Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2697-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2697-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optical and biogeochemical properties of diverse Belgian inland and coastal waters
Alexandre Castagna
CORRESPONDING AUTHOR
Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
Luz Amadei Martínez
Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
Margarita Bogorad
Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
Ilse Daveloose
Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
Renaat Dasseville
Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
Heidi Melita Dierssen
Department of Marine Sciences, University of Connecticut, Groton, CT, United States
Matthew Beck
Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Jonas Mortelmans
Marine Observation Centre (MOC), Flanders Marine Instute (VLIZ), Oostende, Belgium
Héloïse Lavigne
Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Ana Dogliotti
Instituto de Astronomía y Física del Espacio (IAFE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
David Doxaran
Laboratoire d'Océanographie de Villefranche, CNRS-Sorbonne University, Villefranche, France
Kevin Ruddick
Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Wim Vyverman
Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
Koen Sabbe
Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
Related authors
Héloïse Lavigne, Ana Dogliotti, David Doxaran, Fang Shen, Alexandre Castagna, Matthew Beck, Quinten Vanhellemont, Xuerong Sun, Juan Ignacio Gossn, Pannimpullath Remanan Renosh, Koen Sabbe, Dieter Vansteenwegen, and Kevin Ruddick
Earth Syst. Sci. Data, 14, 4935–4947, https://doi.org/10.5194/essd-14-4935-2022, https://doi.org/10.5194/essd-14-4935-2022, 2022
Short summary
Short summary
Because of the large diversity of case 2 waters and the complexity of light transfer, retrieving main biogeochemical parameters in these waters is still challenging. By providing optical and biogeochemical parameters for 180 sampling stations with turbidity and chlorophyll-a concentration ranging from low to extreme values, the HYPERMAQ dataset will contribute to a better description of marine optics in optically complex water bodies and can help the scientific community to develop algorithms.
A. Castagna, H. Evangelista, L. G. Tilstra, and R. Kerr
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-11671-2014, https://doi.org/10.5194/bgd-11-11671-2014, 2014
Revised manuscript not accepted
Philippe Massicotte, Marcel Babin, Frank Fell, Vincent Fournier-Sicre, and David Doxaran
Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, https://doi.org/10.5194/essd-15-3529-2023, 2023
Short summary
Short summary
The COASTlOOC oceanographic expeditions in 1997 and 1998 studied the relationship between seawater properties and biology and chemistry across the European coasts. The team collected data from 379 stations using ships and helicopters to support the development of ocean color remote-sensing algorithms. This unique and consistent dataset is still used today by researchers.
Héloïse Lavigne, Ana Dogliotti, David Doxaran, Fang Shen, Alexandre Castagna, Matthew Beck, Quinten Vanhellemont, Xuerong Sun, Juan Ignacio Gossn, Pannimpullath Remanan Renosh, Koen Sabbe, Dieter Vansteenwegen, and Kevin Ruddick
Earth Syst. Sci. Data, 14, 4935–4947, https://doi.org/10.5194/essd-14-4935-2022, https://doi.org/10.5194/essd-14-4935-2022, 2022
Short summary
Short summary
Because of the large diversity of case 2 waters and the complexity of light transfer, retrieving main biogeochemical parameters in these waters is still challenging. By providing optical and biogeochemical parameters for 180 sampling stations with turbidity and chlorophyll-a concentration ranging from low to extreme values, the HYPERMAQ dataset will contribute to a better description of marine optics in optically complex water bodies and can help the scientific community to develop algorithms.
Viviana Otero, Steven Pint, Klaas Deneudt, Maarten De Rijcke, Jonas Mortelmans, Lennert Schepers, Patricia Cabrera, Koen Sabbe, Wim Vyverman, Michiel Vandegehuchte, and Gert Everaert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-11, https://doi.org/10.5194/bg-2022-11, 2022
Revised manuscript not accepted
Short summary
Short summary
A mechanistic ecological model analysed which factors drive marine phytoplankton biomass dynamics in the southern part of the North Sea and how their relationship to primary production varies on a spatiotemporal scale. We found a spatiotemporal dependence, meaning that the effects of changing abiotic conditions on phytoplankton biomass dynamics are difficult to generalise. The tailor-made ecological model will enables to predict phytoplankton biomass dynamics under future climate scenarios.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021, https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary
Short summary
We present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Mean daily RF was double for green (~26 W m−2) vs. red (~13 W m−2) snow algae during the peak growing season, which is on par with midlatitude dust attributions capable of advancing snowmelt.
Jean-Pierre Gattuso, Bernard Gentili, David Antoine, and David Doxaran
Earth Syst. Sci. Data, 12, 1697–1709, https://doi.org/10.5194/essd-12-1697-2020, https://doi.org/10.5194/essd-12-1697-2020, 2020
Short summary
Short summary
Light is a key ocean variable shaping the composition of benthic and pelagic communities by controlling the three-dimensional distribution of primary producers. It also plays a major role in the global carbon cycle. We provide a continuous monthly data set of the global distribution of light reaching the seabed. It is 4 times longer (21 vs 5 years) than the previous data set, the spatial resolution is better (4.6 vs 9.3 km), and the bathymetric resolution is also better (0.46 vs 3.7 km).
Shungudzemwoyo P. Garaba and Heidi M. Dierssen
Earth Syst. Sci. Data, 12, 77–86, https://doi.org/10.5194/essd-12-77-2020, https://doi.org/10.5194/essd-12-77-2020, 2020
Short summary
Short summary
As remote sensing is becoming more integral in future plastic litter monitoring strategies, there is need to improve our understanding of the optical properties of plastics. We present spectral reflectance data (350–2500 nm) of wet and dry marine-harvested (Atlantic and Pacific oceans), washed-ashore, and virgin plastics. Absorption features were identified at ~ 931, 1215, 1417 and 1732 nm in both the marine-harvested and washed-ashore plastics.
Jens K. Ehn, Rick A. Reynolds, Dariusz Stramski, David Doxaran, Bruno Lansard, and Marcel Babin
Biogeosciences, 16, 1583–1605, https://doi.org/10.5194/bg-16-1583-2019, https://doi.org/10.5194/bg-16-1583-2019, 2019
Short summary
Short summary
Beam attenuation at 660 nm and suspended particle matter (SPM) relationships were determined during the MALINA cruise in August 2009 to the Canadian Beaufort Sea in order to expand our knowledge of particle distributions in Arctic shelf seas. The relationship was then used to determine SPM distributions for four other expeditions to the region. SPM patterns on the shelf were explained by an interplay between wind forcing, river discharge, and melting sea ice that controls the circulation.
Els Knaeps, David Doxaran, Ana Dogliotti, Bouchra Nechad, Kevin Ruddick, Dries Raymaekers, and Sindy Sterckx
Earth Syst. Sci. Data, 10, 1439–1449, https://doi.org/10.5194/essd-10-1439-2018, https://doi.org/10.5194/essd-10-1439-2018, 2018
Short summary
Short summary
The SeaSWIR dataset consists of 137 ASD marine reflectances, 137 total suspended matter (TSM) measurements and 97 turbidity measurements gathered at three turbid estuarine sites (Gironde, La Plata, Scheldt). The dataset is valuable because of the high-quality measurements of the marine reflectance in the Short Wave InfraRed I region (SWIR-I: 1000–1200 nm) and SWIR-II (1200–1300 nm) and because of the wide range of TSM concentrations from 48 mg L−1 up to 1400 mg L−1.
Héloise Lavigne, Giuseppe Civitarese, Miroslav Gačić, and Fabrizio D'Ortenzio
Biogeosciences, 15, 4431–4445, https://doi.org/10.5194/bg-15-4431-2018, https://doi.org/10.5194/bg-15-4431-2018, 2018
Short summary
Short summary
The north Ionian circulation, which is characterized by a decadal alternation of cyclonic and anticyclonic regime, affects phytoplankton dynamics and surface chlorophyll a. From satellite ocean color data, the cyclonic and anticyclonic regimes are compared and two chlorophyll a dynamics are observed: when circulation is anticyclonic, bloom initiation is in December and chlorophyll is low in March, whereas during the cyclonic regime, a late chlorophyll peak is commonly observed in March.
Caroline Echappé, Pierre Gernez, Vona Méléder, Bruno Jesus, Bruno Cognie, Priscilla Decottignies, Koen Sabbe, and Laurent Barillé
Biogeosciences, 15, 905–918, https://doi.org/10.5194/bg-15-905-2018, https://doi.org/10.5194/bg-15-905-2018, 2018
Short summary
Short summary
Using satellite technology and a life-size experiment, we analysed the impact of oyster reefs on mats of microscopic algae that develop within coastal mudflats. We showed that the relationship between microalgae and oysters is not limited to a one-way process where microalgae are a food source to oysters, but that oysters also promote microalgae mats development, presumably by providing nutrients to them. This might yield new insights into coastal ecosystem management.
Ewa J. Kwiatkowska, Kevin Ruddick, Didier Ramon, Quinten Vanhellemont, Carsten Brockmann, Carole Lebreton, and Hans G. Bonekamp
Ocean Sci., 12, 703–713, https://doi.org/10.5194/os-12-703-2016, https://doi.org/10.5194/os-12-703-2016, 2016
Short summary
Short summary
Copernicus operational services include ocean colour applications from medium-resolution polar-orbiting satellite sensors. The goal is to satisfy EU reporting on the quality of marine, coastal and inland waters, as well as to support climate, fisheries, environmental monitoring, and sediment transport applications. Ocean colour data from polar platforms, however, suffer from fractional coverage. This effort is in developing water turbidity services from Meteosat geostationary instruments.
D. Doxaran, E. Devred, and M. Babin
Biogeosciences, 12, 3551–3565, https://doi.org/10.5194/bg-12-3551-2015, https://doi.org/10.5194/bg-12-3551-2015, 2015
Short summary
Short summary
Eleven years (2003-2013) of satellite data were processed to observe the variations in suspended particulate matter concentrations at the mouth of the Mackenzie River and estimate the fluxes exported into the Canadian Arctic Ocean.
Results show that these concentrations at the river mouth, in the delta zone and in the river plume have increased by 46%, 71% and 33%, respectively, since 2003. This corresponds to a more than 50% increase in particulate export from the river into the Beaufort Sea.
A. Castagna, H. Evangelista, L. G. Tilstra, and R. Kerr
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-11671-2014, https://doi.org/10.5194/bgd-11-11671-2014, 2014
Revised manuscript not accepted
A. Matsuoka, M. Babin, D. Doxaran, S. B. Hooker, B. G. Mitchell, S. Bélanger, and A. Bricaud
Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, https://doi.org/10.5194/bg-11-3131-2014, 2014
M. Bressac, C. Guieu, D. Doxaran, F. Bourrin, K. Desboeufs, N. Leblond, and C. Ridame
Biogeosciences, 11, 1007–1020, https://doi.org/10.5194/bg-11-1007-2014, https://doi.org/10.5194/bg-11-1007-2014, 2014
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
A. Forest, M. Babin, L. Stemmann, M. Picheral, M. Sampei, L. Fortier, Y. Gratton, S. Bélanger, E. Devred, J. Sahlin, D. Doxaran, F. Joux, E. Ortega-Retuerta, J. Martín, W. H. Jeffrey, B. Gasser, and J. Carlos Miquel
Biogeosciences, 10, 2833–2866, https://doi.org/10.5194/bg-10-2833-2013, https://doi.org/10.5194/bg-10-2833-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
Related subject area
Biogeosciences and biodiversity
Gas exchange velocities (k600), gas exchange rates (K600), and hydraulic geometries for streams and rivers derived from the NEON Reaeration field and lab collection data product (DP1.20190.001)
A spectral–structural characterization of European temperate, hemiboreal, and boreal forests
VODCA v2: multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring
Crop-specific management history of phosphorus fertilizer input (CMH-P) in the croplands of the United States: reconciliation of top-down and bottom-up data sources
Enhancing long-term vegetation monitoring in Australia: a new approach for harmonising the Advanced Very High Resolution Radiometer normalised-difference vegetation (NVDI) with MODIS NDVI
A synthesized field survey database of vegetation and active-layer properties for the Alaskan tundra (1972–2020)
Century Long Reconstruction of Gridded Phosphorus Surplus Across Europe (1850–2019)
TCSIF: a temporally consistent global Global Ozone Monitoring Experiment-2A (GOME-2A) solar-induced chlorophyll fluorescence dataset with the correction of sensor degradation
Global nitrous oxide budget (1980–2020)
High-resolution Carbon cycling data from 2019 to 2021 measured at six Austrian LTER sites
National forest carbon harvesting and allocation dataset for the period 2003 to 2018
Spatial mapping of key plant functional traits in terrestrial ecosystems across China
HiQ-LAI: a high-quality reprocessed MODIS leaf area index dataset with better spatiotemporal consistency from 2000 to 2022
EUPollMap: the European atlas of contemporary pollen distribution maps derived from an integrated Kriging interpolation approach
Reference maps of soil phosphorus for the pan-Amazon region
Mapping 24 woody plant species phenology and ground forest phenology over China from 1951 to 2020
Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022
Investigating limnological processes and modern sedimentation at Lake Żabińskie, northeast Poland: a decade-long multi-variable dataset, 2012–2021
Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020
Organic Matter Database (OMD): Consolidating global residue data from agriculture, fisheries, forestry and related industries
Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022
CLIM4OMICS: a geospatially comprehensive climate and multi-OMICS database for maize phenotype predictability in the United States and Canada
Quantifying exchangeable base cations in permafrost: a reserve of nutrients about to thaw
Routine monitoring of western Lake Erie to track water quality changes associated with cyanobacterial harmful algal blooms
The Portuguese Large Wildfire Spread database (PT-FireSprd)
Thirty-meter map of young forest age in China
GRiMeDB: the Global River Methane Database of concentrations and fluxes
A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical evergreen broadleaved forests
Fire weather index data under historical and shared socioeconomic pathway projections in the 6th phase of the Coupled Model Intercomparison Project from 1850 to 2100
A remote-sensing-based dataset to characterize the ecosystem functioning and functional diversity in the Biosphere Reserve of the Sierra Nevada (southeastern Spain)
A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT
A global database on holdover time of lightning-ignited wildfires
National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake
Mammals in the Chornobyl Exclusion Zone's Red Forest: a motion-activated camera trap study
Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20 years
AnisoVeg: anisotropy and nadir-normalized MODIS multi-angle implementation atmospheric correction (MAIAC) datasets for satellite vegetation studies in South America
TiP-Leaf: a dataset of leaf traits across vegetation types on the Tibetan Plateau
Forest structure and individual tree inventories of northeastern Siberia along climatic gradients
Global climate-related predictors at kilometer resolution for the past and future
A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020
Global land surface 250 m 8 d fraction of absorbed photosynthetically active radiation (FAPAR) product from 2000 to 2021
Rates and timing of chlorophyll-a increases and related environmental variables in global temperate and cold-temperate lakes
Harmonized gap-filled datasets from 20 urban flux tower sites
Holocene spatiotemporal millet agricultural patterns in northern China: a dataset of archaeobotanical macroremains
The biogeography of relative abundance of soil fungi versus bacteria in surface topsoil
Airborne SnowSAR data at X and Ku bands over boreal forest, alpine and tundra snow cover
The Landscape Fire Scars Database: mapping historical burned area and fire severity in Chile
Aridec: an open database of litter mass loss from aridlands worldwide with recommendations on suitable model applications
LegacyPollen 1.0: a taxonomically harmonized global late Quaternary pollen dataset of 2831 records with standardized chronologies
Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests
Kelly S. Aho, Kaelin M. Cawley, Robert T. Hensley, Robert O. Hall Jr., Walter K. Dodds, and Keli J. Goodman
Earth Syst. Sci. Data, 16, 5563–5578, https://doi.org/10.5194/essd-16-5563-2024, https://doi.org/10.5194/essd-16-5563-2024, 2024
Short summary
Short summary
Gas exchange is fundamental to many biogeochemical processes in streams and depends on the degree of gas saturation and the gas transfer velocity (k). Currently, k is harder to measure than concentration. Here, we present a processing pipeline to estimate k from tracer-gas experiments conducted in 22 streams by the National Ecological Observatory Network. The processed dataset (n = 339) represents the largest compilation of standardized k estimates available.
Miina Rautiainen, Aarne Hovi, Daniel Schraik, Jan Hanuš, Petr Lukeš, Zuzana Lhotáková, and Lucie Homolová
Earth Syst. Sci. Data, 16, 5069–5087, https://doi.org/10.5194/essd-16-5069-2024, https://doi.org/10.5194/essd-16-5069-2024, 2024
Short summary
Short summary
Radiative transfer models play a key role in monitoring vegetation using remote sensing data such as satellite or airborne images. The development of these models has been hindered by a lack of comprehensive ground reference data on structural and spectral characteristics of forests. Here, we reported datasets on the structural and spectral properties of temperate, hemiboreal, and boreal European forest stands. We anticipate that these data will have wide use in remote sensing applications.
Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo
Earth Syst. Sci. Data, 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024, https://doi.org/10.5194/essd-16-4573-2024, 2024
Short summary
Short summary
VODCA v2 is a dataset providing vegetation indicators for long-term ecosystem monitoring. VODCA v2 comprises two products: VODCA CXKu, spanning 34 years of observations (1987–2021), suitable for monitoring upper canopy dynamics, and VODCA L (2010–2021), for above-ground biomass monitoring. VODCA v2 has lower noise levels than the previous product version and provides valuable insights into plant water dynamics and biomass changes, even in areas where optical data are limited.
Peiyu Cao, Bo Yi, Franco Bilotto, Carlos Gonzalez Fischer, Mario Herrero, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 4557–4572, https://doi.org/10.5194/essd-16-4557-2024, https://doi.org/10.5194/essd-16-4557-2024, 2024
Short summary
Short summary
This article presents a spatially explicit time series dataset reconstructing crop-specific phosphorus fertilizer application rates, timing, and methods at a 4 km × 4 km resolution in the United States from 1850 to 2022. We comprehensively characterized the spatio-temporal dynamics of P fertilizer management over the last 170 years by considering cross-crop variations. This dataset will greatly contribute to the field of agricultural sustainability assessment and Earth system modeling.
Chad A. Burton, Sami W. Rifai, Luigi J. Renzullo, and Albert I. J. M. Van Dijk
Earth Syst. Sci. Data, 16, 4389–4416, https://doi.org/10.5194/essd-16-4389-2024, https://doi.org/10.5194/essd-16-4389-2024, 2024
Short summary
Short summary
Understanding vegetation response to environmental change requires accurate, long-term data on vegetation condition (VC). We evaluated existing satellite VC datasets over Australia and found them lacking, so we developed a new VC dataset for Australia, AusENDVI. It can be used for studying Australia's changing vegetation dynamics and downstream impacts on the carbon and water cycles, and it provides a reliable foundation for further research into the drivers of vegetation change.
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024, https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
Short summary
The Arctic tundra is experiencing widespread physical and biological changes, largely in response to warming, yet scientific understanding of tundra ecology and change remains limited due to relatively limited accessibility and studies compared to other terrestrial biomes. To support synthesis research and inform future studies, we created the Synthesized Alaskan Tundra Field Dataset (SATFiD), which brings together field datasets and includes vegetation, active-layer, and fire properties.
Masooma Batool, Fanny J. Sarrazin, and Rohini Kumar
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-294, https://doi.org/10.5194/essd-2024-294, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our paper presents a reconstruction and analysis of the gridded P surplus in European landscapes from 1850 to 2019 at a 5 arcmin resolution. By utilizing 48 different estimates, we account for uncertainties in major components of the P surplus. Our findings highlight substantial historical changes, with the total P surplus in EU-27 tripling over 170 years. Our dataset enables flexible aggregation at various spatial scales, providing critical insights for land and water management strategies.
Chu Zou, Shanshan Du, Xinjie Liu, and Liangyun Liu
Earth Syst. Sci. Data, 16, 2789–2809, https://doi.org/10.5194/essd-16-2789-2024, https://doi.org/10.5194/essd-16-2789-2024, 2024
Short summary
Short summary
To obtain a temporally consistent satellite solar-induced chlorophyll fluorescence
(SIF) product (TCSIF), we corrected for time degradation of GOME-2A using a pseudo-invariant method. After the correction, the global SIF grew by 0.70 % per year from 2007 to 2021, and 62.91 % of vegetated regions underwent an increase in SIF. The dataset is a promising tool for monitoring global vegetation variation and will advance our understanding of vegetation's photosynthetic activities at a global scale.
(SIF) product (TCSIF), we corrected for time degradation of GOME-2A using a pseudo-invariant method. After the correction, the global SIF grew by 0.70 % per year from 2007 to 2021, and 62.91 % of vegetated regions underwent an increase in SIF. The dataset is a promising tool for monitoring global vegetation variation and will advance our understanding of vegetation's photosynthetic activities at a global scale.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Armin Hofbauer, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Christoph Wohner, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Sophie Zechmeister, Anita Zolles, and Stephan Glatzel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-110, https://doi.org/10.5194/essd-2024-110, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Long-term observation sites have been established in Austria's six regions, covering major ecosystem types such as forests, grasslands, and wetlands. The purpose of these observations is to measure baselines for assessing the impacts of extreme climate events on the carbon cycle. The collected data sets include meteorological variables, soil temperature and moisture, carbon dioxide fluxes from the soil, and tree stem growth in forests at a resolution of 30–60 minutes between 2019 and 2021.
Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 16, 2465–2481, https://doi.org/10.5194/essd-16-2465-2024, https://doi.org/10.5194/essd-16-2465-2024, 2024
Short summary
Short summary
This study generated a high-precision dataset, locating forest harvested carbon and quantifying post-harvest wood emissions for various uses. It enhances our understanding of forest harvesting and post-harvest carbon dynamics in China, providing essential data for estimating the forest ecosystem carbon budget and emphasizing wood utilization's impact on carbon emissions.
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024, https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary
Short summary
This study generated a spatially continuous plant functional trait dataset (~1 km) in China in combination with field observations, environmental variables and vegetation indices using machine learning methods. Results showed that wood density, leaf P concentration and specific leaf area showed good accuracy with an average R2 of higher than 0.45. This dataset could provide data support for development of Earth system models to predict vegetation distribution and ecosystem functions.
Kai Yan, Jingrui Wang, Rui Peng, Kai Yang, Xiuzhi Chen, Gaofei Yin, Jinwei Dong, Marie Weiss, Jiabin Pu, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 1601–1622, https://doi.org/10.5194/essd-16-1601-2024, https://doi.org/10.5194/essd-16-1601-2024, 2024
Short summary
Short summary
Variations in observational conditions have led to poor spatiotemporal consistency in leaf area index (LAI) time series. Using prior knowledge, we leveraged high-quality observations and spatiotemporal correlation to reprocess MODIS LAI, thereby generating HiQ-LAI, a product that exhibits fewer abnormal fluctuations in time series. Reprocessing was done on Google Earth Engine, providing users with convenient access to this value-added data and facilitating large-scale research and applications.
Fabio Oriani, Gregoire Mariethoz, and Manuel Chevalier
Earth Syst. Sci. Data, 16, 731–742, https://doi.org/10.5194/essd-16-731-2024, https://doi.org/10.5194/essd-16-731-2024, 2024
Short summary
Short summary
Modern and fossil pollen data contain precious information for reconstructing the climate and environment of the past. However, these data are only achieved for single locations with no continuity in space. We present here a systematic atlas of 194 digital maps containing the spatial estimation of contemporary pollen presence over Europe. This dataset constitutes a free and ready-to-use tool to study climate, biodiversity, and environment in time and space.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Mengyao Zhu, Junhu Dai, Huanjiong Wang, Juha M. Alatalo, Wei Liu, Yulong Hao, and Quansheng Ge
Earth Syst. Sci. Data, 16, 277–293, https://doi.org/10.5194/essd-16-277-2024, https://doi.org/10.5194/essd-16-277-2024, 2024
Short summary
Short summary
This study utilized 24,552 in situ phenology observation records from the Chinese Phenology Observation Network to model and map 24 woody plant species phenology and ground forest phenology over China from 1951 to 2020. These phenology maps are the first gridded, independent and reliable phenology data sources for China, offering a high spatial resolution of 0.1° and an average deviation of about 10 days. It contributes to more comprehensive research on plant phenology and climate change.
Jiabin Pu, Kai Yan, Samapriya Roy, Zaichun Zhu, Miina Rautiainen, Yuri Knyazikhin, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 15–34, https://doi.org/10.5194/essd-16-15-2024, https://doi.org/10.5194/essd-16-15-2024, 2024
Short summary
Short summary
Long-term global LAI/FPAR products provide the fundamental dataset for accessing vegetation dynamics and studying climate change. This study develops a sensor-independent LAI/FPAR climate data record based on the integration of Terra-MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products and applies advanced gap-filling techniques. The SI LAI/FPAR CDR provides a valuable resource for researchers studying vegetation dynamics and their relationship to climate change in the 21st century.
Wojciech Tylmann, Alicja Bonk, Dariusz Borowiak, Paulina Głowacka, Kamil Nowiński, Joanna Piłczyńska, Agnieszka Szczerba, and Maurycy Żarczyński
Earth Syst. Sci. Data, 15, 5093–5103, https://doi.org/10.5194/essd-15-5093-2023, https://doi.org/10.5194/essd-15-5093-2023, 2023
Short summary
Short summary
We present a dataset from the decade-long monitoring of Lake Żabińskie, a hardwater and eutrophic lake in northeast Poland. The lake contains varved sediments, which form a unique archive of past environmental variability. The monitoring program was designed to capture a pattern of relationships between meteorological conditions, limnological processes, and modern sedimentation and to verify if meteorological and limnological phenomena can be precisely tracked with varves.
Sen Cao, Muyi Li, Zaichun Zhu, Zhe Wang, Junjun Zha, Weiqing Zhao, Zeyu Duanmu, Jiana Chen, Yaoyao Zheng, Yue Chen, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4877–4899, https://doi.org/10.5194/essd-15-4877-2023, https://doi.org/10.5194/essd-15-4877-2023, 2023
Short summary
Short summary
The long-term global leaf area index (LAI) products are critical for characterizing vegetation dynamics under environmental changes. This study presents an updated GIMMS LAI product (GIMMS LAI4g; 1982−2020) based on PKU GIMMS NDVI and massive Landsat LAI samples. With higher accuracy than other LAI products, GIMMS LAI4g removes the effects of orbital drift and sensor degradation in AVHRR data. It has better temporal consistency before and after 2000 and a more reasonable global vegetation trend.
Gudeta Sileshi, Edmundo Barrios, Johannes Lehmann, and Francesco N. Tubiello
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-288, https://doi.org/10.5194/essd-2023-288, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Agricultural, fisheries, forestry and agro-processing activities produce large quantities of residues, by-products and waste materials every year. Here, we present a global organic matter database (OMD, the first of its kind, consolidating estimates of residues and by-products potentially available for use in a circular bio-economy. It also provides definitions, typologies and methods to aid consistent classification, estimation and reporting of the various residues and by-products.
Muyi Li, Sen Cao, Zaichun Zhu, Zhe Wang, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4181–4203, https://doi.org/10.5194/essd-15-4181-2023, https://doi.org/10.5194/essd-15-4181-2023, 2023
Short summary
Short summary
Long-term global Normalized Difference Vegetation Index (NDVI) products support the understanding of changes in vegetation under environmental changes. This study generates a consistent global NDVI product (PKU GIMMS NDVI) from 1982–2022 that eliminates the issue of orbital drift and sensor degradation in Advanced Very High Resolution Radiometer (AVHRR) data. More accurate than its predecessor (GIMMS NDVI3g), it shows high temporal consistency with MODIS NDVI in describing vegetation trends.
Parisa Sarzaeim, Francisco Muñoz-Arriola, Diego Jarquin, Hasnat Aslam, and Natalia De Leon Gatti
Earth Syst. Sci. Data, 15, 3963–3990, https://doi.org/10.5194/essd-15-3963-2023, https://doi.org/10.5194/essd-15-3963-2023, 2023
Short summary
Short summary
A genomic, phenomic, and climate database for maize phenotype predictability in the US and Canada is introduced. The database encompasses climate from multiple sources and OMICS from the Genomes to Fields initiative (G2F) data from 2014 to 2021, including codes for input data quality and consistency controls. Earth system modelers and breeders can use CLIM4OMICS since it interconnects the climate and biological system sciences. CLIM4OMICS is designed to foster phenotype predictability.
Elisabeth Mauclet, Maëlle Villani, Arthur Monhonval, Catherine Hirst, Edward A. G. Schuur, and Sophie Opfergelt
Earth Syst. Sci. Data, 15, 3891–3904, https://doi.org/10.5194/essd-15-3891-2023, https://doi.org/10.5194/essd-15-3891-2023, 2023
Short summary
Short summary
Permafrost ecosystems are limited in nutrients for vegetation development and constrain the biological activity to the active layer. Upon Arctic warming, permafrost degradation exposes organic and mineral soil material that may directly influence the capacity of the soil to retain key nutrients for vegetation growth and development. Here, we demonstrate that the average total exchangeable nutrient density (Ca, K, Mg, and Na) is more than 2 times higher in the permafrost than in the active layer.
Anna G. Boegehold, Ashley M. Burtner, Andrew C. Camilleri, Glenn Carter, Paul DenUyl, David Fanslow, Deanna Fyffe Semenyuk, Casey M. Godwin, Duane Gossiaux, Thomas H. Johengen, Holly Kelchner, Christine Kitchens, Lacey A. Mason, Kelly McCabe, Danna Palladino, Dack Stuart, Henry Vanderploeg, and Reagan Errera
Earth Syst. Sci. Data, 15, 3853–3868, https://doi.org/10.5194/essd-15-3853-2023, https://doi.org/10.5194/essd-15-3853-2023, 2023
Short summary
Short summary
Western Lake Erie suffers from cyanobacterial harmful algal blooms (HABs) despite decades of international management efforts. In response, the US National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) and the Cooperative Institute for Great Lakes Research (CIGLR) created an annual sampling program to detect, monitor, assess, and predict HABs. Here we describe the data collected from this monitoring program from 2012 to 2021.
Akli Benali, Nuno Guiomar, Hugo Gonçalves, Bernardo Mota, Fábio Silva, Paulo M. Fernandes, Carlos Mota, Alexandre Penha, João Santos, José M. C. Pereira, and Ana C. L. Sá
Earth Syst. Sci. Data, 15, 3791–3818, https://doi.org/10.5194/essd-15-3791-2023, https://doi.org/10.5194/essd-15-3791-2023, 2023
Short summary
Short summary
We reconstructed the spread of 80 large wildfires that burned recently in Portugal and calculated metrics that describe how wildfires behave, such as rate of spread, growth rate, and energy released. We describe the fire behaviour distribution using six percentile intervals that can be easily communicated to both research and management communities. The database will help improve our current knowledge on wildfire behaviour and support better decision making.
Yuelong Xiao, Qunming Wang, Xiaohua Tong, and Peter M. Atkinson
Earth Syst. Sci. Data, 15, 3365–3386, https://doi.org/10.5194/essd-15-3365-2023, https://doi.org/10.5194/essd-15-3365-2023, 2023
Short summary
Short summary
Forest age is closely related to forest production, carbon cycles, and other ecosystem services. Existing stand age products in China derived from remote-sensing images are of a coarse spatial resolution and are not suitable for applications at the regional scale. Here, we mapped young forest ages across China at an unprecedented fine spatial resolution of 30 m. The overall accuracy (OA) of the generated map of young forest stand ages across China was 90.28 %.
Emily H. Stanley, Luke C. Loken, Nora J. Casson, Samantha K. Oliver, Ryan A. Sponseller, Marcus B. Wallin, Liwei Zhang, and Gerard Rocher-Ros
Earth Syst. Sci. Data, 15, 2879–2926, https://doi.org/10.5194/essd-15-2879-2023, https://doi.org/10.5194/essd-15-2879-2023, 2023
Short summary
Short summary
The Global River Methane Database (GRiMeDB) presents CH4 concentrations and fluxes for flowing waters and concurrent measures of CO2, N2O, and several physicochemical variables, plus information about sample locations and methods used to measure gas fluxes. GRiMeDB is intended to increase opportunities to understand variation in fluvial CH4, test hypotheses related to greenhouse gas dynamics, and reduce uncertainty in future estimates of gas emissions from world streams and rivers.
Xueqin Yang, Xiuzhi Chen, Jiashun Ren, Wenping Yuan, Liyang Liu, Juxiu Liu, Dexiang Chen, Yihua Xiao, Qinghai Song, Yanjun Du, Shengbiao Wu, Lei Fan, Xiaoai Dai, Yunpeng Wang, and Yongxian Su
Earth Syst. Sci. Data, 15, 2601–2622, https://doi.org/10.5194/essd-15-2601-2023, https://doi.org/10.5194/essd-15-2601-2023, 2023
Short summary
Short summary
We developed the first time-mapped, continental-scale gridded dataset of monthly leaf area index (LAI) in three leaf age cohorts (i.e., young, mature, and old) from 2001–2018 data (referred to as Lad-LAI). The seasonality of three LAI cohorts from the new Lad-LAI product agrees well at eight sites with very fine-scale collections of monthly LAI. The proposed satellite-based approaches can provide references for mapping finer spatiotemporal-resolution LAI products with different leaf age cohorts.
Yann Quilcaille, Fulden Batibeniz, Andreia F. S. Ribeiro, Ryan S. Padrón, and Sonia I. Seneviratne
Earth Syst. Sci. Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, https://doi.org/10.5194/essd-15-2153-2023, 2023
Short summary
Short summary
We present a new database of four annual fire weather indicators over 1850–2100 and over all land areas. In a 3°C warmer world with respect to preindustrial times, the mean fire weather would increase on average by at least 66% in both intensity and duration and even triple for 1-in-10-year events. The dataset is a freely available resource for fire danger studies and beyond, highlighting that the best course of action would require limiting global warming as much as possible.
Beatriz P. Cazorla, Javier Cabello, Andrés Reyes, Emilio Guirado, Julio Peñas, Antonio J. Pérez-Luque, and Domingo Alcaraz-Segura
Earth Syst. Sci. Data, 15, 1871–1887, https://doi.org/10.5194/essd-15-1871-2023, https://doi.org/10.5194/essd-15-1871-2023, 2023
Short summary
Short summary
This dataset provides scientists, environmental managers, and the public in general with valuable information on the first characterization of ecosystem functional diversity based on primary production developed in the Sierra Nevada (Spain), a biodiversity hotspot in the Mediterranean basin and an exceptional natural laboratory for ecological research within the Long-Term Social-Ecological Research (LTSER) network.
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023, https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary
Short summary
We provide the first long-term (since 1992), high-resolution (8.9 km) satellite radar backscatter data set (LHScat) with a C-band (5.3 GHz) signal dynamic for global lands. LHScat was created by fusing signals from ERS (1992–2001; C-band), QSCAT (1999–2009; Ku-band), and ASCAT (since 2007; C-band). LHScat has been validated against independent ERS-2 signals. It could be used in a variety of studies, such as vegetation monitoring and hydrological modelling.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Nicholas A. Beresford, Sergii Gashchak, Michael D. Wood, and Catherine L. Barnett
Earth Syst. Sci. Data, 15, 911–920, https://doi.org/10.5194/essd-15-911-2023, https://doi.org/10.5194/essd-15-911-2023, 2023
Short summary
Short summary
Camera traps were established in a highly contaminated area of the Chornobyl Exclusion Zone (CEZ) to capture images of mammals. Over 1 year, 14 mammal species were recorded. The number of species observed did not vary with estimated radiation exposure. The data will be of value from the perspectives of effects of radiation on wildlife and also rewilding in this large, abandoned area. They may also have value in future studies investigating impacts of recent Russian military action in the CEZ.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Ricardo Dalagnol, Lênio Soares Galvão, Fabien Hubert Wagner, Yhasmin Mendes de Moura, Nathan Gonçalves, Yujie Wang, Alexei Lyapustin, Yan Yang, Sassan Saatchi, and Luiz Eduardo Oliveira Cruz Aragão
Earth Syst. Sci. Data, 15, 345–358, https://doi.org/10.5194/essd-15-345-2023, https://doi.org/10.5194/essd-15-345-2023, 2023
Short summary
Short summary
The AnisoVeg dataset brings 22 years of monthly satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor for South America at 1 km resolution aimed at vegetation applications. It has nadir-normalized data, which is the most traditional approach to correct satellite data but also unique anisotropy data with strong biophysical meaning, explaining 55 % of Amazon forest height. We expect this dataset to help large-scale estimates of vegetation biomass and carbon.
Yili Jin, Haoyan Wang, Jie Xia, Jian Ni, Kai Li, Ying Hou, Jing Hu, Linfeng Wei, Kai Wu, Haojun Xia, and Borui Zhou
Earth Syst. Sci. Data, 15, 25–39, https://doi.org/10.5194/essd-15-25-2023, https://doi.org/10.5194/essd-15-25-2023, 2023
Short summary
Short summary
The TiP-Leaf dataset was compiled from direct field measurements and included 11 leaf traits from 468 species of 1692 individuals, covering a great proportion of species and vegetation types on the highest plateau in the world. This work is the first plant trait dataset that represents all of the alpine vegetation on the TP, which is not only an update of the Chinese plant trait database, but also a great contribution to the global trait database.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Shaoyang He, Yongqiang Zhang, Ning Ma, Jing Tian, Dongdong Kong, and Changming Liu
Earth Syst. Sci. Data, 14, 5463–5488, https://doi.org/10.5194/essd-14-5463-2022, https://doi.org/10.5194/essd-14-5463-2022, 2022
Short summary
Short summary
This study developed a daily, 500 m evapotranspiration and gross primary production product (PML-V2(China)) using a locally calibrated water–carbon coupled model, PML-V2, which was well calibrated against observations at 26 flux sites across nine land cover types. PML-V2 (China) performs satisfactorily in the plot- and basin-scale evaluations compared with other mainstream products. It improved intra-annual ET and GPP dynamics, particularly in the cropland ecosystem.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Keyang He, Houyuan Lu, Jianping Zhang, and Can Wang
Earth Syst. Sci. Data, 14, 4777–4791, https://doi.org/10.5194/essd-14-4777-2022, https://doi.org/10.5194/essd-14-4777-2022, 2022
Short summary
Short summary
Here we presented the first quantitative spatiotemporal cropping patterns spanning the Neolithic and Bronze ages in northern China. Temporally, millet agriculture underwent a dramatic transition from low-yield broomcorn to high-yield foxtail millet around 6000 cal. a BP under the influence of climate and population. Spatially, millet agriculture spread westward and northward from the mid-lower Yellow River (MLY) to the agro-pastoral ecotone (APE) around 6000 cal. a BP and diversified afterwards.
Kailiang Yu, Johan van den Hoogen, Zhiqiang Wang, Colin Averill, Devin Routh, Gabriel Reuben Smith, Rebecca E. Drenovsky, Kate M. Scow, Fei Mo, Mark P. Waldrop, Yuanhe Yang, Weize Tang, Franciska T. De Vries, Richard D. Bardgett, Peter Manning, Felipe Bastida, Sara G. Baer, Elizabeth M. Bach, Carlos García, Qingkui Wang, Linna Ma, Baodong Chen, Xianjing He, Sven Teurlincx, Amber Heijboer, James A. Bradley, and Thomas W. Crowther
Earth Syst. Sci. Data, 14, 4339–4350, https://doi.org/10.5194/essd-14-4339-2022, https://doi.org/10.5194/essd-14-4339-2022, 2022
Short summary
Short summary
We used a global-scale dataset for the surface topsoil (>3000 distinct observations of abundance of soil fungi versus bacteria) to generate the first quantitative map of soil fungal proportion across terrestrial ecosystems. We reveal striking latitudinal trends. Fungi dominated in regions with low mean annual temperature (MAT) and net primary productivity (NPP) and bacteria dominated in regions with high MAT and NPP.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Alejandro Miranda, Rayén Mentler, Ítalo Moletto-Lobos, Gabriela Alfaro, Leonardo Aliaga, Dana Balbontín, Maximiliano Barraza, Susanne Baumbach, Patricio Calderón, Fernando Cárdenas, Iván Castillo, Gonzalo Contreras, Felipe de la Barra, Mauricio Galleguillos, Mauro E. González, Carlos Hormazábal, Antonio Lara, Ian Mancilla, Francisca Muñoz, Cristian Oyarce, Francisca Pantoja, Rocío Ramírez, and Vicente Urrutia
Earth Syst. Sci. Data, 14, 3599–3613, https://doi.org/10.5194/essd-14-3599-2022, https://doi.org/10.5194/essd-14-3599-2022, 2022
Short summary
Short summary
Achieving a local understanding of fire regimes requires high-resolution, systematic and dynamic data. High-quality information can help to transform evidence into decision-making. Taking advantage of big-data and remote sensing technics we developed a flexible workflow to reconstruct burned area and fire severity data for more than 8000 individual fires in Chile. The framework developed for the database can be applied anywhere in the world with minimal adaptation.
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
Short summary
Plant litter breakdown in aridlands is driven by processes different from those in more humid ecosystems. A better understanding of these processes will allow us to make better predictions of future carbon cycling. We have compiled aridec, a database of plant litter decomposition studies in aridlands and tested some modeling applications for potential users. Aridec is open for use and collaboration, and we hope it will help answer newer and more important questions as the database develops.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Hannah Weiser, Jannika Schäfer, Lukas Winiwarter, Nina Krašovec, Fabian E. Fassnacht, and Bernhard Höfle
Earth Syst. Sci. Data, 14, 2989–3012, https://doi.org/10.5194/essd-14-2989-2022, https://doi.org/10.5194/essd-14-2989-2022, 2022
Short summary
Short summary
3D point clouds, acquired by laser scanning, allow us to retrieve information about forest structure and individual tree properties. We conducted airborne, UAV-borne and terrestrial laser scanning in German mixed forests, resulting in overlapping point clouds with different characteristics. From these, we generated a comprehensive database of individual tree point clouds and corresponding tree metrics. Our dataset may serve as a benchmark dataset for algorithms in forestry research.
Cited articles
Adler, D. and Kelly, S. T.: vioplot: violin plot,
https://github.com/TomKellyGenetics/vioplot (last access: 3 June 2022), r package
version 0.3.6, 2020. a
Agrawal, Y. C.: The optical volume scattering function: Temporal and vertical
variability in the water column off the New Jersey coast, Limnol.
Oceanogr., 50, 1787–1794, https://doi.org/10.4319/lo.2005.50.6.1787, 2005. a
Amadei Martínez, L., Mortelmans, J., Dillen, N., Debusschere, E., and
Deneudt, K.: LifeWatch observatory data: phytoplankton observations in the
Belgian Part of the North Sea, Biodivers. Data J., 8, e57236,
https://doi.org/10.3897/BDJ.8.e57236, 2020. a
Astoreca, R., Ruddick, K., Rousseau, V., Mol, B., Parent, J.-Y., and Lancelot,
C.: Variability of the inherent and apparent optical properties in a highly
turbid coastal area: impact on the calibration of remote sensing algorithms,
EARSeL eProceedings, 5, 1–17, 2006. a
Astoreca, R., Rousseau, V., and Lancelot, C.: Coloured dissolved organic matter
(CDOM) in Southern North Sea waters: Optical characterization and possible
origin, Estuar. Coast. Shelf S., 85, 633–640,
https://doi.org/10.1016/j.ecss.2009.10.010, 2009. a
Astoreca, R., Doxaran, D., Ruddick, K., Rousseau, V., and Lancelot, C.:
Influence of suspended particle concentration, composition and size on the
variability of inherent optical properties of the Southern North Sea,
Cont. Shelf Res., 35, 117–128, https://doi.org/10.1016/j.csr.2012.01.007,
2012. a
Binding, C. E., Jerome, J. H., Bukata, R. P., and Booty, W. G.: Spectral
absorption properties of dissolved and particulate matter in Lake Erie,
Remote Sens. Enviro., 112, 1702–1711,
https://doi.org/10.1016/j.rse.2007.08.017, 2008. a
Boss, E., Taylor, L., Gilbert, S., Gundersen, K., Hawley, N., Janzen, C.,
Johengen, T., Purcell, H., Robertson, C., Schar, D. W. H., Smith, G. J., and
Tamburri, M. N.: Comparison of inherent optical properties as a surrogate
for particulate matter concentration in coastal waters, Limnol.
Oceanogr. Meth., 7, 803–810, https://doi.org/10.4319/lom.2009.7.803,
2009a. a
Boss, E. S., Slade, W. H., Behrenfeld, M. J., and Dall'Olmo, G.: Acceptance
angle effects on the beam attenuation in the ocean, Opt. Express, 17,
1535–1550, https://doi.org/10.1364/OE.17.001535, 2009b. a, b
Buonassissi, C. J. and Dierssen, H. M.: A regional comparison of particle size
distributions and the power law approximation in oceanic and estuarine
surface waters, J. Geophys. Res.-Oceans, 115, C10028,
https://doi.org/10.1029/2010JC006256, 2010. a
Cael, B. B. and Boss, E. S.: Simplified model of spectral absorption by
non-algal particles and dissolved organic materials in aquatic environments,
Opt. Express, 25, 25486, https://doi.org/10.1364/OE.25.025486, 2017. a
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A.,
and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina
amplicon data, Nature Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016. a, b
Castagna, A., Carol Johnson, B., Voss, K. J., Dierssen, H. M., Patrick, H.,
Germer, T. A., Sabbe, K., and Vyverman, W.: Uncertainty in global
downwelling plane irradiance estimates from sintered polytetrafluoroethylene
plaque radiance measurements, Appl. Optics, 58, 4497–4511,
https://doi.org/10.1364/AO.58.004497, 2019. a, b
Castagna, A., Simis, S. G. H., Dierssen, H., Vanhellemont, Q., Sabbe, K., and
Vyverman, W.: Extending Landsat 8: Retrieval of an Orange contra-Band for
Inland Water Quality Applications, Remote Sensing, 12, 637,
https://doi.org/10.3390/rs12040637, 2020. a
Castagna, A., Dierssen, H., Organelli, E., Bogorad, M., Mortelmans, J.,
Vyverman, W., and Sabbe, K.: Optical Detection of Harmful Algal Blooms in the
Belgian Coastal Zone: A Cautionary Tale of Chlorophyll c3, Front.
Mar. Sci., 8, 1892, https://doi.org/10.3389/fmars.2021.770340, 2021. a, b
Castagna, A., Amadei Martínez, L., Bogorad, M., Daveloose, I., Dassevile,
R., Dierssen, H. M., Beck, M., Mortelmans, J., Lavigne, H., Dogliotti, A.,
Doxaran, D., Ruddick, K., Vyverman, W., and Sabbe, K.: Dataset of optical and
biogeochemical properties of diverse Belgian inland and coastal waters,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940240, 2022. a, b
Chase, A., Boss, E. S., Zaneveld, R., Bricaud, A., Claustre, H., Ras, J.,
Dall'Olmo, G., and Westberry, T. K.: Decomposition of in situ particulate
absorption spectra, Methods in Oceanography, 7, 110–124,
https://doi.org/10.1016/j.mio.2014.02.002, 2013. a
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., and Callahan,
B. J.: Simple statistical identification and removal of contaminant
sequences in marker-gene and metagenomics data, Microbiome, 6, 226,
https://doi.org/10.1186/s40168-018-0605-2, 2018. a, b
Descy, J.-P., Pirlot, S., Verniers, G., Viroux, L., Lara, Y., Wilmotte, A.,
Vyverman, W., Vanormelingen, P., Van Wichelen, J., Van Gremberghe, I.,
Triest, L., Peretyatko, A., Everbecq, E., and Codd, G.: B-BLOOMS 2 –
Cyanobacterial blooms: toxicity, diversity, modeling and management, Tech.
rep., report number D/2011/1191/45, Belgian Science Policy, Brussels, Belgium, 2011. a, b
Desmit, X., Nohe, A., Borges, A. V., Prins, T., De Cauwer, K., Lagring, R.,
Van der Zande, D., and Sabbe, K.: Changes in chlorophyll concentration and
phenology in the North Sea in relation to de-eutrophication and sea surface
warming, Limnol. Oceanogr., 65, 828–847, https://doi.org/10.1002/lno.11351,
2020. a
Dierssen, H., Bracher, A., Brando, V., Loisel, H., and Ruddick, K.: Data Needs
for Hyperspectral Detection of Algal Diversity Across the Globe,
Oceanography, 33, 74–79, https://doi.org/10.5670/oceanog.2020.111, 2020. a
Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., and Knaeps, E.: A
single algorithm to retrieve turbidity from remotely-sensed data in all
coastal and estuarine waters, Remote Sens. Environ., 156, 157–168,
https://doi.org/10.1016/j.rse.2014.09.020, 2015. a
Estapa, M. L., Boss, E., Mayer, L. M., and Roesler, C. S.: Role of iron and
organic carbon in mass-specific light absorption by particulate matter from
Louisiana coastal waters, Limnol. Oceanogr., 57, 97–112,
https://doi.org/10.4319/lo.2012.57.1.0097, 2012. a
Ferrari, G. M. and Tassan, S.: A method using chemical oxidation to remove
light absorption by phytoplankton pigments, J. Phycol., 35,
1090–1098, https://doi.org/10.1046/j.1529-8817.1999.3551090.x, 1999. a
Fettweis, M. and Van den Eynde, D.: The mud deposits and the high turbidity
in the Belgian–Dutch coastal zone, southern bight of the North Sea,
Conti. Shelf Res., 23, 669–691,
https://doi.org/10.1016/S0278-4343(03)00027-X, 2003. a, b
Flanders Marine Institute: LifeWatch observatory data: nutrient, pigment,
suspended matter and secchi measurements in the Belgian Part of the North
Sea, https://doi.org/10.14284/441, 2021a. a
Flanders Marine Institute: LifeWatch observatory data: phytoplankton
observations by imaging flow cytometry (FlowCam) in the Belgian Part of the
North Sea, https://doi.org/10.14284/527, 2021b. a
Frouin, R. J., Franz, B. A., Ibrahim, A., Knobelspiesse, K., Ahmad, Z., Cairns,
B., Chowdhary, J., Dierssen, H. M., Tan, J., Dubovik, O., Huang, X., Davis,
A. B., Kalashnikova, O., Thompson, D. R., Remer, L. A., Boss, E., Coddington,
O., Deschamps, P.-Y., Gao, B.-C., Gross, L., Hasekamp, O., Omar, A.,
Pelletier, B., Ramon, D., Steinmetz, F., and Zhai, P.-W.: Atmospheric
Correction of Satellite Ocean-Color Imagery During the PACE Era, Front.
Earth Sci., 7, 145, https://doi.org/10.3389/feart.2019.00145, 2019. a
Gleason, A. C., Voss, K. J., Gordon, H. R., Twardowski, M., Sullivan, J.,
Trees, C., Weidemann, A., Berthon, J.-F., Clark, D., and Lee, Z.: Detailed
validation of the bidirectional effect in various Case I and Case II waters,
Opt. Express, 20, 7630, https://doi.org/10.1364/OE.20.007630, 2012. a
Gordon, A. and Hannon, G.: FASTX-Toolkit,
http://hannonlab.cshl.edu/fastx_toolkit/index.html (last access: 3 June 2022), version
0.0.13, 2010. a
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte,
C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J. R.,
Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W. H., Lara, E., Le
Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard,
R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.-L., Siano, R., Stoeck,
T., Vaulot, D., Zimmermann, P., and Christen, R.: The Protist Ribosomal
Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit
rRNA sequences with curated taxonomy, Nucl. Acids Res., 41,
D597–D604, https://doi.org/10.1093/nar/gks1160, 2012. a
Hasle, G. R., Steidinger, K. A., Syvertsen, E. E., Jansen, K., Jhrondsen, J.,
and Heimdal, B. R.: Identifying Marine Phytoplankton, Elsevier, San Diego,
California, https://doi.org/10.1016/B978-0-12-693018-4.X5000-9, 1997. a
Hoepffner, N. and Sathyendranath, S.: Effect of pigment composition on
absorption properties of phytoplankton, Mar. Ecol. Prog. Ser., 73,
11–23, https://doi.org/10.3354/meps073011, 1991. a, b, c
IOCCG: Inherent Optical Property Measurements and Protocols: Absorption
Coefficient, vol. 1 of IOCCG Ocean Optics and Biogeochemistry Protocols
for Satellite Ocean Colour Sensor Validation, IOCCG, Dartmouth, NS,
Canada, https://doi.org/10.25607/OBP-119, 2018. a, b, c, d
ISO 7027:1999: Water quality – Determination of turbidity, Standard,
International Organization for Standardization, Geneva, CH, 1999. a
Jeffrey, S. W., Wright, S. W., and Zapata, M.: Microalgal classes and their
signature pigments, in: Phytoplankton Pigments: Characterization,
Chemotaxonomy, and Applications in Oceanography, edited by: Roy, S.,
Llewellyn, C. A., Egeland, E. S., and Johnsen, G.,
Cambridge University Press, Cambridge, UK, chap. 1, 3–77, ISBN 9781107000667, 2011. a, b, c, d
Jonaz, M. and Fournier, G. R.: Light Scattering by Particles in Water:
Theoretical and Experimental Foundations, Elsevier, Amsterdam, The
Netherlands, https://doi.org/10.1016/B978-0-12-388751-1.X5000-5, 2007. a
Kotta, J., Remm, K., Vahtmäe, E., Kutser, T., and Orav-Kotta, H.: In-air
spectral signatures of the Baltic Sea macrophytes and their statistical
separability, J. Appl. Remote Sens., 8, 1.–14,
https://doi.org/10.1117/1.JRS.8.083634, 2014. a
Latimer, P.: The deconvulation of absorption spectra of green plant materials
– Improved corrections for the sieve effect, Photochem. Photobiol.,
38, 731–734, https://doi.org/10.1111/j.1751-1097.1983.tb03608.x, 1983. a
Lee, Z., Pahlevan, N., Ahn, Y.-H., Greb, S., and O'Donnell, D.: Robust
approach to directly measuring water-leaving radiance in the field, Appl.
Optics, 52, 1693–1701, https://doi.org/10.1364/AO.52.001693, 2013. a
Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., Lin, J., and Lin,
G.: Secchi disk depth: A new theory and mechanistic model for underwater
visibility, Remote Sens. Environ., 169, 139–149,
https://doi.org/10.1016/j.rse.2015.08.002, 2015. a
Lee, Z., Wei, J., Shang, Z., Garcia, R., Dierssen, H. M., Ishizaka, J., and
Castagna, A.: On-Water Radiometry Measurements: Skylight-Blocked Approach
and Data Processing (Appendix to IOCCG Protocol Series 2019), Tech. Rep.
December, 2019. a
Leymarie, E., Doxaran, D., and Babin, M.: Uncertainties associated to
measurements of inherent optical properties in natural waters, Appl.
Optics, 49, 5415–5436, https://doi.org/10.1364/AO.49.005415, 2010. a
Max, J.-J. and Chapados, C.: IR spectroscopy of aqueous alkali halide
solutions: Pure salt-solvated water spectra and hydration numbers,
J. Chem. Phys., 115, 2664–2675, https://doi.org/10.1063/1.1337047, 2001. a, b
Meire, P., Ysebaert, T., Van Damme, S., Van Den Bergh, E., Maris, T., and
Struyf, E.: The Scheldt estuary: A description of a changing ecosystem,
Hydrobiologia, 540, 1–11, https://doi.org/10.1007/s10750-005-0896-8, 2005. a
Mobley, C. D.: Estimation of the remote-sensing reflectance from above-surface
measurements, Appl. Optics, 38, 7442, https://doi.org/10.1364/AO.38.007442, 1999. a
Moestrup, Ø., Akselmann-Cardella, R., Churro, C., Fraga, S., Hoppenrath, M.,
Iwataki, M., Larsen, J., Lundholm, N., and Zingone, A.: IOC-UNESCO
Taxonomic Reference List of Harmful Micro Algae,
https://doi.org/10.14284/362, 2021. a
Morel, A. Y. and Bricaud, A.: Theoretical results concerning light absorption
in a discrete medium, and application to specific absorption of
phytoplankton, Deep-Sea Res. Pt. A, 28,
1375–1393, https://doi.org/10.1016/0198-0149(81)90039-X, 1981. a
Mortelmans, J., Deneudt, K., Cattrijsse, A., Beauchard, O., Daveloose, I.,
Vyverman, W., Vanaverbeke, J., Timmermans, K., Peene, J., Roose, P.,
Knockaert, M., Chou, L., Sanders, R., Stinchcombe, M., Kimpe, P., Lammens,
S., Theetaert, H., Gkritzalis, T., Hernandez, F., and Mees, J.: Nutrient,
pigment, suspended matter and turbidity measurements in the Belgian part of
the North Sea, Sci. Data, 22, 22, https://doi.org/10.1038/s41597-019-0032-7, 2019. a, b
Nardelli, S. C. and Twardowski, M. S.: Assessing the link between chlorophyll
concentration and absorption line height at 676 nm over a broad range of
water types, Opt. Express, 24, A1374, https://doi.org/10.1364/OE.24.0A1374, 2016. a, b
Nechad, B., Ruddick, K. G., and Park, Y.: Calibration and validation of a
generic multisensor algorithm for mapping of total suspended matter in turbid
waters, Remote Sens. Environ., 114, 854–866,
https://doi.org/10.1016/j.rse.2009.11.022, 2010. a, b, c
Pegau, W. S., Zaneveld, J. R. V., Mitchell, B. G., Mueller, J. L., Kahru, M.,
Wieland, J., and Stramska, M.: Inherent Optical Properties: Instruments,
Characterizations, Field Measurements and Data Analysis Protocols, vol. IV,
NASA, 2002. a
Quan, X. and Fry, E. S.: Empirical equation for the index of refraction of
seawater, Appl. Optics, 34, 3477, https://doi.org/10.1364/AO.34.003477, 1995. a
R Core Team: R: A Language and Environment for Statistical Computing, Version 4.1.1, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 3 June 2022), 2020. a
Reid, P. C., Lancelot, C., Gieskes, W. W. C., Hagmeier, E., and Weichart, G.:
Phytoplankton of the North Sea and its dynamics: A review, Neth.
J. Sea Res., 26, 295–331, https://doi.org/10.1016/0077-7579(90)90094-W,
1990. a
Roesler, C. S. and Barnard, A. H.: Optical proxy for phytoplankton biomass in
the absence of photophysiology: Rethinking the absorption line height,
Methods in Oceanography, 7, 79–94, https://doi.org/10.1016/j.mio.2013.12.003, 2013. a, b
Roesler, C. S. and Boss, E. S.: Spectral beam attenuation coefficient
retrieved from ocean color inversion, Geophys. Res. Lett., 30,
1468, https://doi.org/10.1029/2002GL016185, 2003. a
Röttgers, R., Dupouy, C., Taylor, B. B., Bracher, A., and Woźniak,
S. B.: Mass-specific light absorption coefficients of natural aquatic
particles in the near-infrared spectral region, Limnol. Oceanogr.,
59, 1449–1460, https://doi.org/10.4319/lo.2014.59.5.1449, 2014a. a
Röttgers, R., McKee, D., and Utschig, C.: Temperature and salinity
correction coefficients for light absorption by water in the visible to
infrared spectral region, Opt. Express, 22, 25093,
https://doi.org/10.1364/OE.22.025093, 2014b. a, b
Roy, S., Llewellyn, C. A., Egeland, E. S., and Johnsen, G., eds.: Phytoplankton
Pigments: Characterization, Chemotaxonomy, and Applications in Oceanography,
Cambridge University Press, Cambridge, UK, ISBN 9781107000667, 2011. a
Ruddick, K. G., Cauwer, V. D., Park, Y.-J., and Moore, G.: Seaborne
measurements of near infrared water-leaving reflectance : The similarity
spectrum for turbid waters, Limnol. Oceanogr., 51, 1167–1179,
https://doi.org/10.4319/lo.2006.51.2.1167, 2006. a, b
Ruddick, K. G., Voss, K. J., Banks, A., Boss, E., Castagna, A., Frouin, R.,
Hieronymi, M., Jamet, C., Johnson, B., Kuusk, J., Lee, Z., Ondrusek, M.,
Vabson, V., and Vendt, R.: A review of protocols for Fiducial Reference
Measurements of downwelling irradiance for the validation of satellite remote
sensing data over water, Remote Sensing, 11, 1742, https://doi.org/10.3390/rs11151742,
2019a. a, b
Ruddick, K. G., Voss, K. J., Banks, A. C., Boss, E. S., Castagna, A., Frouin,
R., Hieronymi, M., Jamet, C., Johnson, B. C., Kuusk, J., Lee, Z., Ondrusek,
M., Vabson, V., and Vendt, R.: A Review of Protocols for Fiducial Reference
Measurements of Downwelling Irradiance for the Validation of Satellite Remote
Sensing Data over Water, Remote Sensing, 11, 1742, https://doi.org/10.3390/rs11151742,
2019b. a, b
Shang, Z., Lee, Z., Wei, J., and Lin, G.: Impact of ship on radiometric
measurements in the field: a reappraisal via Monte Carlo simulations, Opt.
Express, 28, 1439, https://doi.org/10.1364/OE.28.001439, 2020. a
Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M. D., Breiner, H. W.,
and Richards, T. A.: Multiple marker parallel tag environmental DNA
sequencing reveals a highly complex eukaryotic community in marine anoxic
water, Mol. Ecol., 19, 21–31,
https://doi.org/10.1111/j.1365-294X.2009.04480.x, 2010. a
Stramski, D., Reynolds, R. A., Kaczmarek, S., Uitz, J., and Zheng, G.:
Correction of pathlength amplification in the filter-pad technique for
measurements of particulate absorption coefficient in the visible spectral
region, Appl. Optics, 54, 6763, https://doi.org/10.1364/AO.54.006763, 2015. a, b
Strickland, J. D. H. and Parsons, T. R.: A Practical Handbook of Seawater
Analys, Fisheries Research Board of Canada, Ottawa, Canada, 1968. a
Twardowski, M. S., Boss, E., Sullivan, J. M., and Donaghay, P. L.: Modeling
the spectral shape of absorption by chromophoric dissolved organic matter,
Mar. Chem., 89, 69–88, https://doi.org/10.1016/j.marchem.2004.02.008, 2004. a
van Beusekom, J. and Diel-Christiansen, S.: A synthesis of phyto and
zooplankton dynamics in the North Sea environment, Tech. rep., 146 pp., ISBN 1 85850 028 1, 1994. a
Van Heukelem, L. and Thomas, C. S.: Computer-assisted high-performance
liquid chromatography method development with applications to the isolation
and analysis of phytoplankton pigments, J. Chromatogr. A, 910,
31–49, https://doi.org/10.1016/S0378-4347(00)00603-4, 2001. a, b
Verschuur, G. L.: Transparency Measurements in Garner Lake, Tennessee: The
Relationship between Secchi Depth and Solar Altitude and a Suggestion for
Normalization of Secchi Depth Data, Lake Reserv. Manage., 13,
142–153, https://doi.org/10.1080/07438149709354305, 1997. a
WoRMS Editorial Board: World Register of Marine Species (WoRMS),
https://doi.org/10.14284/170, 2021.
a, b
Zaneveld, J. R. V. and Kitchen, J. C.: The variation in the inherent optical
properties of phytoplankton near an absorption peak as determined by various
models of cell structure, J. Geophys. Res., 100, 13309,
https://doi.org/10.1029/95JC00451, 1995. a
Short summary
Here we describe a dataset of optical measurements paired with the concentration and composition of dissolved and particulate components of water systems in Belgium. Sampling was performed over eight lakes, a coastal lagoon, an estuary, and coastal waters, covering the period of 2017 to 2019. The data cover a broad range of conditions and can be useful for development and evaluation of hyperspectral methods in hydrology optics and remote sensing.
Here we describe a dataset of optical measurements paired with the concentration and composition...
Altmetrics
Final-revised paper
Preprint