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Classification of vegetation biomes and vegetation types  1 

Following the approach by Olson et al. 2006, vegetation biomes where the soil samples were 2 

collected were classified into tundra, boreal forests, montane grasslands, temperate conifer 3 

forests, temperate grasslands, temperate broadleaf forests, tropical forests, and Mediterranean 4 

& deserts. Mediterranean and deserts had low sample sizes and thus were combined into one 5 

vegetation biome. To determine the vegetation types in locations where the soil samples were 6 

collected, we used the Global 1-km Consensus Land Cover map2. The land cover map 7 

classifies vegetation or land cover types into Evergreen/Deciduous Needleleaf Trees, 8 

Evergreen Broadleaf Trees, Deciduous Broadleaf Trees, Mixed/Other Trees, Shrubs, 9 

Herbaceous Vegetation, Cultivated and Managed Vegetation, Regularly Flooded Vegetation, 10 

Urban/Built-up, Snow/Ice, Barren, and Open Water. We summed up the vegetation types of 11 

Evergreen/Deciduous Needleleaf Trees, Evergreen Broadleaf Trees, Deciduous Broadleaf 12 

Trees, Mixed/Other Trees and Shrubs to derive the total woody plant cover. To represent 13 

human activities (or land usage change), we used land cover of Cultivated and Managed 14 

Vegetation to derive the managed cover. Total vegetation cover is the sum of woody, 15 

herbaceous and managed vegetation cover. Then we classified our soil sample locations into 16 

vegetation types or ecosystems dominated by woody vegetation, managed vegetation, and 17 

herbaceous vegetation. To this end, we tested various thresholds of vegetation cover values 18 

and chose the one without overlaps among different vegetation types. That is, if the total 19 

vegetation cover was less than 20% or the cover of barren soil was greater than 50%, it was 20 

classified as barren soil. If the woody vegetation cover was larger than 20% and larger than 21 

the managed vegetation cover, it was classified into the vegetation type or ecosystem 22 

dominated by woody vegetation. If the managed vegetation cover was larger than 20% and 23 

larger than the woody vegetation cover, it was classified into the vegetation type or ecosystem 24 
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dominated by managed vegetation. The rest of sample sites were classified into herbaceous 25 

vegetation dominated ecosystem, if herbaceous vegetation cover was larger than 20%.  26 

Environmental drivers  27 
 28 
Based on previous studies3–5, variables or covariates of climate, soil and human activities 29 

which likely affect F:B ratio or fungal proportion were selected for this study. They include 30 

climate conditions (aridity index, mean annual precipitation-MAP, mean annual temperature-31 

MAT), soil properties (clay, silt and sand content, soil organic carbon-SOC, soil C:N ratio, 32 

pH, cation exchange capacity), vegetation index (net primary productivity-NPP, woody 33 

vegetation cover, herbaceous vegetation cover), and human activities (managed vegetation 34 

cover). All of these variables were derived from the global layers based on georeferenced 35 

coordinates of aggregated soil sample at 30 arc-seconds resolution. Machine-learning 36 

algorithm Random Forest was then used to determine variable importance for these 12 37 

variable (Breiman 2001). We ran 1000 simulations of machine-learning algorithm random 38 

forest and reported mean values of mean decrease in accuracy (%IncMSE) and mean decrease 39 

gini (IncNodePurity) with 95% confidence interval. The greater the values of %IncMSE and 40 

IncNodePurity are, the more important the variables are.          41 

Machine learning  42 
 43 
Fungal proportion has the largest sample size (n = 3224 samples) and is the focus of our 44 

study. Because of better predictive strength, we used machine learning (random forest) to 45 

generate a spatially explicit map of fungal proportion at a global scale. The distinct soil 46 

samples (n = 3224) falling within the same 30 arc-seconds (~1-km2) pixel were aggregated as 47 

an average, thus resulting in a total of 946 unique pixels across global as inputs into the 48 

geospatial modelling.  49 

      To generate a quantitative and mechanistic understanding of environmental controls on 50 

fungal proportion across landscapes, we used a stack of ecologically relevant, global map 51 
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layers including climatic, soil nutrient, soil chemical, soil physical, vegetative indices, 52 

radiation and topographic variables and anthropogenic covariates (Supplementary Table 1). 53 

All of these covariate map layers were standardized at 30 arc-seconds resolution (≈1km at the 54 

equator). When these global layers’ resolution is higher than 30 arc-seconds, we 55 

downsampled these layers using a mean aggregation method. In contrast, if layers have a 56 

lower original resolution, we resampled these layers using simple upsampling (i.e., without 57 

interpolation) to align with the higher resolution grid. Each sample (plot)-specific 58 

independent variables were then derived from these ecologically relevant, global map layers 59 

based on each sample’ georeferenced location.  60 

        The soil samples used for measuring soil microbes were collected from top soil surface 61 

(0-10/15 cm). To approximate the sampling soil depth, we thus used the soil variable at soil 62 

depth of 15 cm, thus resulting in a total of 90 ecologically relevant, global map layers. 63 

Geospatial modelling was used to investigate the dependence of fungal proportion on the 90 64 

covariates. We followed recent advancements in machine learning for spatial prediction6, and 65 

used random forest with a variety of parameters (i.e., variablesPerSplit 2, 3, 4, 5, 8, 10) to 66 

train the models and assessed each model using k-fold cross validation (with k = 10). This 67 

allowed us to quantify the coefficient of determination values for each fold of data in each 68 

model. Then we determined the mean and standard deviation values for the cross validated 69 

models. The model with the highest coefficient of determination values and lowest standard 70 

deviation were selected as the best model. The results showed that the final (best) model had a 71 

remarkably high strength of prediction (mean cross-validation R2 = 0.43, standard deviation =  72 

0.09). The “best model” with the highest coefficient of determination values and lowest 73 

standard deviation were then used to spatially explanate the fungal proportion at a global 74 

scale, with the derived 90 covariates on all the soil samples (n = 946). The results showed 75 

again that the best performing model had remarkably high predictive strength at a global scale 76 
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(overall R2 = 0.90).  77 

       To account for the potential role of land usage change, we used the subset of data 78 

including only natural ecosystems (n = 1795) and aggregated the samples at 30 arc-seconds 79 

(~1-km2) resolution as an average. We then used machine learning (random forest) to 80 

generate a spatially explicit map of fungal proportion at a global scale, using the derived 90 81 

covariates on all the soil samples (n = 716) (Fig. S1). The predictive strength of using data of 82 

natural ecosystems was lower than the case of using full dataset. But it still had good 83 

predictive strength with mean cross-validation R2 = 0.35 and a final best model R2 = 0.91 84 

(Fig. S9). In view of the minimal difference of the two scenarios, the main text reported 85 

results from the full dataset, whereas results from only the natural ecosystems was reported in 86 

the supplementary materials. 87 

        88 

 89 

 90 

 91 

 92 

 93 

 94 

 95 

 96 

 97 
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Fig. S1 Frequency distribution (%) of proportion of fungi, fungal and bacterial ratio 137 

and bacterial and fungal ratio. The data is derived from the original distinct soil samples (n 138 

= 3224 for all data and n = 1795 for natural ecosystems) before aggregation.  139 
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 160 
 161 
Fig. S2 Map of sample locations for fungal proportion using natural ecosystems. All data 162 

points (n = 1795) falling within the same 30 arc-seconds (~1-km2) pixel were aggregated via 163 

an average (n = 716).  164 
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Fig. S3 Map of sample locations for abundance of fungi and bacteria. All data points (n = 202 

2753 for fungi and n = 2759 for bacteria) falling within the same 30 arc-seconds (~1-km2) 203 

pixel were aggregated via an average (n = 646 and n = 647 for both fungi and bacteria, 204 

respectively).  205 
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Fig. S4 The standard error of the predicted mean values of fungal proportion decrease with 225 

increasing sample size, quantified by the 1000 bootstrapping. a, the scenario of using full 226 

dataset. b, the scenario of using dataset with natural ecosystems.  227 
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Fig. S5 Abundance of fungi (a), bacteria (b), and fungi and bacteria ratio (c) derived 255 

from PLFA as affected by latitude.  256 
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 276 

Fig. S6 The median and interquartile range (a) and mean ± 95 CIs (b) of abundance of 277 

fungi and bacteria and fungal proportion across vegetation types. Mediterranean and 278 

desert have low sample sizes (<25) and thus were combined.  279 
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Fig. S7 Mean decrease in accuracy (%IncMSE, mean and SD) and mean decrease gini 298 

(IncNodePurity, mean and SD) estimated from 1000 simulations of random forests. This 299 

is used to evaluate the importance of top environmental drivers on proportion of fungi derived 300 

from natural ecosystems.  301 
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Fig. S8 Fungal proportion is primarily associated with net primary productivity and 328 

climate using data set of natural ecosystems. a–b, Partial feature contributions of primary 329 

environmental variables (a, MAT; b, NPP) to proportion of fungi. c, Partial feature 330 

contributions of primary environmental variable interactions (MAT vs NPP) to proportion of 331 

fungi.  332 
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Fig. S9 Partial feature contributions of soil C:N (a) and pH (b) to fungal proportion.  368 
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 385 

Fig. S10 Model and data validation in the final model. a, the scenario of using full dataset 386 

for fungal proportion; b, the scenario of using dataset from natural ecosystems for fungal 387 

proportion; C. Heat plots showing the relationships between predicted versus observed values 388 

of fungal proportion for the best final models. Dashed diagonal lines indicate fitted 389 

relationships, while solid diagonal lines indicate a 1:1 relationship between predicted and 390 

observed points.  391 
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Fig. S11 Global map of fungal proportion (a) and bootstrapped (100 iterations) 411 

coefficient of variation (b) at the 30 arcsec (approximately 1 km) pixel scale using the 412 

data with natural ecosystems. Bootstrapped coefficient of variation is standard deviation 413 

divided by the mean predicted value as a measure of prediction accuracy. Sampling was 414 

stratified by biome.  415 
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Fig. S12 Global map of fungal proportion (a) and bootstrapped (100 iterations) 439 

coefficient of variation (b) at the 30 arcsec (approximately 1 km) pixel scale using full 440 

data. Bootstrapped coefficient of variation is standard deviation divided by the mean 441 

predicted value as a measure of prediction accuracy. Samples were selected by randomly 442 

sampling 90% full datasets with replacement to account for the unbalanced sample 443 

distribution.  444 
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