Articles | Volume 13, issue 7
https://doi.org/10.5194/essd-13-3239-2021
https://doi.org/10.5194/essd-13-3239-2021
Data description paper
 | 
07 Jul 2021
Data description paper |  | 07 Jul 2021

A fine-resolution soil moisture dataset for China in 2002–2018

Xiangjin Meng, Kebiao Mao, Fei Meng, Jiancheng Shi, Jiangyuan Zeng, Xinyi Shen, Yaokui Cui, Lingmei Jiang, and Zhonghua Guo

Related authors

A Novel Method for Sea Surface Temperature Prediction using a Featural Granularity-Based and Data-Knowledge-Driven ConvLSTM Model
Mengmeng Cao, Kebiao Mao, Yibo Yan, Sayed Bateni, and Zhonghua Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-4618,https://doi.org/10.5194/egusphere-2025-4618, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Characterization of liquid cloud profiles using global collocated active radar and passive polarimetric cloud measurements
Yutong Wang, Huazhe Shang, Chenqian Tang, Jian Xu, Tianyang Ji, Wenwu Wang, Lesi Wei, Yonghui Lei, Jiancheng Shi, and Husi Letu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2471,https://doi.org/10.5194/egusphere-2025-2471, 2025
Short summary
A Novel Method for Sea Surface Temperature Prediction using a Featural Granularity-Based ConvLSTM Model of Data-Knowledge-Driven
Mengmeng Cao, Kebiao Mao, Yibo Yan, Sayed Bateni, and Zhonghua Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-239,https://doi.org/10.5194/egusphere-2025-239, 2025
Preprint archived
Short summary
A high-resolution (0.05°) global seamless continuity record (2002–2023) of near-surface soil freeze-thaw states via passive microwave and optical satellite data
Defeng Feng, Tianjie Zhao, Jingyao Zheng, Yu Bai, Youhua Ran, Xiaokang Kou, Lingmei Jiang, Ziqian Zhang, Pei Yu, Jinbiao Zhu, Jie Pan, Jiancheng Shi, and Yuei-An Liou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-62,https://doi.org/10.5194/essd-2025-62, 2025
Revised manuscript accepted for ESSD
Short summary
Scale patterns of the Sentinel-1 SAR-based snow depth product compared to station measurements and airborne LiDAR observations
Jiajie Ying, Lingmei Jiang, Jinmei Pan, Chuan Xiong, and Jianwei Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-276,https://doi.org/10.5194/egusphere-2025-276, 2025
Short summary

Cited articles

Afshar, M. and Yilmaz, M.: The added utility of nonlinear methods compared to linear methods in rescaling soil moisture products, Remote Sens. Environ., 196, 224–23, https://doi.org/10.1016/j.rse.2017.05.017, 2017. 
Albergel, C., Rosnay, P. D., Gruhier, C., Muño-Sabater, J. S., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner. W.: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations, Remote Sens. Environ., 118, 215–226, https://doi.org/10.1016/j.rse.2011.11.017, 2012. 
Albergel, C., Dorigo, W., Balsamo, G., Muñoz-Sabatera, J., de Rosnay, P., Isaksen, L., and Wagner, W.: Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses, Remote Sens. Environ., 138, 77–89, https://doi.org/10.1016/j.rse.2013.07.009, 2013. 
Al-Yaari, A., Wigneron J. P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y., and Lannoy, G.: Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements, Remote Sens. Environ., 224, 289–303, https://doi.org/10.1016/j.rse.2019.02.008, 2019. 
Bhagat, S. V.: Space-borne passive microwave remote sensing of soil moisture: A review, Recent Patents on Space Technology, 4, 119–150, https://doi.org/10.2174/221068710402150513123146#sthash.qA8fxZDt.dpuf, 2014. 
Download
Short summary
In order to improve the accuracy of China's regional agricultural drought monitoring and climate change research, we produced a long-term series of soil moisture products by constructing a time and depth correction model for three soil moisture products with the help of ground observation data. The spatial resolution is improved by building a spatial weight decomposition model, and validation indicates that the new product can meet application needs.
Share
Altmetrics
Final-revised paper
Preprint