Articles | Volume 13, issue 7
https://doi.org/10.5194/essd-13-3179-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3179-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
UAV-based very high resolution point cloud, digital surface model and orthomosaic of the Chã das Caldeiras lava fields (Fogo, Cabo Verde)
Centre of Geographical Studies (CEG), IGOT, Universidade de Lisboa, 1600-276 Lisbon, Portugal
Centre of Geographical Studies (CEG), IGOT, Universidade de Lisboa, 1600-276 Lisbon, Portugal
Pedro Pina
Department of Earth Sciences, Institute of Astrophysics and Space Sciences, University of Coimbra, 3030-790 Coimbra, Portugal
Ricardo Ramalho
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK
Lamont-Doherty Earth Observatory, Columbia University, Comer Geochemistry Building, P.O. Box 1000, Palisades, NY 10964-8000, USA
Rui Fernandes
Instituto Dom Luiz (IDL), Universidade da Beira Interior, Covilhã, 6201-001 Covilhã, Portugal
Related authors
Joana Pedro Baptista, Gonçalo Brito Guapo Teles Vieira, António Manuel de Carvalho Soares Correia, Hyoungseok Lee, and Sebastian Westermann
The Cryosphere, 19, 3459–3476, https://doi.org/10.5194/tc-19-3459-2025, https://doi.org/10.5194/tc-19-3459-2025, 2025
Short summary
Short summary
Permafrost underlies ice-free areas of Antarctica, but its response to long-term warming is unclear due to a limited number of monitoring sites. To address this, we used the CryoGrid model, forced with climate data, to estimate permafrost temperatures and active layer thickness at King Sejong Station since 1950. The results show ground temperatures rising 0.25 °C per decade and the active layer thickening by 2 m. Warming has accelerated since 2015, highlighting the need for continued monitoring.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
C. Soncco, G. Vieira, G. Goyanes, and E. Castro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 553–558, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-553-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-553-2022, 2022
Joana Pedro Baptista, Gonçalo Brito Guapo Teles Vieira, António Manuel de Carvalho Soares Correia, Hyoungseok Lee, and Sebastian Westermann
The Cryosphere, 19, 3459–3476, https://doi.org/10.5194/tc-19-3459-2025, https://doi.org/10.5194/tc-19-3459-2025, 2025
Short summary
Short summary
Permafrost underlies ice-free areas of Antarctica, but its response to long-term warming is unclear due to a limited number of monitoring sites. To address this, we used the CryoGrid model, forced with climate data, to estimate permafrost temperatures and active layer thickness at King Sejong Station since 1950. The results show ground temperatures rising 0.25 °C per decade and the active layer thickening by 2 m. Warming has accelerated since 2015, highlighting the need for continued monitoring.
Eduardo Soares Nascimento, Allan Alves Lopes Ferreira, Guilherme Pina Cardim, Pedro Pina, and Erivaldo Antonio da Silva
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 245–251, https://doi.org/10.5194/isprs-annals-X-3-2024-245-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-245-2024, 2024
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
E. S. Nascimento, A. A. L. Ferreira, T. G. Godoy, C. F. M. Fontoura Júnior, G. P. Cardim, P. M. B. D. Pina, and E. A. da Silva
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 851–856, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-851-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-851-2023, 2023
C. Soncco, G. Vieira, G. Goyanes, and E. Castro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 553–558, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-553-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-553-2022, 2022
Cited articles
Bagnardi, M., González, P. J., and Hooper, A.:
High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo volcano: tri-stereo Pleiades DEM of Fogo volcano,
Geophys. Res. Lett.,
43, 6267–6275, https://doi.org/10.1002/2016GL069457, 2016.
Baldi, P., Bonvalot, S., Briole, P., Coltelli, M., Gwinner, K., Marsella, M., Puglisi, G., and Rémy, D.:
Validation and comparison of different techniques for the derivation of digital elevation models and volcanic monitoring (Vulcano Island, Italy),
Int. J. Remote Sens.,
23, 4783–4800. https://doi.org/10.1080/01431160110115861, 2002.
Barrett, R., Lebas, E., Ramalho, R., Klaucke, I., Kutterolf, S., Klügel, A., Lindhorst, K., Gross, F., and Krastel, S.:
Revisiting the tsunamigenic volcanic flank-collapse of Fogo Island in the Cape Verdes, offshore West Africam
Geological Society, London, Special Publications,
500, 13–26, https://doi.org/10.1144/SP500-2019-187, 2019.
Bebiano, J.:
A geologia do arquipélago de Cabo Verde,
Comunicações dos Serviços Geológicos de Portugal,
18, 167–187, 1932.
Bignami, C., Chini, M., Amici, S., and Trasatti E.:
Synergic use of multi-sensor satellite data for volcanic hazards monitoring: the Fogo (Cape Verde) 2014-2015 effusive eruption,
Frontiers of Earth Science,
8, 22, https://doi.org/10.3389/feart.2020.00022, 2020.
Brum da Silveira, A., Madeira, J., and Serralheiro, A.:
A estrutura da Ilha do Fogo, Cabo Verde. A Erupção Vulcânica de 1995 na Ilha do Fogo, Cabo Verde,
Publ. IICT, Lisboa, 63–78, 1997a.
Brum da Silveira, A., Madeira, J., Serralheiro, A., Torres, P. C., Silva, L. C., and Mendes, M. H.:
O controlo estrutural da erupção de Abril de 1995 na Ilha do Fogo, Cabo Verde. A Erupção Vulcânica de 1995 na Ilha do Fogo, Cabo Verde,
Publ. IICT, Lisboa, 51–61, 1997b.
Burke, K. and Wilson, J. T.:
Is the African plate stationary?,
Nature,
239, 5372, 387-390, https://doi.org/10.1038/239387b0, 1972.
Cappello, A., Ganci, G., Calvari, S., Pérez, N. M., Hernández, P. A., Silva, S. V., Cabral, J., and Negro, C. D.:
Lava flow hazard modeling during the 2014–2015 Fogo eruption, Cape Verde,
J. Geophys. Res.-Sol. Ea.,
121, 2290–2303, https://doi.org/10.1002/2015JB012666, 2016.
Chen, J. M.: Spatial scaling of a remotely sensed surface parameter by contexture, Remote Sens. Environ., 69, 30–42, https://doi.org/10.1016/S0034-4257(99)00006-1, 1999.
Day, S. J., Heleno, S. I. N., and Fonseca, J. F. B. D.:
A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands,
J. Volcanol. Geoth. Res.,
94, 191-218, https://doi.org/10.1016/S0377-0273(99)00103-1, 1999.
DEMFI: Digital Elevation Model of Fogo Island at 1 : 5000 scale, Unidade de Coordenação do Cadastro Predial (UCCP) do Ministério do Ambiente Habitação e Ordenamento do Território (MAHOT), Cabo Verde, 2010.
Dering, G. M., Micklethwaite, S., Thiele, S. T., Vollgger, S. A., and Cruden, A. R.: Review of drones, photogrammetry and emerging sensor technology for the study of dykes: Best practises and future potential, J. Volcanol. Geoth. Res., 373, 148–166, https://doi.org/10.1016/j.jvolgeores.2019.01.018, 2019.
Diefenbach, A. K., Bull, K. F., Wessels, R. L., and McGimsey, R. G.:
Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano,
J. Volcanol. Geoth. Res.,
259, 308–316, https://doi.org/10.1016/j.jvolgeores.2011.12.009, 2013.
Eisele, S., Reißig, S., Freundt, A., Kutterolf, S., Nürnberg, D., Wang, K. L., and Kwasnitschka, T.:
Pleistocene to Holocene offshore tephrostratigraphy of highly explosive eruptions from the southwestern Cape Verde Archipelago,
Mar. Geol.,
369, 233-250, https://doi.org/10.1016/j.margeo.2015.09.006, 2015.
Faria, B. and Fonseca, J. F. B. D.: Investigating volcanic hazard in Cape Verde Islands through geophysical monitoring: network description and first results, Nat. Hazards Earth Syst. Sci., 14, 485–499, https://doi.org/10.5194/nhess-14-485-2014, 2014.
Favalli, M., Fornaciai, A., and Pareschi, M. T.:
LIDAR strip adjustment: Application to volcanic areas,
Geomorphology,
111, 123–135, https://doi.org/10.1016/j.geomorph.2009.04.010, 2009.
Favalli, M., Fornaciai, A., Nannipieri, L., Harris, A., Calvari, S., and Lormand, C.:
UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows,
B. Volcanol.,
80, 29, https://doi.org/10.1007/s00445-018-1192-6, 2018.
Fonseca, J., Flor, A., Goncalves, A., Day, S., and Jenkyns, S.:
Perigosidade vulcânica das ilhas de Cabo Verde,
in: Riscos geológicos das ilhas de Cabo Verde, Municipia Final Report to Cape Verde UNDP Office, edited by: Mileu, N.,
Municipia, Lisbon, Portugal, 2014.
Fornaciai, A., Bisson, M., Landi, P., Mazzarini, F., and Pareschi, M. T.:
A LiDAR survey of Stromboli volcano (Italy): Digital elevation model-based geomorphology and intensity analysis,
Int. J. Remote Sens.,
31, 12, 3177–3194, https://doi.org/10.1080/01431160903154416, 2010.
González, P. J., Bagnardi, M., Hooper, A. J., and Larsen, Y., Marinkovic, P., Samsonov, S. V., Wright, T. J.:
The 2014–2015 eruption of Fogo volcano: Geodetic modeling of Sentinel-1 TOPS interferometry,
Geophys. Res. Lett.,
42, 9239–9246, https://doi.org/10.1002/2015GL066003, 2015.
Heleno da Silva, S. I. N., Day, S. J., and Fonseca, J. F. B. D.:
Fogo Volcano, Cape Verde Islands: seismicity-derived constraints on the mechanism of the 1995 eruption,
J. Volcanol. Geoth. Res.,
94, 219–231, https://doi.org/10.1016/S0377-0273(99)00104-3, 1999.
James, M. R., Chandler, J. H., Eltner, A., Fraser, C., Miller, P. E., Mills, J. P., Noble, T., Robson, S., and Lane, S. N.:
Guidelines on the use of structure-from-motion photogrammetry in geomorphic research,
Earth Surf. Proc. Land.,
44, 2081–2084, https://doi.org/10.1002/esp.4637, 2019.
James, M. R., Carr, B., D'Arcy, F., Diefenbach, A., Dietterich, H., Fornaciai, A., Lev, E., Liu, E., Pieri, D., Rodgers, M., Smets, B., Terada, A., von Aulock, F., Walter, T., Wood, K., and Zorn, E.:
Volcanological applications of unoccupied aircraft systems (UAS): Developments, strategies, and future challenges,
Volcanica,
3, 67–114, https://doi.org/10.30909/vol.03.01.67114, 2020.
Jenkins, S. F., Day, S. J., Faria, B. V. E., and Fonseca, J. F. B. D.:
Damage from lava flows: insights from the 2014–2015 eruption of Fogo, Cape Verde,
Journal of Applied Volcanology,
6, 1–17, https://doi.org/10.1186/s13617-017-0057-6, 2017.
Jordan, B. R.:
Collecting field data in volcanic landscapes using small UAS (sUAS)/drones,
J. Volcanol. Geoth. Res.,
385, 231–241, https://doi.org/10.1016/j.jvolgeores.2019.07.006, 2019.
Kerle, N.:
Volume estimation of the 1998 flank collapse at Casita volcano, Nicaragua: A comparison of photogrammetric and conventional techniques,
Earth Surf. Proc. Land.,
27, 59–772, https://doi.org/10.1002/esp.351, 2002.
Komorowski, J. C., Morin, J., Jenkins, S., and Kelman, I.:
Challenges of Volcanic Crises on Small Islands States,
in: Observing the Volcano World. Advances in Volcanology (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth's Interior – IAVCEI, Barcelona, Spain),
edited by: Fearnley C. J., Bird D. K., Haynes K., McGuire W. J., and Jolly G., Springer, Cham, Switzerland, https://doi.org/10.1007/11157_2015_15, 2016.
Küng, O., Strecha, C., Beyeler, A., Zufferey, J.-C., Floreano, D., Fua, P., and Gervaix, F.: The Accuracy of Automatic Photogrammetric Techniques on Ultra-light UAV Imagery, Int. Arch. Photogramm.,
38, 125–130, https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-125-2011, 2011.
Le Bas, T. P., Masson, D. G., Holtom, R. T., and Grevemeyer, I.:
Slope failures of the flanks of the southern Cape Verde Islands,
in: Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, 27,
edited by: Lykousis, V., Sakellariou, D., and Locat, J.,
Springer, Dordrecht, 337–345, https://doi.org/10.1007/978-1-4020-6512-5_35, 2007.
Lodge, A. and Helffrich, G.:
Depleted swell root beneath the Cape Verde Islands,
Geology,
34, 449-452, https://doi.org/10.1130/G22030.1, 2006.
Machado, F. and Torre de Assunção, C. F.:
Carta geológica de Cabo Verde na escala de ; noticia explicativa da folha da ilha do Fogo — estudos petrográficos,
Garcia de Orta, Lisboa,
13, 597–604, 1965.
Madeira, J., Brum da Silveira, A., Mata, J., Mourão, C., and Martins, S.:
The role of mass movements on the geomorphologic evolution of island volcanoes: examples from Fogo and Brava in the Cape Verde archipelago,
Comunicações Geológicas,
95, 93–106, 2008.
Madeira, J., Ramalho, R. S., Hoffmann, D. L., Mata, J., and Moreira, M.:
A geological record of multiple Pleistocene tsunami inundations in an oceanic island: The case of Maio, Cape Verde,
Sedimentology,
67, 1529–1552, https://doi.org/10.1111/sed.12612, 2020.
Masson, D. G., Le Bas, T. P., Grevemeyer, I., and Weinrebe, W.:
Flank collapse and large-scale landsliding in the Cape Verde Islands, off West Africa, Geochem. Geophy. Geosy.,
9, Q07015, https://doi.org/10.1029/2008GC001983, 2008.
Mata, J., Martins, S., Mattielli, N., Madeira, J., Faria, B., Ramalho, R., Silva, P., Moreira, M., Caldeira, R., Moreira, M., Rodrigues, J., and Martins, L.:
The 2014–15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity,
Lithos,
288–289, 91–107, https://doi.org/10.1016/j.lithos.2017.07.001, 2017.
Mazzarini, F., Pareschi, M. T., Favalli, M., Isola, I., Tarquini, S., and Boschi, E.:
Lava flow identification and aging by means of lidar intensity: Mount Etna case,
J. Geophys. Res.,
112, B02201, https://doi.org/10.1029/2005JB004166, 2007.
Mouginis-Mark, P. J. and Garbeil, H.:
Quality of TOPSAR topographic data for volcanology studies at Kılauea Volcano, Hawaii: An assessment using airborne lidar data,
Remote Sens. Environ.,
96, 149–164, https://doi.org/10.1016/j.rse.2005.01.017, 2005.
Paris, R., Geichetti, T., Chevalier, J., Guillou, H., and Frank, N.:
Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogos volcano,
Sediment. Geol.,
239, 129–145, https://doi.org/10.1016/j.sedgeo.2011.06.006, 2011.
Paris, R., Ramalho, R. S., Madeira, J., Ávila, S., May, S. M., Rixhon, G., Engel, M., Brückner, H., Herzog, M., Schukraft, G., and Perez-Torrado, F. J.:
Mega-tsunami conglomerates and flank collapses of ocean island volcanoes,
Mar. Geol.,
395, 168–187, https://doi.org/10.1016/j.margeo.2017.10.004, 2018.
Poland, M. P.:
Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai'i, measured from TanDEM-X interferometry: Implications for magma supply and storage during 2011–2013,
J. Geophys. Res.-Sol. Ea.,
119, 5464–5481, https://doi.org/10.1002/2014JB011132, 2014.
Ramalho, R. A. S. (Ed.):
Building the Cape Verde Islands,
1st edn.,
Springer, Berlin, Heidelberg, 2011.
Ramalho, R., Helffrich, D., Cosca, M.,Vance, D, Hoffmann, D., and Schmidt, D. N.:
Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands,
Nat. Geosci.,
3, 774–777, https://doi.org/10.1038/ngeo982, 2010a.
Ramalho, R., Helffrich, D., Cosca, M., Vance, D., Hoffmann, D., and Schmidt, D. N.:
Vertical movements of ocean island volcanoes: Insights from a stationary plate environment,
Mar. Geol.,
275, 84–95, https://doi.org/10.1016/j.margeo.2010.04.009, 2010b.
Ramalho, R. S., Helffrich, G., Schmidt, D. N., and Vance, D.:
Tracers of uplift and subsidence in the Cape Verde Archipelago,
J. Geol. Soc. London,
167, 519–538, https://doi.org/10.1144/0016-76492009-056, 2010c.
Ramalho, R., Winckler, G., Madeira, J., Helffrich, G. Hipólito, A., Quartau, R., Adena, K., and Schaefer, J.:
Hazard potential of volcanic flank colapses raised by new megatsunami evidence,
Science Advances,
1, E1500456, https://doi.org/10.1126/sciadv.1500456, 2015.
Ribeiro, O.:
A ilha do Fogo e as suas erupções,
Comissão Nacional para as Comemorações dos Descobrimentos Portugueses, Lisbon, Portugal, 1954.
Richter, N., Favalli, M., de Zeeuw-van Dalfsen, E., Fornaciai, A., da Silva Fernandes, R. M., Pérez, N. M., Levy, J., Victória, S. S., and Walter, T. R.: Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014–2015 eruption, Nat. Hazards Earth Syst. Sci., 16, 1925–1951, https://doi.org/10.5194/nhess-16-1925-2016, 2016.
Rowland, S. K., MacKay, M. E., Garbeil, H., and Mouginis-Mark, P. J.:
Topographic analyses of Kīlauea Volcano, Hawai'i, from interferometric airborne radar,
B. Volcanol.,
61, 1–14, https://doi.org/10.1029/2019GL083501, 1999.
Smith, M. W., Carrivick, J .L., and Quincey, D. J.:
Structure from motion photogrammetry in physical geography,
Prog. Phys. Geog.,
40, 247–275, https://doi.org/10.1016/j.geomorph.2012.08.021, 2016.
Stevens, N., Wadge, G., and Murray, J.:
Lava flow volume and morphology from digitised contour maps: A case study at Mount Etna, Sicily,
Geomorphology,
28, 251–261, https://doi.org/10.1016/S0169-555X(98)00115-9, 1999.
Torres, P. C., Madeira, J., Silva, L. C., Brum da Silveira, A., Serralheiro, A., and Mota Gomes, A.:
Carta Geológica das Erupções Históricas da Ilha do Fogo (Cabo Verde): revisão e actualização,
Comunicações do Instituto Geológico e Mineiro,
84, A193–196, 1998.
Vieira, D., Teodoro, A., and Gomes, A.:
Analysing Land Surface Temperature variations during Fogo Island (Cape Verde) 2014-2015 eruption with Landsat 8 images,
P. SPIE,
10005, 1000508-14, https://doi.org/10.1117/12.2241382, 2016.
Vieira, G., Mora, C., Pina, P., Ramalho, R., and Fernandes, R.: Digital surface model and orthomosaic of the Chã das Caldeiras lava fields (Fogo Island, Cape Verde, December 2016) (Version 1.3.0), Zenodo [Data set], https://doi.org/10.5281/zenodo.4718520, 2021.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology,
179, 300–314, https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Short summary
Fogo in Cabo Verde is one of the most active ocean island volcanoes on Earth, posing important hazards to local populations and at a regional level. The last eruption occurred from November 2014 to February 2015. A survey of the Chã das Caldeiras area was conducted using a fixed-wing unmanned aerial vehicle. A point cloud, digital surface model and orthomosaic with 10 and 25 cm resolutions are provided, together with the full aerial survey projects and datasets.
Fogo in Cabo Verde is one of the most active ocean island volcanoes on Earth, posing important...
Altmetrics
Final-revised paper
Preprint