreno, S. S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A.
V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C.,
Waeyenberge, L., Wall, D. H., Wilschut, R., Wright, D. G., Yang, J., and
Crowther, T. W.: Soil nematode abundance and functional group composition at
a global scale, Nature, 572, 194–198, https://doi.org/10.1038/s41586-019-1418-6, 2019.
Van Der Heijden, M. G. A., Bardgett, R. D., and Van Straalen, N. M.: The
unseen majority: Soil microbes as drivers of plant diversity and
productivity in terrestrial ecosystems, Ecol. Lett., 11, 296–310,
https://doi.org/10.1111/j.1461-0248.2007.01139.x, 2008.
Waldrop, M. P., Holloway, J. M., Smith, D. B., Goldhaber, M. B., Drenovsky,
R. E., Scow, K. M., Dick, R., Howard, D., Wylie, B., and Grace, J. B.: The
interacting roles of climate, soils, and plant production on soil microbial
communities at a continental scale, Ecology, 98, 1957–1967, https://doi.org/10.1002/ecy.1883, 2017.
Wang, Q., Liu, S., and Tian, P.: Carbon quality and soil microbial property
control the latitudinal pattern in temperature sensitivity of soil microbial
respiration across Chinese forest ecosystems, Glob. Chang. Biol., 24, 2841–2849,
https://doi.org/10.1111/gcb.14105, 2018.
Waring, B. G., Averill, C., and Hawkes, C. V.: Differences in fungal and
bacterial physiology alter soil carbon and nitrogen cycling: Insights from
meta-analysis and theoretical models, Ecol. Lett., 16, 887–894,
https://doi.org/10.1111/ele.12125, 2013.
Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon
projections are improved by modelling microbial processes, Nat. Clim.
Chang., 3, 909–912, https://doi.org/10.1038/nclimate1951, 2013.
Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O.,
He, Y., Hopkins, F., Luo, Y., Smith, M. J., Sulman, B., Todd-Brown, K.,
Wang, Y. P., Xia, J., and Xu, X.: Explicitly representing soil microbial
processes in Earth system models, Global Biogeochem. Cycles, 29,
1782–1800, https://doi.org/10.1002/2015GB005188, 2015.
Yu, K.: Biogeography-of-soil-microbes, figshare [data set], https://doi.org/10.6084/m9.figshare.19556419, 2022.
Yu, K. and D'Odorico, P.: Hydraulic lift as a determinant of tree-grass
coexistence on savannas, New Phytol., 207, 1038–1051,
https://doi.org/10.1111/nph.13431, 2015.
Yu, K., Smith, W. K., Trugman, A. T., Condit, R., Hubbell, S. P., Sardans,
J., Peng, C., Zhu, K., Peñuelas, J., Cailleret, M., Levanic, T.,
Gessler, A., Schaub, M., Ferretti, M., and Anderegg, W. R. L.: Pervasive
decreases in living vegetation carbon turnover time across forest climate
zones, P. Natl. Acad. Sci. USA, 116, 24662–24667, https://doi.org/10.1073/pnas.1821387116, 2019.
Yue, H., Wang, M., Wang, S., Gilbert, J. A., Sun, X., Wu, L., Lin, Q., Hu,
Y., Li, X., He, Z., Zhou, J., and Yang, Y.: The microbe-mediated mechanisms
affecting topsoil carbon stock in Tibetan grasslands, ISME J., 9, 2012–2020,
https://doi.org/10.1038/ismej.2015.19, 2015.
Zhu, Q., Riley, W. J., and Tang, J.: A new theory of plant-microbe nutrient
competition resolves inconsistencies between observations and model
predictions, Ecol. Appl., 27, 875–886, https://doi.org/10.1002/eap.1490, 2017.
Short summary
We used a global-scale dataset for the surface topsoil (>3000 distinct observations of abundance of soil fungi versus bacteria) to generate the first quantitative map of soil fungal proportion across terrestrial ecosystems. We reveal striking latitudinal trends. Fungi dominated in regions with low mean annual temperature (MAT) and net primary productivity (NPP) and bacteria dominated in regions with high MAT and NPP.
We used a global-scale dataset for the surface topsoil (>3000 distinct observations of abundance...
Altmetrics
Final-revised paper
Preprint