Articles | Volume 13, issue 11
https://doi.org/10.5194/essd-13-5353-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5353-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning
David L. A. Gaveau
CORRESPONDING AUTHOR
TheTreeMap, Bagadou Bas, 46600 Martel, France
Adrià Descals
CREAF, Centre de Recerca Ecològica i Aplicacions Forestals,
E08193 Bellaterra (Cerdanyola de Vallès), Catalonia, Spain
Mohammad A. Salim
TheTreeMap, Bagadou Bas, 46600 Martel, France
Douglas Sheil
Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Sean Sloan
Department of Geography, Vancouver Island University, Nanaimo, BC,
Canada
Related authors
Adrià Descals, Serge Wich, Zoltan Szantoi, Matthew J. Struebig, Rona Dennis, Zoe Hatton, Thina Ariffin, Nabillah Unus, David L. A. Gaveau, and Erik Meijaard
Earth Syst. Sci. Data, 15, 3991–4010, https://doi.org/10.5194/essd-15-3991-2023, https://doi.org/10.5194/essd-15-3991-2023, 2023
Short summary
Short summary
The spatial extent of coconut palm is understudied despite its increasing demand and associated impacts. We present the first global coconut palm layer at 20 m resolution. The layer was produced using deep learning and remotely sensed data. The global coconut area estimate is 12.31 Mha for dense coconut palm, but the estimate is 3 times larger when sparse coconut palm is considered. This means that coconut production can likely increase on the lands currently allocated to coconut palm.
Adrià Descals, Serge Wich, Zoltan Szantoi, Matthew J. Struebig, Rona Dennis, Zoe Hatton, Thina Ariffin, Nabillah Unus, David L. A. Gaveau, and Erik Meijaard
Earth Syst. Sci. Data, 15, 3991–4010, https://doi.org/10.5194/essd-15-3991-2023, https://doi.org/10.5194/essd-15-3991-2023, 2023
Short summary
Short summary
The spatial extent of coconut palm is understudied despite its increasing demand and associated impacts. We present the first global coconut palm layer at 20 m resolution. The layer was produced using deep learning and remotely sensed data. The global coconut area estimate is 12.31 Mha for dense coconut palm, but the estimate is 3 times larger when sparse coconut palm is considered. This means that coconut production can likely increase on the lands currently allocated to coconut palm.
Related subject area
Land Cover and Land Use
High-resolution global map of closed-canopy coconut palm
High-resolution land use and land cover dataset for regional climate modelling: historical and future changes in Europe
Global urban fractional changes at a 1 km resolution throughout 2100 under eight scenarios of Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs)
China Building Rooftop Area: the first multi-annual (2016–2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from Sentinel-2 imagery
High-resolution distribution maps of single-season rice in China from 2017 to 2022
Mapping global non-floodplain wetlands
An improved global land cover mapping in 2015 with 30 m resolution (GLC-2015) based on a multisource product-fusion approach
Annual emissions of carbon from land use, land-use change, and forestry from 1850 to 2020
Refined mapping of tree cover at fine-scale using time-series Planet-NICFI and Sentinel-1 imagery for Southeast Asia (2016–2021)
LCM2021 – The UK Land Cover Map 2021
An open-source automatic survey of green roofs in London using segmentation of aerial imagery
Twenty-meter annual paddy rice area map for mainland Southeast Asia using Sentinel-1 synthetic-aperture-radar data
A 29-year time series of annual 300 m resolution plant-functional-type maps for climate models
SinoLC-1: the first 1-meter resolution national-scale land-cover map of China created with the deep learning framework and open-access data
Estimating local agricultural gross domestic product (AgGDP) across the world
Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system
Harmonising the land-use flux estimates of global models and national inventories for 2000–2020
Four-century history of land transformation by humans in the United States (1630–2020): annual and 1 km grid data for the HIStory of LAND changes (HISLAND-US)
HISDAC-ES: Historical Settlement Data Compilation for Spain (1900–2020)
A 250 m annual alpine grassland AGB dataset over the Qinghai–Tibet Plateau (2000–2019) in China based on in situ measurements, UAV photos, and MODIS data
AsiaRiceYield4km: seasonal rice yield in Asia from 1995 to 2015
TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing
UGS-1m: fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework
AI4Boundaries: an open AI-ready dataset to map field boundaries with Sentinel-2 and aerial photography
GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020
ChinaWheatYield30m: A 30-m annual winter wheat yield dataset from 2016 to 2021 in China
CALC-2020: a new baseline land cover map at 10 m resolution for the circumpolar Arctic
MDAS: a new multimodal benchmark dataset for remote sensing
Gridded pollen-based Holocene regional plant cover in temperate and northern subtropical China suitable for climate modelling
Location, biophysical and agronomic parameters for croplands in northern Ghana
Historical nitrogen fertilizer use in China from 1952 to 2018
SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches
History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution annual dataset from 1860 to 2019
LUCAS cover photos 2006–2018 over the EU: 874 646 spatially distributed geo-tagged close-up photos with land cover and plant species label
Gridded 5 arcmin datasets for simultaneously farm-size-specific and crop-specific harvested areas in 56 countries
Vectorized dataset of roadside noise barriers in China using street view imagery
A global map of local climate zones to support earth system modelling and urban-scale environmental science
Mapping 10 m global impervious surface area (GISA-10m) using multi-source geospatial data
Improving intelligent dasymetric mapping population density estimates at 30 m resolution for the conterminous United States by excluding uninhabited areas
High-resolution map of sugarcane cultivation in Brazil using a phenology-based method
GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform
High-resolution land use and land cover dataset for regional climate modelling: a plant functional type map for Europe 2015
A national extent map of cropland and grassland for Switzerland based on Sentinel-2 data
Implementation of the CCDC algorithm to produce the LCMAP Collection 1.0 annual land surface change product
Harmonized in situ datasets for agricultural land use mapping and monitoring in tropical countries
NESEA-Rice10: high-resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019
The dataset of walled cities and urban extent in late imperial China in the 15th–19th centuries
GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery
Land-use harmonization datasets for annual global carbon budgets
An update and beyond: key landscapes for conservation land cover and change monitoring, thematic and validation datasets for the African, Caribbean and Pacific regions
Adrià Descals, Serge Wich, Zoltan Szantoi, Matthew J. Struebig, Rona Dennis, Zoe Hatton, Thina Ariffin, Nabillah Unus, David L. A. Gaveau, and Erik Meijaard
Earth Syst. Sci. Data, 15, 3991–4010, https://doi.org/10.5194/essd-15-3991-2023, https://doi.org/10.5194/essd-15-3991-2023, 2023
Short summary
Short summary
The spatial extent of coconut palm is understudied despite its increasing demand and associated impacts. We present the first global coconut palm layer at 20 m resolution. The layer was produced using deep learning and remotely sensed data. The global coconut area estimate is 12.31 Mha for dense coconut palm, but the estimate is 3 times larger when sparse coconut palm is considered. This means that coconut production can likely increase on the lands currently allocated to coconut palm.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Zeping Liu, Hong Tang, Lin Feng, and Siqing Lyu
Earth Syst. Sci. Data, 15, 3547–3572, https://doi.org/10.5194/essd-15-3547-2023, https://doi.org/10.5194/essd-15-3547-2023, 2023
Short summary
Short summary
Large-scale maps of building rooftop area (BRA) are crucial for addressing policy decisions and sustainable development. In this paper, we propose a deep-learning method for high-resolution BRA mapping (2.5 m) from Sentinel-2 imagery (10 m). The resulting China building rooftop area dataset (CBRA) is the first multi-annual (2016–2021) and high-resolution (2.5 m) BRA dataset in China. Cross-comparisons show that the CBRA achieves the best performance in capturing the spatiotemporal information.
Ruoque Shen, Baihong Pan, Qiongyan Peng, Jie Dong, Xuebing Chen, Xi Zhang, Tao Ye, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, https://doi.org/10.5194/essd-15-3203-2023, 2023
Short summary
Short summary
Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global food security. This study developed a new rice-mapping method and produced distribution maps of single-season rice in 21 provincial administrative regions of China from 2017 to 2022 at a 10 or 20 m resolution. The accuracy was examined using 108 195 survey samples and county-level statistical data, and we found that the distribution maps have good accuracy.
Charles R. Lane, Ellen D'Amico, Jay R. Christensen, Heather E. Golden, Qiusheng Wu, and Adnan Rajib
Earth Syst. Sci. Data, 15, 2927–2955, https://doi.org/10.5194/essd-15-2927-2023, https://doi.org/10.5194/essd-15-2927-2023, 2023
Short summary
Short summary
Non-floodplain wetlands (NFWs) – wetlands located outside floodplains – confer watershed-scale resilience to hydrological, biogeochemical, and biotic disturbances. Although they are frequently unmapped, we identified ~ 33 million NFWs covering > 16 × 10 km2 across the globe. NFWs constitute the majority of the world's wetlands (53 %). Despite their small size (median 0.039 km2), these imperiled systems have an outsized impact on watershed functions and sustainability and require protection.
Bingjie Li, Xiaocong Xu, Xiaoping Liu, Qian Shi, Haoming Zhuang, Yaotong Cai, and Da He
Earth Syst. Sci. Data, 15, 2347–2373, https://doi.org/10.5194/essd-15-2347-2023, https://doi.org/10.5194/essd-15-2347-2023, 2023
Short summary
Short summary
A global land cover map with fine spatial resolution is important for climate and environmental studies, food security, or biodiversity conservation. In this study, we developed an improved global land cover map in 2015 with 30 m resolution (GLC-2015) by fusing the existing land cover products based on the Dempster–Shafer theory of evidence on the Google Earth Engine platform. The GLC-2015 performed well, with an OA of 79.5 % (83.6 %) assessed with the global point-based (patch-based) samples.
Richard A. Houghton and Andrea Castanho
Earth Syst. Sci. Data, 15, 2025–2054, https://doi.org/10.5194/essd-15-2025-2023, https://doi.org/10.5194/essd-15-2025-2023, 2023
Short summary
Short summary
We update a previous analysis of carbon emissions (annual and national) from land use, land-use change, and forestry from 1850 to 2020. We use data from the latest (2020) Global Forest Resources Assessment, incorporate shifting cultivation, and include improvements to the bookkeeping model and recent estimates of emissions from peatlands. Net global emissions declined steadily over the decade from 2011 to 2020 (mean of 0.96 Pg C yr−1), falling below 1.0 Pg C yr−1 for the first time in 30 years.
Feng Yang and Zhenzhong Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-143, https://doi.org/10.5194/essd-2023-143, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
We generated a 4.77 m resolution annual tree cover map product for Southeast Asia (SEA) during 2016–2021 by PlanetScope and Sentinel-1 SAR imagery. Our maps were mapped with good accuracy and high consistency during 2016–2021. The baseline maps at 4.77 m can be converted to SEA’s forest cover maps at various resolutions to meet different users’ needs. Our products can help resolve rounding errors in forest cover mapping by counting isolated trees and monitoring long narrow forest cover removal.
Christopher G. Marston, Aneurin W. O'Neil, R. Daniel Morton, Claire M. Wood, and Clare S. Rowland
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-78, https://doi.org/10.5194/essd-2023-78, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The UK Land Cover Map 2021 (LCM2021) is a UK-wide land cover data set, with 21- and 10-class versions. It is intended to support a broad range of UK environmental research, including ecological and hydrological research. LCM2021 was produced by classifying Sentinel-2 satellite imagery. LCM2021 is distributed as a suite of products to facilitate easy-use for a range of applications. To support research at different spatial scales it includes 10 m, 25 m and 1 km resolution products.
Charles H. Simpson, Oscar Brousse, Nahid Mohajeri, Michael Davies, and Clare Heaviside
Earth Syst. Sci. Data, 15, 1521–1541, https://doi.org/10.5194/essd-15-1521-2023, https://doi.org/10.5194/essd-15-1521-2023, 2023
Short summary
Short summary
Adding plants to roofs of buildings can reduce indoor and outdoor temperatures and so can reduce urban overheating, which is expected to increase due to climate change and urban growth. To better understand the effect this has on the urban environment, we need data on how many buildings have green roofs already.
We used a computer vision model to find green roofs in aerial imagery in London, producing a dataset identifying what buildings have green roofs and improving on previous methods.
Chunling Sun, Hong Zhang, Lu Xu, Ji Ge, Jingling Jiang, Lijun Zuo, and Chao Wang
Earth Syst. Sci. Data, 15, 1501–1520, https://doi.org/10.5194/essd-15-1501-2023, https://doi.org/10.5194/essd-15-1501-2023, 2023
Short summary
Short summary
Over 90 % of the world’s rice is produced in the Asia–Pacific region. In this study, a rice-mapping method based on Sentinel-1 data for mainland Southeast Asia is proposed. A combination of spatiotemporal features with strong generalization is selected and input into the U-Net model to obtain a 20 m resolution rice area map of mainland Southeast Asia in 2019. The accuracy of the proposed method is 92.20 %. The rice area map is concordant with statistics and other rice area maps.
Kandice L. Harper, Céline Lamarche, Andrew Hartley, Philippe Peylin, Catherine Ottlé, Vladislav Bastrikov, Rodrigo San Martín, Sylvia I. Bohnenstengel, Grit Kirches, Martin Boettcher, Roman Shevchuk, Carsten Brockmann, and Pierre Defourny
Earth Syst. Sci. Data, 15, 1465–1499, https://doi.org/10.5194/essd-15-1465-2023, https://doi.org/10.5194/essd-15-1465-2023, 2023
Short summary
Short summary
We built a spatially explicit annual plant-functional-type (PFT) dataset for 1992–2020 exhibiting intra-class spatial variability in PFT fractional cover at 300 m. For each year, 14 maps of percentage cover are produced: bare soil, water, permanent snow/ice, built, managed grasses, natural grasses, and trees and shrubs, each split into leaf type and seasonality. Model simulations indicate significant differences in simulated carbon, water, and energy fluxes in some regions using this new set.
Zhuohong Li, Wei He, Mofan Cheng, Jingxin Hu, Guangyi Yang, and Hongyan Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-87, https://doi.org/10.5194/essd-2023-87, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Nowadays, the very-high-resolution land-cover (LC) map with national coverage is still unavailable in China, hindering efficient resource allocation. To fill this gap, the first 1-meter resolution LC map of China, SinoLC-1, was built. The results showed SinoLC-1 had an overall accuracy of 73.61 % and conformed closely to the official survey reports. The comparison with other datasets suggests SinoLC-1 can be a better support for downstream applications and provide more accurate info to users.
Yating Ru, Brian Blankespoor, Ulrike Wood-Sichra, Timothy S. Thomas, Liangzhi You, and Erwin Kalvelagen
Earth Syst. Sci. Data, 15, 1357–1387, https://doi.org/10.5194/essd-15-1357-2023, https://doi.org/10.5194/essd-15-1357-2023, 2023
Short summary
Short summary
Economic statistics are frequently produced at an administrative level that lacks detail to examine development patterns and the exposure to natural hazards. This paper disaggregates national and subnational administrative statistics of agricultural GDP into a global dataset at the local level using satellite-derived indicators. As an illustration, the paper estimates that the exposure of areas with extreme drought to agricultural GDP is USD 432 billion, where nearly 1.2 billion people live.
Elena Aragoneses, Mariano García, Michele Salis, Luís M. Ribeiro, and Emilio Chuvieco
Earth Syst. Sci. Data, 15, 1287–1315, https://doi.org/10.5194/essd-15-1287-2023, https://doi.org/10.5194/essd-15-1287-2023, 2023
Short summary
Short summary
We present a new hierarchical fuel classification system with a total of 85 fuels that is useful for preventing fire risk at different spatial scales. Based on this, we developed a European fuel map (1 km resolution) using land cover datasets, biogeographic datasets, and bioclimatic modelling. We validated the map by comparing it to high-resolution data, obtaining high overall accuracy. Finally, we developed a crosswalk for standard fuel models as a first assignment of fuel parameters.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Xiaoyong Li, Hanqin Tian, Chaoqun Lu, and Shufen Pan
Earth Syst. Sci. Data, 15, 1005–1035, https://doi.org/10.5194/essd-15-1005-2023, https://doi.org/10.5194/essd-15-1005-2023, 2023
Short summary
Short summary
We reconstructed land use and land cover (LULC) history for the conterminous United States during 1630–2020 by integrating multi-source data. The results show the widespread expansion of cropland and urban land and the shrinking of natural vegetation in the past four centuries. Forest planting and regeneration accelerated forest recovery since the 1920s. The datasets can be used to assess the LULC impacts on the ecosystem's carbon, nitrogen, and water cycles.
Johannes H. Uhl, Dominic Royé, Keith Burghardt, José Antonio Aldrey Vázquez, Manuel Borobio Sanchiz, and Stefan Leyk
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-53, https://doi.org/10.5194/essd-2023-53, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Historical, fine-grained geospatial datasets on built-up areas are rarely available, constraining studies of urbanization, settlement evolution, or the dynamics of human-environment interactions to recent decades. In order to provide such historical data, we used publicly available cadastral building data for Spain and created a series of gridded surfaces, measuring age, physical, and land use related features of the built environment in Spain, and the evolution of settlements from 1900 to 2020.
Huifang Zhang, Zhonggang Tang, Binyao Wang, Hongcheng Kan, Yi Sun, Yu Qin, Baoping Meng, Meng Li, Jianjun Chen, Yanyan Lv, Jianguo Zhang, Shuli Niu, and Shuhua Yi
Earth Syst. Sci. Data, 15, 821–846, https://doi.org/10.5194/essd-15-821-2023, https://doi.org/10.5194/essd-15-821-2023, 2023
Short summary
Short summary
The accuracy of regional grassland aboveground biomass (AGB) is always limited by insufficient ground measurements and large spatial gaps with satellite pixels. This paper used more than 37 000 UAV images as bridges to successfully obtain AGB values matching MODIS pixels. The new AGB estimation model had good robustness, with an average R2 of 0.83 and RMSE of 34.13 g m2. Our new dataset provides important input parameters for understanding the Qinghai–Tibet Plateau during global climate change.
Huaqing Wu, Jing Zhang, Zhao Zhang, Jichong Han, Juan Cao, Liangliang Zhang, Yuchuan Luo, Qinghang Mei, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 15, 791–808, https://doi.org/10.5194/essd-15-791-2023, https://doi.org/10.5194/essd-15-791-2023, 2023
Short summary
Short summary
High-spatiotemporal-resolution rice yield datasets are limited over a large region. We proposed an explicit method to predict rice yield based on machine learning methods and generated a seasonal 4 km resolution rice yield dataset across Asia (AsiaRiceYield4km) for 1995–2015. The seasonal rice yield accuracy of AsiaRiceYield4km is high and much improved compared with previous datasets. AsiaRiceYield4km will fill the current data gap and better support agricultural monitoring systems.
Steve Ahlswede, Christian Schulz, Christiano Gava, Patrick Helber, Benjamin Bischke, Michael Förster, Florencia Arias, Jörn Hees, Begüm Demir, and Birgit Kleinschmit
Earth Syst. Sci. Data, 15, 681–695, https://doi.org/10.5194/essd-15-681-2023, https://doi.org/10.5194/essd-15-681-2023, 2023
Short summary
Short summary
Imagery from air and space is the primary source of large-scale forest mapping. Our study introduces a new dataset with over 50000 image patches prepared for deep learning tasks. We show how the information for 20 European tree species can be extracted from different remote sensing sensors. Our algorithms can detect single species with precision scores up to 88 %. With a pixel size of 20×20 cm, forestry administration can now derive large-scale tree species maps at a very high resolution.
Qian Shi, Mengxi Liu, Andrea Marinoni, and Xiaoping Liu
Earth Syst. Sci. Data, 15, 555–577, https://doi.org/10.5194/essd-15-555-2023, https://doi.org/10.5194/essd-15-555-2023, 2023
Short summary
Short summary
A large-scale and high-resolution urban green space (UGS) product with 1 m of 31 major cities in China (UGS-1m) is generated based on a deep learning framework to provide basic UGS information for relevant UGS research, such as distribution, area, and UGS rate. Moreover, an urban green space dataset (UGSet) with a total of 4454 samples of 512 × 512 in size are also supplied as the benchmark to support model training and algorithm comparison.
Raphaël d'Andrimont, Martin Claverie, Pieter Kempeneers, Davide Muraro, Momchil Yordanov, Devis Peressutti, Matej Batič, and François Waldner
Earth Syst. Sci. Data, 15, 317–329, https://doi.org/10.5194/essd-15-317-2023, https://doi.org/10.5194/essd-15-317-2023, 2023
Short summary
Short summary
AI4boundaries is an open AI-ready data set to map field boundaries with Sentinel-2 and aerial photography provided with harmonised labels covering seven countries and 2.5 M parcels in Europe.
Xiao Zhang, Liangyun Liu, Tingting Zhao, Xidong Chen, Shangrong Lin, Jinqing Wang, Jun Mi, and Wendi Liu
Earth Syst. Sci. Data, 15, 265–293, https://doi.org/10.5194/essd-15-265-2023, https://doi.org/10.5194/essd-15-265-2023, 2023
Short summary
Short summary
An accurate global 30 m wetland dataset that can simultaneously cover inland and coastal zones is lacking. This study proposes a novel method for wetland mapping and generates the first global 30 m wetland map with a fine classification system (GWL_FCS30), including five inland wetland sub-categories (permanent water, swamp, marsh, flooded flat and saline) and three coastal wetland sub-categories (mangrove, salt marsh and tidal flats).
Yu Zhao, Shaoyu Han, Jie Zheng, Hanyu Xue, Zhenhai Li, Yang Meng, XuGang Li, Xiaodong Yang, Zhenhong Li, Shuhong Cai, and Guijun Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-417, https://doi.org/10.5194/essd-2022-417, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
In the present study, we generated a 30m Chinese winter wheat yield from 2016 to 2021, called ChinaWheatYield30m. The dataset is with great accuracy in broad area. Also, it is the known highest resolution of yield dataset, such a dataset will provide basic knowledge of exquisite wheat yield distribution, which can be applied for many purposes including crop production modelling or regional climate evaluation.
Chong Liu, Xiaoqing Xu, Xuejie Feng, Xiao Cheng, Caixia Liu, and Huabing Huang
Earth Syst. Sci. Data, 15, 133–153, https://doi.org/10.5194/essd-15-133-2023, https://doi.org/10.5194/essd-15-133-2023, 2023
Short summary
Short summary
Rapid Arctic changes are increasingly influencing human society, both locally and globally. Land cover offers a basis for characterizing the terrestrial world, yet spatially detailed information on Arctic land cover is lacking. We employ multi-source data to develop a new land cover map for the circumpolar Arctic. Our product reveals regionally contrasting biome distributions not fully documented in existing studies and thus enhances our understanding of the Arctic’s terrestrial system.
Jingliang Hu, Rong Liu, Danfeng Hong, Andrés Camero, Jing Yao, Mathias Schneider, Franz Kurz, Karl Segl, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 15, 113–131, https://doi.org/10.5194/essd-15-113-2023, https://doi.org/10.5194/essd-15-113-2023, 2023
Short summary
Short summary
Multimodal data fusion is an intuitive strategy to break the limitation of individual data in Earth observation. Here, we present a multimodal data set, named MDAS, consisting of synthetic aperture radar (SAR), multispectral, hyperspectral, digital surface model (DSM), and geographic information system (GIS) data for the city of Augsburg, Germany, along with baseline models for resolution enhancement, spectral unmixing, and land cover classification, three typical remote sensing applications.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Jose Luis Gómez-Dans, Philip Edward Lewis, Feng Yin, Kofi Asare, Patrick Lamptey, Kenneth Kobina Yedu Aidoo, Dilys Sefakor MacCarthy, Hongyuan Ma, Qingling Wu, Martin Addi, Stephen Aboagye-Ntow, Caroline Edinam Doe, Rahaman Alhassan, Isaac Kankam-Boadu, Jianxi Huang, and Xuecao Li
Earth Syst. Sci. Data, 14, 5387–5410, https://doi.org/10.5194/essd-14-5387-2022, https://doi.org/10.5194/essd-14-5387-2022, 2022
Short summary
Short summary
We provide a data set to support mapping croplands in smallholder landscapes in Ghana. The data set contains information on crop location on three agroecological zones for 2 years, temporal series of measurements of leaf area index and leaf chlorophyll concentration for maize canopies and yield. We demonstrate the use of these data to validate cropland masks, create a maize mask using satellite data and explore the relationship between satellite measurements and yield.
Zhen Yu, Jing Liu, and Giri Kattel
Earth Syst. Sci. Data, 14, 5179–5194, https://doi.org/10.5194/essd-14-5179-2022, https://doi.org/10.5194/essd-14-5179-2022, 2022
Short summary
Short summary
We developed a 5 km annual nitrogen (N) fertilizer use dataset in China, covering the period from 1952 to 2018. We found that previous FAO-data-based N fertilizer products overestimated the N use in low, but underestimated in high, cropland coverage areas in China. The new dataset has improved the spatial distribution and corrected the existing biases, which is beneficial for biogeochemical cycle simulations in China, such as the assessment of greenhouse gas emissions and food production.
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Hanqin Tian, Zihao Bian, Hao Shi, Xiaoyu Qin, Naiqing Pan, Chaoqun Lu, Shufen Pan, Francesco N. Tubiello, Jinfeng Chang, Giulia Conchedda, Junguo Liu, Nathaniel Mueller, Kazuya Nishina, Rongting Xu, Jia Yang, Liangzhi You, and Bowen Zhang
Earth Syst. Sci. Data, 14, 4551–4568, https://doi.org/10.5194/essd-14-4551-2022, https://doi.org/10.5194/essd-14-4551-2022, 2022
Short summary
Short summary
Nitrogen is one of the critical nutrients for growth. Evaluating the change in nitrogen inputs due to human activity is necessary for nutrient management and pollution control. In this study, we generated a historical dataset of nitrogen input to land at the global scale. This dataset consists of nitrogen fertilizer, manure, and atmospheric deposition inputs to cropland, pasture, and rangeland at high resolution from 1860 to 2019.
Raphaël d'Andrimont, Momchil Yordanov, Laura Martinez-Sanchez, Peter Haub, Oliver Buck, Carsten Haub, Beatrice Eiselt, and Marijn van der Velde
Earth Syst. Sci. Data, 14, 4463–4472, https://doi.org/10.5194/essd-14-4463-2022, https://doi.org/10.5194/essd-14-4463-2022, 2022
Short summary
Short summary
Between 2006 and 2018, 875 661 LUCAS cover (i.e. close-up) photos were taken over a systematic sample of the European Union. This geo-located photo dataset has been curated and is being made available along with the surveyed label data, including land cover and plant species.
Han Su, Bárbara Willaarts, Diana Luna-Gonzalez, Maarten S. Krol, and Rick J. Hogeboom
Earth Syst. Sci. Data, 14, 4397–4418, https://doi.org/10.5194/essd-14-4397-2022, https://doi.org/10.5194/essd-14-4397-2022, 2022
Short summary
Short summary
There are over 608 million farms around the world but they are not the same. We developed high spatial resolution maps showing where small and large farms were located and which crops were planted for 56 countries. We checked the reliability and have the confidence to use them for the country level and global studies. Our maps will help more studies to easily measure how agriculture policies, water availability, and climate change affect small and large farms.
Zhen Qian, Min Chen, Yue Yang, Teng Zhong, Fan Zhang, Rui Zhu, Kai Zhang, Zhixin Zhang, Zhuo Sun, Peilong Ma, Guonian Lü, Yu Ye, and Jinyue Yan
Earth Syst. Sci. Data, 14, 4057–4076, https://doi.org/10.5194/essd-14-4057-2022, https://doi.org/10.5194/essd-14-4057-2022, 2022
Short summary
Short summary
Roadside noise barriers (RNBs) are important urban infrastructures to ensure a city is liveable. This study provides the first reliable and nationwide vectorized RNB dataset with street view imagery in China. The generated RNB dataset is evaluated in terms of two aspects, i.e., the detection accuracy and the completeness and positional accuracy. The method is based on a developed geospatial artificial intelligence framework.
Matthias Demuzere, Jonas Kittner, Alberto Martilli, Gerald Mills, Christian Moede, Iain D. Stewart, Jasper van Vliet, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, https://doi.org/10.5194/essd-14-3835-2022, 2022
Short summary
Short summary
Because urban areas are key contributors to climate change but are also susceptible to multiple hazards, one needs spatially detailed information on urban landscapes to support environmental services. This global local climate zone map describes this much-needed intra-urban heterogeneity across the whole surface of the earth in a universal language and can serve as a basic infrastructure to study e.g. environmental hazards, energy demand, and climate adaptation and mitigation solutions.
Xin Huang, Jie Yang, Wenrui Wang, and Zhengrong Liu
Earth Syst. Sci. Data, 14, 3649–3672, https://doi.org/10.5194/essd-14-3649-2022, https://doi.org/10.5194/essd-14-3649-2022, 2022
Short summary
Short summary
Using more than 2.7 million Sentinel images, we proposed a global ISA mapping method and produced the 10-m global ISA dataset (GISA-10m), with overall accuracy exceeding 86 %. The inter-comparison between different global ISA datasets showed the superiority of our results. The ISA distribution at urban and rural was discussed and compared. For the first time, courtesy of the high spatial resolution, the global road ISA was further identified, and its distribution was discussed.
Jeremy Baynes, Anne Neale, and Torrin Hultgren
Earth Syst. Sci. Data, 14, 2833–2849, https://doi.org/10.5194/essd-14-2833-2022, https://doi.org/10.5194/essd-14-2833-2022, 2022
Short summary
Short summary
Census data are typically provided in irregularly shaped spatial units. To get a more refined estimate of population density, we downscaled population counts from United States (US) census blocks to a 30 m grid using intelligent dasymetric mapping. Furthermore, we improved our density estimates by using multiple spatial datasets to identify and mask uninhabited areas. Masking these uninhabited areas improved density estimates for every state in the conterminous US.
Yi Zheng, Ana Cláudia dos Santos Luciano, Jie Dong, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2065–2080, https://doi.org/10.5194/essd-14-2065-2022, https://doi.org/10.5194/essd-14-2065-2022, 2022
Short summary
Short summary
Brazil is the largest sugarcane producer. Sugarcane in Brazil can be harvested all year round. The flexible phenology makes it difficult to identify sugarcane in Brazil at a country scale. We developed a phenology-based method which can identify sugarcane with limited training data. The sugarcane maps for Brazil obtain high accuracy through comparison against field samples and statistical data. The maps can be used to monitor growing conditions and evaluate the feedback to climate of sugarcane.
Xiao Zhang, Liangyun Liu, Tingting Zhao, Yuan Gao, Xidong Chen, and Jun Mi
Earth Syst. Sci. Data, 14, 1831–1856, https://doi.org/10.5194/essd-14-1831-2022, https://doi.org/10.5194/essd-14-1831-2022, 2022
Short summary
Short summary
Accurately mapping impervious-surface dynamics has great scientific significance and application value for research on urban sustainable development, the assessment of anthropogenic carbon emissions and global ecological-environment modeling. In this study, a novel and accurate global 30 m impervious surface dynamic dataset (GISD30) for 1985 to 2020 was produced using the spectral-generalization method and time-series Landsat imagery on the Google Earth Engine cloud computing platform.
Vanessa Reinhart, Peter Hoffmann, Diana Rechid, Jürgen Böhner, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 1735–1794, https://doi.org/10.5194/essd-14-1735-2022, https://doi.org/10.5194/essd-14-1735-2022, 2022
Short summary
Short summary
The LANDMATE plant functional type (PFT) land cover dataset for Europe 2015 (Version 1.0) is a gridded, high-resolution dataset for use in regional climate models. LANDMATE PFT is prepared using the expertise of regional climate modellers all over Europe and is easily adjustable to fit into different climate model families. We provide comprehensive spatial quality information for LANDMATE PFT, which can be used to reduce uncertainty in regional climate model simulations.
Robert Pazúr, Nica Huber, Dominique Weber, Christian Ginzler, and Bronwyn Price
Earth Syst. Sci. Data, 14, 295–305, https://doi.org/10.5194/essd-14-295-2022, https://doi.org/10.5194/essd-14-295-2022, 2022
Short summary
Short summary
We mapped the distribution of cropland and permanent grassland across Switzerland, where the agricultural land is considerably spatially heterogeneous due to strong variability in topography and climate, thus presenting challenges to mapping. The resulting map has high accuracy in lowlands as well as in mountainous areas. Thus, we believe that the presented mapping approach and resulting map will provide a solid ground for further research in agricultural land cover and landscape structure.
George Z. Xian, Kelcy Smith, Danika Wellington, Josephine Horton, Qiang Zhou, Congcong Li, Roger Auch, Jesslyn F. Brown, Zhe Zhu, and Ryan R. Reker
Earth Syst. Sci. Data, 14, 143–162, https://doi.org/10.5194/essd-14-143-2022, https://doi.org/10.5194/essd-14-143-2022, 2022
Short summary
Short summary
Continuous change detection algorithms were implemented with time series satellite records to produce annual land surface change products for the conterminous United States. The land change products are in 30 m spatial resolution and represent land cover and change from 1985 to 2017 across the country. The LCMAP product suite provides useful information for land resource management and facilitates studies to improve the understanding of terrestrial ecosystems.
Audrey Jolivot, Valentine Lebourgeois, Louise Leroux, Mael Ameline, Valérie Andriamanga, Beatriz Bellón, Mathieu Castets, Arthur Crespin-Boucaud, Pierre Defourny, Santiana Diaz, Mohamadou Dieye, Stéphane Dupuy, Rodrigo Ferraz, Raffaele Gaetano, Marie Gely, Camille Jahel, Bertin Kabore, Camille Lelong, Guerric le Maire, Danny Lo Seen, Martha Muthoni, Babacar Ndao, Terry Newby, Cecília Lira Melo de Oliveira Santos, Eloise Rasoamalala, Margareth Simoes, Ibrahima Thiaw, Alice Timmermans, Annelise Tran, and Agnès Bégué
Earth Syst. Sci. Data, 13, 5951–5967, https://doi.org/10.5194/essd-13-5951-2021, https://doi.org/10.5194/essd-13-5951-2021, 2021
Short summary
Short summary
This paper presents nine standardized crop type reference datasets collected between 2013 and 2020 in seven tropical countries. It aims at participating in the difficult exercise of mapping agricultural land use through satellite image classification in those complex areas where few ground truth or census data are available. These quality-controlled datasets were collected in the framework of the international JECAM initiative and contain 27 074 polygons documented by detailed keywords.
Jichong Han, Zhao Zhang, Yuchuan Luo, Juan Cao, Liangliang Zhang, Fei Cheng, Huimin Zhuang, Jing Zhang, and Fulu Tao
Earth Syst. Sci. Data, 13, 5969–5986, https://doi.org/10.5194/essd-13-5969-2021, https://doi.org/10.5194/essd-13-5969-2021, 2021
Short summary
Short summary
The accurate planting area and spatial distribution information is the basis for ensuring food security at continental scales. We constructed a paddy rice map database in Southeast and Northeast Asia for 3 years (2017–2019) at a 10 m spatial resolution. There are fewer mixed pixels in our paddy rice map. The large-scale and high-resolution maps of paddy rice are useful for water resource management and yield monitoring.
Qiaofeng Xue, Xiaobin Jin, Yinong Cheng, Xuhong Yang, and Yinkang Zhou
Earth Syst. Sci. Data, 13, 5071–5085, https://doi.org/10.5194/essd-13-5071-2021, https://doi.org/10.5194/essd-13-5071-2021, 2021
Short summary
Short summary
We reconstructed the walled cities of China that extend from the 15th century to 19th century based on multiple historical documents. By restoring the extent of the city walls, it is helpful to explore the urban area in this period. The correlation and integration of the lifetime and the spatial data led to the creation of the China City Wall Areas Dataset (CCWAD). Based on the proximity to the time of most of the city walls, we produce the China Urban Extent Dataset (CUED) from CCWAD.
Miao Zhang, Bingfang Wu, Hongwei Zeng, Guojin He, Chong Liu, Shiqi Tao, Qi Zhang, Mohsen Nabil, Fuyou Tian, José Bofana, Awetahegn Niguse Beyene, Abdelrazek Elnashar, Nana Yan, Zhengdong Wang, and Yiliang Liu
Earth Syst. Sci. Data, 13, 4799–4817, https://doi.org/10.5194/essd-13-4799-2021, https://doi.org/10.5194/essd-13-4799-2021, 2021
Short summary
Short summary
Cropping intensity (CI) is essential for agricultural land use management, but fine-resolution global CI is not available. We used multiple satellite data on Google Earth Engine to develop a first 30 m resolution global CI (GCI30). GCI30 performed well, with an overall accuracy of 92 %. GCI30 not only exhibited high agreement with existing CI products but also provided many spatial details. GCI30 can facilitate research on sustained cropland intensification to improve food production.
Louise Chini, George Hurtt, Ritvik Sahajpal, Steve Frolking, Kees Klein Goldewijk, Stephen Sitch, Raphael Ganzenmüller, Lei Ma, Lesley Ott, Julia Pongratz, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 4175–4189, https://doi.org/10.5194/essd-13-4175-2021, https://doi.org/10.5194/essd-13-4175-2021, 2021
Short summary
Short summary
Carbon emissions from land-use change are a large and uncertain component of the global carbon cycle. The Land-Use Harmonization 2 (LUH2) dataset was developed as an input to carbon and climate simulations and has been updated annually for the Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2 updates and describe the 2019 version which used new cropland and grazing land data inputs for the globally important region of Brazil.
Zoltan Szantoi, Andreas Brink, and Andrea Lupi
Earth Syst. Sci. Data, 13, 3767–3789, https://doi.org/10.5194/essd-13-3767-2021, https://doi.org/10.5194/essd-13-3767-2021, 2021
Short summary
Short summary
The ever-evolving landscapes in the African, Caribbean and Pacific regions should be monitored for land cover changes. The Global Land Monitoring Service of the Copernicus Programme, and in particular the Hot Spot Monitoring activity, developed a satellite-imagery-based workflow to monitor such areas. Here, we present a total of 852 025 km2 of areas mapped with up to 32 land cover classes. Thematic land cover and land cover change maps, as well as validation datasets, are presented.
Cited articles
Adrianto, H. A., Spracklen, D. V., Arnold, S. R., Sitanggang, I. S., and Syaufina, L.: Forest and Land Fires Are Mainly Associated with Deforestation in Riau Province, Indonesia, Remote Sens.-Basel, 12, 3, https://doi.org/10.3390/rs12010003, 2020.
Alonso-Canas, I. and Chuvieco, E.: Global burned area mapping from ENVISAT-MERIS and MODIS active fire data, Remote Sens. Environ., 163, 140–152, 2015.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Carmenta, R., Zabala, A., Trihadmojo, B., Gaveau, D., Salim, M. A., and
Phelps, J.: Evaluating bundles of interventions to prevent peat-fires in
Indonesia, Global Environ. Chang., 67, 102154, https://doi.org/10.1016/j.gloenvcha.2020.102154, 2021.
Chuvieco, E., Pettinari, M. L., Bastarrika, A., Roteta, E., Storm, T., and
Padilla Parellada, M.: ESA Fire Climate Change Initiative (Fire_cci): Small
Fire Dataset (SFD) Burned Area pixel product for Sub-Saharan Africa, version
1.1, Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/065f6040ef08485db989cbd89d536167, 2018.
Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanase, M., Koutsias, N., García, M., Yebra, M., Padilla, M., and Gitas, I.: Historical background and current developments for mapping burned area from satellite Earth observation, Remote Sens. Environ., 225, 45–64, 2019.
Crippa, P., Castruccio, S., Archer-Nicholls, S., Lebron, G., Kuwata, M., Thota, A., Sumin, S., Butt, E., Wiedinmyer, C., and Spracklen, D.: Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia, Sci. Rep.-UK, 6, 1–9, 2016.
Dennis, R. A., Mayer, J., Applegate, G., Chokkalingam, U., Colfer, C. J. P., Kurniawan, I., Lachowski, H., Maus, P., Permana, R. P., and Ruchiat, Y.: Fire, people and pixels: linking social science and remote sensing to understand underlying causes and impacts of fires in Indonesia, Hum. Ecol., 33, 465–504, 2005.
DGCC: Emission Reduction Report for the Indonesia-Norway partnership,
Directorate General of Climate Change, available at: http://ditjenppi.menlhk.go.id/reddplus/images/adminppi/dokumen/igrk/Progres_penurunan_emisi.pdf (last access: 15 October 2021), 2019.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P. G.: Sentinel-2: ESA's optical high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25–36, 2012.
European Union/ESA/Copernicus: Sentinel-2 MSI: MultiSpectral Instrument, Level-2A, Earth Engine Data Catalog [data set], available at: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR, last access: 10 November 2020.
Falk, D. A., Miller, C., McKenzie, D., and Black, A. E.: Cross-scale analysis of fire regimes, Ecosystems, 10, 809–823, 2007.
Fanin, T. and van der Werf, G. R.: Precipitationfire linkages in Indonesia (1997–2015), Biogeosciences, 14, 3995–4008, https://doi.org/10.5194/bg-14-3995-2017, 2017.
Field, R. D., van der Werf, G. R., and Shen, S. S.: Human amplification of drought-induced biomass burning in Indonesia since 1960, Nat. Geosci., 2, 185–188, 2009.
Field, R. D., Van Der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., and Torres, O.: Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Ni no-induced drought, P. Natl. Acad. Sci. USA, 113, 9204–9209, 2016.
Gaveau, D. L. A., Salim, M., Hergoualc'h, K., Locatelli, B., Sloan, S.,
Wooster, M., Marlier, M., Molidena, E., Yaem, H., Defries, R., Verchot, L.,
Murdiyarso, D., Nasi, R., Holmgren, P., and Sheil, D.: Major atmospheric
emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires, Sci. Rep.-UK, 4, 6112, https://doi.org/10.1038/srep06112, 2014.
Gaveau, D. L. A., Pirard, R., Salim, M. A., Tonoto, P., Parks, S. A., and Carmenta, R.: Overlapping land claims limit the use of satellites to monitor No-Deforestation commitments and No-Burning compliance, Conserv. Lett., 10, 257–264, 2017.
Gaveau, D. L. A., Descal, A., Salim, M. A., Sheil, D., and Sloan, S.: 2019
burned area map for Indonesia using Sentinel-2 data, Zenodo [data set], https://doi.org/10.5281/zenodo.4551243, 2021a.
Gaveau, D. L. A., Santos, L., Locatelli, B., Salim, M. A., Husnayaen, H., Meijaard, E., Heatubun, C., and Sheil, D.: Forest loss in Indonesian New Guinea (2001–2019): Trends, drivers and outlook, Biol. Conserv., 261, 109225, https://doi.org/10.1016/j.biocon.2021.109225, 2021b.
Giglio, L., Justice, C., Boschetti, L., and Roy, D.: MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD64A1.006, 2015 (data available at: https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD64A1, last access: 12 August 2021).
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.: The Collection 6 MODIS burned area mapping algorithm and product, Remote Sens. Environ., 217, 72–85, 2018.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., and Rocha, M.: The PRIMAP-hist national historical emissions time series (1850–2017), GFZ Data Services [data set], https://doi.org/10.5880/pik.2019.018, 2019.
Harrison, M. E., Ripoll Capilla, B., Thornton, S. A., Cattau, M. E., and
Page, S. E.: Impacts of the 2015 fire season on peat-swamp forest biodiversity
in Indonesian Borneo, Peatlands in harmony–Agriculture, industry & nature,
in: Proceedings of the 15th international peat congress: Oral presentations, Kuching Malaysia, 15–19 August 2016, 713–717, 2016.
Hawbaker, T. J., Vanderhoof, M. K., Schmidt, G. L., Beal, Y.-J., Picotte, J. J., Takacs, J. D., Falgout, J. T., and Dwyer, J. L.: The Landsat Burned Area algorithm and products for the conterminous United States, Remote Sens. Environ., 244, 111801, https://doi.org/10.1016/j.rse.2020.111801, 2020.
Huang, H., Roy, D. P., Boschetti, L., Zhang, H. K., Yan, L., Kumar, S. S., Gomez-Dans, J., and Li, J.: Separability analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for burned area discrimination, Remote Sens.-Basel, 8, 873, https://doi.org/10.3390/rs8100873, 2016.
Huijnen, V., Wooster, M., Kaiser, J., Gaveau, D., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., and Van Weele, M.: Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997, Sci. Rep.-UK, 6, 26886, https://doi.org/10.1038/srep26886, 2016.
Karsai, I., Schmickl, T., and Kampis, G.: Forest Fires: Fire Management and the Power Law, in: Resilience and Stability of Ecological and Social Systems, Springer, 63–77, 2020.
Koplitz, S. N., Mickley, L. J., Marlier, M. E., Buonocore, J. J., Kim, P. S., Liu, T., Sulprizio, M. P., DeFries, R. S., Jacob, D. J., and Schwartz, J.: Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure, Environ. Res. Lett., 11, 094023, https://doi.org/10.1088/1748-9326/11/9/094023, 2016.
Liu, S., Zheng, Y., Dalponte, M., and Tong, X.: A novel fire index-based burned area change detection approach using Landsat-8 OLI data, Eur. J. Remote Sens., 53, 104–112, 2020.
Lizundia-Loiola, J., Otón, G., Ramo, R., and Chuvieco, E.: A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data, Remote Sens. Environ., 236, 111493, https://doi.org/10.1016/j.rse.2019.111493, 2020.
Lizundia-Loiola, J., Franquesa, M., Boettcher, M., Kirches, G., Pettinari,
M. L., and Chuvieco, E.: Operational implementation of the burned area
component of the Copernicus Climate Change Service: from MODIS 250 m
to OLCI 300 m data, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-399, 2021.
Lohberger, S., Stängel, M., Atwood, E. C., and Siegert, F.: Spatial evaluation of Indonesia's 2015 fire-affected area and estimated carbon emissions using Sentinel-1, Glob. Change Biol., 24, 644–654, 2018.
Malamud, B. D., Morein, G., and Turcotte, D. L.: Forest fires: an example of self-organized critical behavior, Science, 281, 1840–1842, 1998.
Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P. L., Randerson, J. T., Shindell, D. T., Chen, Y., and Faluvegi, G.: El Ni no and health risks from landscape fire emissions in southeast Asia, Nat. Clim. Change, 3, 131–136, 2013.
Ministry of Environment and Forestry (MOEF): available at: https://geoportal.menlhk.go.id/webgis/index.php/en/, last access: 1 April 2021.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A.: Good practices for estimating area and assessing accuracy of land change, Remote Sens. Environ., 148, 42–57, https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Otón, G., Lizundia-Loiola, J., Pettinari, M. L., and Chuvieco, E.: Development of a consistent global long-term burned area product (1982–2018) based on AVHRR-LTDR data, Int. J. Appl. Earth Obs., 103, 102473, 2021.
Ramo, R., Roteta, E., Bistinas, I., Van Wees, D., Bastarrika, A.,
Chuvieco, E., and Van der Werf, G. R.: African burned area and fire carbon
emissions are strongly impacted by small fires undetected by coarse resolution
satellite data, P. Natl. Acad. Sci. USA, 118, e2011160118, https://doi.org/10.1073/pnas.2011160118, 2021.
Ritung, S., Wahyunto, Nugroho, K., Sukarman, Hikmatullah, Suparto, and
Tafakresnanto, C.: Peatland map of Indonesia, Department of Research and Development of Agricultural Land
Resources, Ministry of Agriculture, Jakarta, 2011.
Rochmyaningsih, D.: Wildfire researcher deported amid growing rift between Indonesian government and scientists, Science, 367, 722–723, 2020.
Salim, M. A.: Visualise 2019 burned areas across Indonesia, TheTreeMap.com, available at: https://thetreemap.users.earthengine.app/view/burn-area-validation-simplified, last access: 5 November 2021.
Salim, M. A., Descals, A., and Gaveau, D.: Code for generating annual pre- and post-fire Sentinel-2 composites over Indonesia, V1.0, Zenodo [code], https://doi.org/10.5281/zenodo.5646758, 2021.
Sipongi: Recapitulation of Land and Forest Fires Area (Ha) per Province in Indonesia 2015–2020, available at: http://sipongi.menlhk.go.id/hotspot/luas_kebakaran (last access: 8 November 2021), 2020.
Sloan, S., Locatelli, B., Wooster, M. J., and Gaveau, D. L.: Fire activity in Borneo driven by industrial land conversion and drought during El Ni no periods, 1982–2010, Global Environ. Chang., 47, 95–109, 2017.
Sloan, S., Tacconi, L., and Cattau, M.: Fire prevention in managed landscapes:
Recent success and challenges in Indonesia, Mitig. Adapt. Strat. Gl., 26, 32, https://doi.org/10.1007/s11027-021-09965-2, 2021.
Stehman, S. V., Wickham, J., Smith, J., and Yang, L.: Thematic accuracy of the 1992 National Land-Cover Data for the eastern United States: Statistical methodology and regional results, Remote Sens. Environ., 86, 500–516, 2003.
Tacconi, L.: Preventing fires and haze in Southeast Asia, Nat. Clim. Change, 6, 640–643, 2016.
Tansey, K., Beston, J., Hoscilo, A., Page, S., and Paredes Hernández, C.:
Relationship between MODIS fire hot spot count and burned area in a degraded
tropical peat swamp forest in Central Kalimantan, Indonesia,
J. Geophys. Res., 113, D23112, https://doi.org/10.1029/2008JD010717, 2008.
Van der Werf, G. R., Dempewolf, J., Trigg, S. N., Randerson, J. T., Kasibhatla, P. S., Giglio, L., Murdiyarso, D., Peters, W., Morton, D., and Collatz, G.: Climate regulation of fire emissions and deforestation in equatorial Asia, P. Natl. Acad. Sci. USA, 105, 20350–20355, 2008.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
van Nieuwstadt, M. G. L. and Sheil, D.: Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia, J. Ecol., 93, 191–201, 2005.
Watts, J. D., Tacconi, L., Hapsari, N., Irawan, S., Sloan, S., and Widiastomo, T.: Incentivizing compliance: Evaluating the effectiveness of targeted village incentives for reducing burning in Indonesia, Forest Policy Econ., 108, 101956, https://doi.org/10.1016/j.forpol.2019.101956, 2019.
Wooster, M., Gaveau, D., Salim, M., Zhang, T., Xu, W., Green, D., Huijnen, V., Murdiyarso, D., Gunawan, D., and Borchard, N.: New tropical peatland gas and particulate emissions factors indicate 2015 Indonesian fires released far more particulate matter (but less methane) than current inventories imply, Remote Sens.-Basel, 10, 495, https://doi.org/10.3390/rs10040495, 2018.
Short summary
Severe burning struck Indonesia in 2019. Drawing on new satellite imagery, we present and validate new 2019 burned-area estimates for Indonesia.
We show that > 3.11 million hectares (Mha) burned in 2019, double the official estimate from the Indonesian Ministry of Environment and Forestry. Our relatively more accurate estimates have important implications for carbon-emission calculations from forest and peatland fires in Indonesia.
Severe burning struck Indonesia in 2019. Drawing on new satellite imagery, we present and...