Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5287-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-5287-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The global daily High Spatial–Temporal Coverage Merged tropospheric NO2 dataset (HSTCM-NO2) from 2007 to 2022 based on OMI and GOME-2
School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
Hongrui Gao
School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
Xuancen Liu
School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
Pravash Tiwari
School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
Related authors
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
EGUsphere, https://doi.org/10.5194/egusphere-2024-1903, https://doi.org/10.5194/egusphere-2024-1903, 2024
Short summary
Short summary
This study assimilates NO2 observations from TROPOMI in a mass-conserving manner and inverts daily NOx emissions. The results are presented over rapidly changing regions in China. Attribution is quantified using local observations and inverted proxy of combustion temperature. There are significant sources identified in some areas which are not in existing databases, especially small and medium industries along the Yangtze River. We also demonstrate which emissions are robust and which are not.
Fan Lu, Kai Qin, Jason Blake Cohen, Qin He, Pravash Tiwari, Wei Hu, Chang Ye, Yanan Shan, Qing Xu, Shuo Wang, and Qiansi Tu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1784, https://doi.org/10.5194/egusphere-2024-1784, 2024
Short summary
Short summary
This work describes a field campaign and new fast emissions estimation approach to attribute methane from a large known and previously unknown coal mine in Shanxi China. The emissions computed are shown to be larger than known oil and gas sources, indicating that methane from coal mines may play a larger role in the global methane budget. The results are found to be slightly larger than or similar to satellite observational campaigns over the same region.
Qiansi Tu, Frank Hase, Kai Qin, Jason Blake Cohen, Farahnaz Khosrawi, Xinrui Zou, Matthias Schneider, and Fan Lu
Atmos. Chem. Phys., 24, 4875–4894, https://doi.org/10.5194/acp-24-4875-2024, https://doi.org/10.5194/acp-24-4875-2024, 2024
Short summary
Short summary
Four-year satellite observations of XCH4 are used to derive CH4 emissions in three regions of China’s coal-rich Shanxi province. The wind-assigned anomalies for two opposite wind directions are calculated, and the estimated emission rates are comparable to the current bottom-up inventory but lower than the CAMS and EDGAR inventories. This research enhances the understanding of emissions in Shanxi and supports climate mitigation strategies by validating emission inventories.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Xiaolu Li, Jason Blake Cohen, Kai Qin, Hong Geng, Xiaohui Wu, Liling Wu, Chengli Yang, Rui Zhang, and Liqin Zhang
Atmos. Chem. Phys., 23, 8001–8019, https://doi.org/10.5194/acp-23-8001-2023, https://doi.org/10.5194/acp-23-8001-2023, 2023
Short summary
Short summary
Remotely sensed NO2 and surface NOx are combined with a mathematical method to estimate daily NOx emissions. The results identify new sources and improve existing estimates. The estimation is driven by three flexible factors: thermodynamics of combustion, chemical loss, and atmospheric transport. The thermodynamic term separates power, iron, and cement from coking, boilers, and aluminum. This work finds three causes for the extremes: emissions, UV radiation, and transport.
Qiansi Tu, Frank Hase, Zihan Chen, Matthias Schneider, Omaira García, Farahnaz Khosrawi, Shuo Chen, Thomas Blumenstock, Fang Liu, Kai Qin, Jason Cohen, Qin He, Song Lin, Hongyan Jiang, and Dianjun Fang
Atmos. Meas. Tech., 16, 2237–2262, https://doi.org/10.5194/amt-16-2237-2023, https://doi.org/10.5194/amt-16-2237-2023, 2023
Short summary
Short summary
Four-year TROPOMI observations are used to derive tropospheric NO2 emissions in two mega(cities) with high anthropogenic activity. Wind-assigned anomalies are calculated, and the emission rates and spatial patterns are estimated based on a machine learning algorithm. The results are in reasonable agreement with previous studies and the inventory. Our method is quite robust and can be used as a simple method to estimate the emissions of NO2 as well as other gases in other regions.
Zexia Duan, Zhiqiu Gao, Qing Xu, Shaohui Zhou, Kai Qin, and Yuanjian Yang
Earth Syst. Sci. Data, 14, 4153–4169, https://doi.org/10.5194/essd-14-4153-2022, https://doi.org/10.5194/essd-14-4153-2022, 2022
Short summary
Short summary
Land–atmosphere interactions over the Yangtze River Delta (YRD) in China are becoming more varied and complex, as the area is experiencing rapid land use changes. In this paper, we describe a dataset of microclimate and eddy covariance variables at four sites in the YRD. This dataset has potential use cases in multiple research fields, such as boundary layer parametrization schemes, evaluation of remote sensing algorithms, and development of climate models in typical East Asian monsoon regions.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Mengyao Liu, Jintai Lin, Hao Kong, K. Folkert Boersma, Henk Eskes, Yugo Kanaya, Qin He, Xin Tian, Kai Qin, Pinhua Xie, Robert Spurr, Ruijing Ni, Yingying Yan, Hongjian Weng, and Jingxu Wang
Atmos. Meas. Tech., 13, 4247–4259, https://doi.org/10.5194/amt-13-4247-2020, https://doi.org/10.5194/amt-13-4247-2020, 2020
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants in the troposphere and play crucial roles in the formation of ozone and particulate matter. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) provides an opportunity to retrieve tropospheric concentrations of nitrogen dioxide (NO2) at an unprecedented high horizontal resolution. This work presents a new NO2 retrieval product over East Asia and further quantifies key factors affecting the retrieval, including aerosol.
Pradeep Khatri, Hironobu Iwabuchi, Tadahiro Hayasaka, Hitoshi Irie, Tamio Takamura, Akihiro Yamazaki, Alessandro Damiani, Husi Letu, and Qin Kai
Atmos. Meas. Tech., 12, 6037–6047, https://doi.org/10.5194/amt-12-6037-2019, https://doi.org/10.5194/amt-12-6037-2019, 2019
Short summary
Short summary
In an attempt to make cloud retrievals from the surface more common and convenient, we developed a cloud retrieval algorithm applicable for sky radiometers. It is based on an optimum method by fitting measured transmittances with modeled values. Further, a cost-effective and easy-to-use calibration procedure is proposed and validated using data obtained from the standard method. A detailed error analysis and quality assessment are also performed.
X. Han, G. Tana, K. Qin, and H. Letu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 9–15, https://doi.org/10.5194/isprs-archives-XLII-3-W5-9-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-9-2018, 2018
X. Shi, C. Zhao, K. Qin, Y. Yang, K. Zhang, and H. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 73–76, https://doi.org/10.5194/isprs-archives-XLII-3-W5-73-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-73-2018, 2018
J. Zou, K. Qin, J. Xu, and X. Han
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 83–88, https://doi.org/10.5194/isprs-archives-XLII-3-W5-83-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-83-2018, 2018
K. L. Chan and K. Qin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 29–36, https://doi.org/10.5194/isprs-archives-XLII-2-W7-29-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-29-2017, 2017
Lixin Wu, Shuo Zheng, Angelo De Santis, Kai Qin, Rosa Di Mauro, Shanjun Liu, and Mario Luigi Rainone
Nat. Hazards Earth Syst. Sci., 16, 1859–1880, https://doi.org/10.5194/nhess-16-1859-2016, https://doi.org/10.5194/nhess-16-1859-2016, 2016
Short summary
Short summary
Many anomalies before the 2009 L'Aquila earthquake were reported but not synergically analyzed referring to geosystem coupling. We investigated changes of multiple hydrothermal parameters in coversphere and atmosphere and studied 3-D evolution of b value in lithosphere. Quasi-synchronism of pre-earthquake anomalies georelating to particular thrusts and local topography are revealed. A geosphere coupling mode is proposed interpreting the function of CO2-rich crust fluids on local LCA coupling.
K. Qin, L. X. Wu, X. Y. Ouyang, X. H. Shen, and S. Zheng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-2439-2013, https://doi.org/10.5194/nhessd-1-2439-2013, 2013
Revised manuscript has not been submitted
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
EGUsphere, https://doi.org/10.5194/egusphere-2024-1903, https://doi.org/10.5194/egusphere-2024-1903, 2024
Short summary
Short summary
This study assimilates NO2 observations from TROPOMI in a mass-conserving manner and inverts daily NOx emissions. The results are presented over rapidly changing regions in China. Attribution is quantified using local observations and inverted proxy of combustion temperature. There are significant sources identified in some areas which are not in existing databases, especially small and medium industries along the Yangtze River. We also demonstrate which emissions are robust and which are not.
Fan Lu, Kai Qin, Jason Blake Cohen, Qin He, Pravash Tiwari, Wei Hu, Chang Ye, Yanan Shan, Qing Xu, Shuo Wang, and Qiansi Tu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1784, https://doi.org/10.5194/egusphere-2024-1784, 2024
Short summary
Short summary
This work describes a field campaign and new fast emissions estimation approach to attribute methane from a large known and previously unknown coal mine in Shanxi China. The emissions computed are shown to be larger than known oil and gas sources, indicating that methane from coal mines may play a larger role in the global methane budget. The results are found to be slightly larger than or similar to satellite observational campaigns over the same region.
Qiansi Tu, Frank Hase, Kai Qin, Jason Blake Cohen, Farahnaz Khosrawi, Xinrui Zou, Matthias Schneider, and Fan Lu
Atmos. Chem. Phys., 24, 4875–4894, https://doi.org/10.5194/acp-24-4875-2024, https://doi.org/10.5194/acp-24-4875-2024, 2024
Short summary
Short summary
Four-year satellite observations of XCH4 are used to derive CH4 emissions in three regions of China’s coal-rich Shanxi province. The wind-assigned anomalies for two opposite wind directions are calculated, and the estimated emission rates are comparable to the current bottom-up inventory but lower than the CAMS and EDGAR inventories. This research enhances the understanding of emissions in Shanxi and supports climate mitigation strategies by validating emission inventories.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14, https://doi.org/10.5194/essd-16-1-2024, https://doi.org/10.5194/essd-16-1-2024, 2024
Short summary
Short summary
A global continental merged high-resolution (PBLH) dataset with good accuracy compared to radiosonde is generated via machine learning algorithms, covering the period from 2011 to 2021 with 3-hour and 0.25º resolution in space and time. The machine learning model takes parameters derived from the ERA5 reanalysis and GLDAS product as input, with PBLH biases between radiosonde and ERA5 as the learning targets. The merged PBLH is the sum of the predicted PBLH bias and the PBLH from ERA5.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Xiaolu Li, Jason Blake Cohen, Kai Qin, Hong Geng, Xiaohui Wu, Liling Wu, Chengli Yang, Rui Zhang, and Liqin Zhang
Atmos. Chem. Phys., 23, 8001–8019, https://doi.org/10.5194/acp-23-8001-2023, https://doi.org/10.5194/acp-23-8001-2023, 2023
Short summary
Short summary
Remotely sensed NO2 and surface NOx are combined with a mathematical method to estimate daily NOx emissions. The results identify new sources and improve existing estimates. The estimation is driven by three flexible factors: thermodynamics of combustion, chemical loss, and atmospheric transport. The thermodynamic term separates power, iron, and cement from coking, boilers, and aluminum. This work finds three causes for the extremes: emissions, UV radiation, and transport.
Qiansi Tu, Frank Hase, Zihan Chen, Matthias Schneider, Omaira García, Farahnaz Khosrawi, Shuo Chen, Thomas Blumenstock, Fang Liu, Kai Qin, Jason Cohen, Qin He, Song Lin, Hongyan Jiang, and Dianjun Fang
Atmos. Meas. Tech., 16, 2237–2262, https://doi.org/10.5194/amt-16-2237-2023, https://doi.org/10.5194/amt-16-2237-2023, 2023
Short summary
Short summary
Four-year TROPOMI observations are used to derive tropospheric NO2 emissions in two mega(cities) with high anthropogenic activity. Wind-assigned anomalies are calculated, and the emission rates and spatial patterns are estimated based on a machine learning algorithm. The results are in reasonable agreement with previous studies and the inventory. Our method is quite robust and can be used as a simple method to estimate the emissions of NO2 as well as other gases in other regions.
Zexia Duan, Zhiqiu Gao, Qing Xu, Shaohui Zhou, Kai Qin, and Yuanjian Yang
Earth Syst. Sci. Data, 14, 4153–4169, https://doi.org/10.5194/essd-14-4153-2022, https://doi.org/10.5194/essd-14-4153-2022, 2022
Short summary
Short summary
Land–atmosphere interactions over the Yangtze River Delta (YRD) in China are becoming more varied and complex, as the area is experiencing rapid land use changes. In this paper, we describe a dataset of microclimate and eddy covariance variables at four sites in the YRD. This dataset has potential use cases in multiple research fields, such as boundary layer parametrization schemes, evaluation of remote sensing algorithms, and development of climate models in typical East Asian monsoon regions.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Shuo Wang, Jason Blake Cohen, Chuyong Lin, and Weizhi Deng
Atmos. Chem. Phys., 20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020, https://doi.org/10.5194/acp-20-15401-2020, 2020
Short summary
Short summary
We analyze global measurements of aerosol height from fires. A plume rise model reproduces measurements with a low bias in five regions, while a statistical model based on satellite measurements of trace gasses co-emitted from the fires reproduces measurements without bias in eight regions. We propose that the magnitude of the pollutants emitted may impact their height and subsequent downwind transport. Using satellite data allows better modeling of the global aerosol distribution.
Mengyao Liu, Jintai Lin, Hao Kong, K. Folkert Boersma, Henk Eskes, Yugo Kanaya, Qin He, Xin Tian, Kai Qin, Pinhua Xie, Robert Spurr, Ruijing Ni, Yingying Yan, Hongjian Weng, and Jingxu Wang
Atmos. Meas. Tech., 13, 4247–4259, https://doi.org/10.5194/amt-13-4247-2020, https://doi.org/10.5194/amt-13-4247-2020, 2020
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants in the troposphere and play crucial roles in the formation of ozone and particulate matter. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) provides an opportunity to retrieve tropospheric concentrations of nitrogen dioxide (NO2) at an unprecedented high horizontal resolution. This work presents a new NO2 retrieval product over East Asia and further quantifies key factors affecting the retrieval, including aerosol.
Pradeep Khatri, Hironobu Iwabuchi, Tadahiro Hayasaka, Hitoshi Irie, Tamio Takamura, Akihiro Yamazaki, Alessandro Damiani, Husi Letu, and Qin Kai
Atmos. Meas. Tech., 12, 6037–6047, https://doi.org/10.5194/amt-12-6037-2019, https://doi.org/10.5194/amt-12-6037-2019, 2019
Short summary
Short summary
In an attempt to make cloud retrievals from the surface more common and convenient, we developed a cloud retrieval algorithm applicable for sky radiometers. It is based on an optimum method by fitting measured transmittances with modeled values. Further, a cost-effective and easy-to-use calibration procedure is proposed and validated using data obtained from the standard method. A detailed error analysis and quality assessment are also performed.
C. Y. Lin, S. Wang, and J. B. Cohen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 119–123, https://doi.org/10.5194/isprs-archives-XLII-3-W9-119-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W9-119-2019, 2019
S. Wang, C. Y. Lin, and J. B. Cohen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 165–170, https://doi.org/10.5194/isprs-archives-XLII-3-W9-165-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W9-165-2019, 2019
X. Han, G. Tana, K. Qin, and H. Letu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 9–15, https://doi.org/10.5194/isprs-archives-XLII-3-W5-9-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-9-2018, 2018
C. Lin and J. Cohen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 53–59, https://doi.org/10.5194/isprs-archives-XLII-3-W5-53-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-53-2018, 2018
X. Shi, C. Zhao, K. Qin, Y. Yang, K. Zhang, and H. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 73–76, https://doi.org/10.5194/isprs-archives-XLII-3-W5-73-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-73-2018, 2018
J. Zou, K. Qin, J. Xu, and X. Han
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 83–88, https://doi.org/10.5194/isprs-archives-XLII-3-W5-83-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-83-2018, 2018
Jason Blake Cohen, Daniel Hui Loong Ng, Alan Wei Lun Lim, and Xin Rong Chua
Atmos. Chem. Phys., 18, 7095–7108, https://doi.org/10.5194/acp-18-7095-2018, https://doi.org/10.5194/acp-18-7095-2018, 2018
Short summary
Short summary
Measured aerosol heights over the Maritime Continent are higher than previously thought, with 61 to 83 % of aerosols above the boundary layer. These aerosols should hence have a larger impact on the climate. The use of a plume rise model cannot match the measurements, unless the measured fire energy is increased by 0–60 %. Furthermore, the model is too spread, indicating the importance of including convection and aerosol–radiation interactions. Significant model improvements will be required.
K. L. Chan and K. Qin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 29–36, https://doi.org/10.5194/isprs-archives-XLII-2-W7-29-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-29-2017, 2017
Jason Blake Cohen, Eve Lecoeur, and Daniel Hui Loong Ng
Atmos. Chem. Phys., 17, 721–743, https://doi.org/10.5194/acp-17-721-2017, https://doi.org/10.5194/acp-17-721-2017, 2017
Short summary
Short summary
This study highlights the importance of taking into account a simultaneous use of land use, fire and precipitation for understanding the impacts of fires on the atmospheric loading and distribution of aerosols in Southeast Asia over both space and time. Also, it highlights that there are significant advantages of using 8-day and monthly average values (instead of daily data) in order to better quantify the magnitude and timing of the inter- and intra-annual variance of Southeast Asian fires.
Weihua Chen, Xuemei Wang, Jason Blake Cohen, Shengzhen Zhou, Zhisheng Zhang, Ming Chang, and Chuen-Yu Chan
Atmos. Chem. Phys., 16, 13271–13289, https://doi.org/10.5194/acp-16-13271-2016, https://doi.org/10.5194/acp-16-13271-2016, 2016
Short summary
Short summary
Measurements of size-resolved aerosols (0.25–18 μm) were conducted at three sites (urban, suburban and background sites) in southern China during monsoon season (May–June) in 2010 aqueous-phase reaction was the main formation pathway of droplet mode sulfate. New particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions were also found to be important in at least some of the sights on some of the sampling days.
Lixin Wu, Shuo Zheng, Angelo De Santis, Kai Qin, Rosa Di Mauro, Shanjun Liu, and Mario Luigi Rainone
Nat. Hazards Earth Syst. Sci., 16, 1859–1880, https://doi.org/10.5194/nhess-16-1859-2016, https://doi.org/10.5194/nhess-16-1859-2016, 2016
Short summary
Short summary
Many anomalies before the 2009 L'Aquila earthquake were reported but not synergically analyzed referring to geosystem coupling. We investigated changes of multiple hydrothermal parameters in coversphere and atmosphere and studied 3-D evolution of b value in lithosphere. Quasi-synchronism of pre-earthquake anomalies georelating to particular thrusts and local topography are revealed. A geosphere coupling mode is proposed interpreting the function of CO2-rich crust fluids on local LCA coupling.
K. Qin, L. X. Wu, X. Y. Ouyang, X. H. Shen, and S. Zheng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-2439-2013, https://doi.org/10.5194/nhessd-1-2439-2013, 2013
Revised manuscript has not been submitted
Related subject area
Domain: ESSD – Atmosphere | Subject: Energy and Emissions
In situ airborne measurements of atmospheric parameters and airborne sea surface properties related to offshore wind parks in the German Bight during the project X-Wakes
Modeling fuel-, vehicle-type-, and age-specific CO2 emissions from global on-road vehicles in 1970–2020
Comparison of observation- and inventory-based methane emissions for eight large global emitters
Constructing a measurement-based spatially explicit inventory of US oil and gas methane emissions (2021)
State of Wildfires 2023–2024
Global Emissions Inventory from Open Biomass Burning (GEIOBB): utilizing Fengyun-3D global fire spot monitoring data
Development of a high-resolution integrated emission inventory of air pollutants for China
Brazilian Atmospheric Inventories – BRAIN: a comprehensive database of air quality in Brazil
Air pollution emission inventory using national high-resolution spatial parameters for the Nordic countries and analysis of PM2.5 spatial distribution for road transport and machinery and off-road sectors
A quality-assured dataset of nine radiation components observed at the Shangdianzi regional GAW station in China (2013–2022)
CoCO2-MOSAIC 1.0: a global mosaic of regional, gridded, fossil, and biofuel CO2 emission inventories
A global catalogue of CO2 emissions and co-emitted species from power plants, including high-resolution vertical and temporal profiles
Global Carbon Budget 2023
Spatiotemporally resolved emissions and concentrations of styrene, benzene, toluene, ethylbenzene, and xylenes (SBTEX) in the US Gulf region
High-resolution emission inventory of full-volatility organic compounds from cooking in China during 2015–2021
Global carbon uptake of cement carbonation accounts 1930–2021
A dense station-based, long-term and high-accuracy dataset of daily surface solar radiation in China
The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2020
Decadal growth in emission load of major air pollutants in Delhi
Improved catalog of NOx point source emissions (version 2)
The HTAP_v3 emission mosaic: merging regional and global monthly emissions (2000–2018) to support air quality modelling and policies
Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence
Emission trends of air pollutants and CO2 in China from 2005 to 2021
Ten years of 1 Hz solar irradiance observations at Cabauw, the Netherlands, with cloud observations, variability classifications, and statistics
The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2019
Spatially resolved hourly traffic emission over megacity Delhi using advanced traffic flow data
Near-real-time CO2 fluxes from CarbonTracker Europe for high-resolution atmospheric modeling
Retrievals of XCO2, XCH4 and XCO from portable, near-infrared Fourier transform spectrometer solar observations in Antarctica
Carbon fluxes from land 2000–2020: bringing clarity to countries' reporting
DeepOWT: a global offshore wind turbine data set derived with deep learning from Sentinel-1 data
Astrid Lampert, Rudolf Hankers, Thomas Feuerle, Thomas Rausch, Matthias Cremer, Maik Angermann, Mark Bitter, Jonas Füllgraf, Helmut Schulz, Ulf Bestmann, and Konrad B. Bärfuss
Earth Syst. Sci. Data, 16, 4777–4792, https://doi.org/10.5194/essd-16-4777-2024, https://doi.org/10.5194/essd-16-4777-2024, 2024
Short summary
Short summary
We conducted flights above the North Sea and investigated changes in the wind field. The research aircraft measured wind speed, wind direction, temperature, humidity and sea surface at high resolution. Wind parks reduce the wind speed, and the data help to determine how long it takes for the wind speed to recover. The coast also plays an important role, and the wind speed varies with distance from the coast. The results help in wind park planning and better estimating the energy yield.
Liu Yan, Qiang Zhang, Bo Zheng, and Kebin He
Earth Syst. Sci. Data, 16, 4497–4509, https://doi.org/10.5194/essd-16-4497-2024, https://doi.org/10.5194/essd-16-4497-2024, 2024
Short summary
Short summary
A new database of fuel-, vehicle-type-, and age-specific CO2 emissions from global on-road vehicles from 1970 to 2020 is developed with the fleet turnover model built in this study. Based on this database, the evolution of the global vehicle stock over 50 years is analyzed, the dominant emission contributors by vehicle and fuel type are identified, and the age distribution of on-road CO2 emissions is characterized further.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Mark Omara, Anthony Himmelberger, Katlyn MacKay, James P. Williams, Joshua Benmergui, Maryann Sargent, Steven C. Wofsy, and Ritesh Gautam
Earth Syst. Sci. Data, 16, 3973–3991, https://doi.org/10.5194/essd-16-3973-2024, https://doi.org/10.5194/essd-16-3973-2024, 2024
Short summary
Short summary
We review, analyze, and synthesize previous peer-reviewed measurement-based data on facility-level oil and gas methane emissions and use these data to develop a high-resolution spatially explicit inventory of US basin-level and national methane emissions. This work provides an improved assessment of national methane emissions relative to government inventories in support of accurate and comprehensive methane emissions assessment, attribution, and mitigation.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Yang Liu, Jie Chen, Yusheng Shi, Wei Zheng, Tianchan Shan, and Gang Wang
Earth Syst. Sci. Data, 16, 3495–3515, https://doi.org/10.5194/essd-16-3495-2024, https://doi.org/10.5194/essd-16-3495-2024, 2024
Short summary
Short summary
Open biomass burning has a significant impact on regional and global air quality. To enhance the quantification of global emissions from open biomass burning, we have developed the Global Emissions Inventory from Open Biomass Burning (GEIOBB) dataset, which provides a global daily-scale database at 1 km resolution of multiple pollutant emissions. This database aids global-scale environmental analysis of biomass burning.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Leonardo Hoinaski, Robson Will, and Camilo Bastos Ribeiro
Earth Syst. Sci. Data, 16, 2385–2405, https://doi.org/10.5194/essd-16-2385-2024, https://doi.org/10.5194/essd-16-2385-2024, 2024
Short summary
Short summary
We introduce the Brazilian Atmospheric Inventories (BRAIN), the first comprehensive database for air quality studies in Brazil. The database encompasses hourly datasets of meteorology, emission sources, and ambient concentrations of multiple air pollutants covering the Brazilian territory. It combines local inventories, consolidated datasets, and internationally recommended models to provide essential data for developing air pollution control policies, even in data-scarce areas.
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
Weijun Quan, Zhenfa Wang, Lin Qiao, Xiangdong Zheng, Junli Jin, Yinruo Li, Xiaomei Yin, Zhiqiang Ma, and Martin Wild
Earth Syst. Sci. Data, 16, 961–983, https://doi.org/10.5194/essd-16-961-2024, https://doi.org/10.5194/essd-16-961-2024, 2024
Short summary
Short summary
Radiation components play important roles in various fields such as the Earth’s surface radiation budget, ecosystem productivity, and human health. In this study, a dataset consisting of quality-assured daily data of nine radiation components is presented based on the in situ measurements at the Shangdianzi regional GAW station in China during 2013–2022. The dataset can be applied in the validation of satellite products and numerical models and investigation of atmospheric radiation.
Ruben Urraca, Greet Janssens-Maenhout, Nicolás Álamos, Lucas Berna-Peña, Monica Crippa, Sabine Darras, Stijn Dellaert, Hugo Denier van der Gon, Mark Dowell, Nadine Gobron, Claire Granier, Giacomo Grassi, Marc Guevara, Diego Guizzardi, Kevin Gurney, Nicolás Huneeus, Sekou Keita, Jeroen Kuenen, Ana Lopez-Noreña, Enrique Puliafito, Geoffrey Roest, Simone Rossi, Antonin Soulie, and Antoon Visschedijk
Earth Syst. Sci. Data, 16, 501–523, https://doi.org/10.5194/essd-16-501-2024, https://doi.org/10.5194/essd-16-501-2024, 2024
Short summary
Short summary
CoCO2-MOSAIC 1.0 is a global mosaic of regional bottom-up inventories providing gridded (0.1×0.1) monthly emissions of anthropogenic CO2. Regional inventories include country-specific information and finer spatial resolution than global inventories. CoCO2-MOSAIC provides harmonized access to these datasets and can be considered as a regionally accepted reference to assess the quality of global inventories, as done in the current paper.
Marc Guevara, Santiago Enciso, Carles Tena, Oriol Jorba, Stijn Dellaert, Hugo Denier van der Gon, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 16, 337–373, https://doi.org/10.5194/essd-16-337-2024, https://doi.org/10.5194/essd-16-337-2024, 2024
Short summary
Short summary
A global dataset of emissions from thermal power plants was created for the year 2018. The resulting catalogue reports annual emissions of CO2 and co-emitted species (NOx, CO, SO2 and CH4) for more than 16000 individual facilities at their exact geographical locations. Information on the temporal and vertical distributions of the emissions is also provided at the facility level. The dataset is intended to support current and future satellite emission monitoring and inverse modelling efforts.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Zeqi Li, Shuxiao Wang, Shengyue Li, Xiaochun Wang, Guanghan Huang, Xing Chang, Lyuyin Huang, Chengrui Liang, Yun Zhu, Haotian Zheng, Qian Song, Qingru Wu, Fenfen Zhang, and Bin Zhao
Earth Syst. Sci. Data, 15, 5017–5037, https://doi.org/10.5194/essd-15-5017-2023, https://doi.org/10.5194/essd-15-5017-2023, 2023
Short summary
Short summary
This study developed the first full-volatility organic emission inventory for cooking sources in China, presenting high-resolution cooking emissions during 2015–2021. It identified the key subsectors and hotspots of cooking emissions, analyzed emission trends and drivers, and proposed future control strategies. The dataset is valuable for accurately simulating organic aerosol formation and evolution and for understanding the impact of organic emissions on air pollution and climate change.
Zi Huang, Jiaoyue Wang, Longfei Bing, Yijiao Qiu, Rui Guo, Ying Yu, Mingjing Ma, Le Niu, Dan Tong, Robbie M. Andrew, Pierre Friedlingstein, Josep G. Canadell, Fengming Xi, and Zhu Liu
Earth Syst. Sci. Data, 15, 4947–4958, https://doi.org/10.5194/essd-15-4947-2023, https://doi.org/10.5194/essd-15-4947-2023, 2023
Short summary
Short summary
This is about global and regional cement process carbon emissions and CO2 uptake calculations from 1930 to 2019. The global cement production is rising to 4.4 Gt, causing processing carbon emission of 1.81 Gt (95% CI: 1.75–1.88 Gt CO2) in 2021. Plus, in 2021, cement’s carbon accumulated uptake (22.9 Gt, 95% CI: 19.6–22.6 Gt CO2) has offset 55.2% of cement process CO2 emissions (41.5 Gt, 95% CI: 38.7–47.1 Gt CO2) since 1930.
Wenjun Tang, Junmei He, Jingwen Qi, and Kun Yang
Earth Syst. Sci. Data, 15, 4537–4551, https://doi.org/10.5194/essd-15-4537-2023, https://doi.org/10.5194/essd-15-4537-2023, 2023
Short summary
Short summary
In this study, we have developed a dense station-based, long-term dataset of daily surface solar radiation in China with high accuracy. The dataset consists of estimates of global, direct and diffuse radiation at 2473 meteorological stations from the 1950s to 2021. Validation indicates that our station-based radiation dataset clearly outperforms the satellite-based radiation products. Our dataset will contribute to climate change research and solar energy applications in the future.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Saroj Kumar Sahu, Poonam Mangaraj, and Gufran Beig
Earth Syst. Sci. Data, 15, 3183–3202, https://doi.org/10.5194/essd-15-3183-2023, https://doi.org/10.5194/essd-15-3183-2023, 2023
Short summary
Short summary
The developed emission inventory identifies all the potential anthropogenic sources active in the Delhi NCR. The decadal change (2010–2020) and the changing policies have also been illustrated to observe the modulation in the sectorial emission trend. Emission hotspots with possible source-specific mitigation strategies have also been highlighted to improve the air quality of the Delhi NCR. The provided dataset is a vital tool for air quality and chemical transport modeling studies.
Steffen Beirle, Christian Borger, Adrian Jost, and Thomas Wagner
Earth Syst. Sci. Data, 15, 3051–3073, https://doi.org/10.5194/essd-15-3051-2023, https://doi.org/10.5194/essd-15-3051-2023, 2023
Short summary
Short summary
We present a catalog of nitrogen oxide emissions from point sources (like power plants or metal smelters) based on satellite observations of NO2 combined with meteorological wind fields.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Shengyue Li, Shuxiao Wang, Qingru Wu, Yanning Zhang, Daiwei Ouyang, Haotian Zheng, Licong Han, Xionghui Qiu, Yifan Wen, Min Liu, Yueqi Jiang, Dejia Yin, Kaiyun Liu, Bin Zhao, Shaojun Zhang, Ye Wu, and Jiming Hao
Earth Syst. Sci. Data, 15, 2279–2294, https://doi.org/10.5194/essd-15-2279-2023, https://doi.org/10.5194/essd-15-2279-2023, 2023
Short summary
Short summary
This study compiled China's emission inventory of air pollutants and CO2 during 2005–2021 (ABaCAS-EI v2.0) based on unified emission-source framework. The emission trends and its drivers are analyzed. Key sectors and regions with higher synergistic reduction potential of air pollutants and CO2 are identified. Future control measures are suggested. The dataset and analyses provide insights into the synergistic reduction of air pollutants and CO2 emissions for China and other developing countries.
Wouter B. Mol, Wouter H. Knap, and Chiel C. van Heerwaarden
Earth Syst. Sci. Data, 15, 2139–2151, https://doi.org/10.5194/essd-15-2139-2023, https://doi.org/10.5194/essd-15-2139-2023, 2023
Short summary
Short summary
We describe a dataset of detailed measurements of sunlight reaching the surface, recorded at a rate of one measurement per second for 10 years. The dataset includes detailed information on direct and scattered sunlight; classifications and statistics of variability; and observations of clouds, atmospheric composition, and wind. The dataset can be used to study how the atmosphere influences sunlight variability and to validate models that aim to predict this variability with greater accuracy.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Akash Biswal, Vikas Singh, Leeza Malik, Geetam Tiwari, Khaiwal Ravindra, and Suman Mor
Earth Syst. Sci. Data, 15, 661–680, https://doi.org/10.5194/essd-15-661-2023, https://doi.org/10.5194/essd-15-661-2023, 2023
Short summary
Short summary
This paper presents detailed emission estimates of on-road traffic exhaust emissions of nine major pollutants for Delhi. We use advanced traffic data and emission factors as a function of speed to estimate emissions for each hour and 100 m × 100 m spatial resolution. We examine the source contribution according to the vehicle, fuel, road and Euro types to identify the most polluting vehicles. These data are useful for high-resolution air quality modelling for developing suitable strategies.
Auke M. van der Woude, Remco de Kok, Naomi Smith, Ingrid T. Luijkx, Santiago Botía, Ute Karstens, Linda M. J. Kooijmans, Gerbrand Koren, Harro A. J. Meijer, Gert-Jan Steeneveld, Ida Storm, Ingrid Super, Hubertus A. Scheeren, Alex Vermeulen, and Wouter Peters
Earth Syst. Sci. Data, 15, 579–605, https://doi.org/10.5194/essd-15-579-2023, https://doi.org/10.5194/essd-15-579-2023, 2023
Short summary
Short summary
To monitor the progress towards the CO2 emission goals set out in the Paris Agreement, the European Union requires an independent validation of emitted CO2. For this validation, atmospheric measurements of CO2 can be used, together with first-guess estimates of CO2 emissions and uptake. To quickly inform end users, it is imperative that this happens in near real-time. To aid these efforts, we create estimates of European CO2 exchange at high resolution in near real time.
David F. Pollard, Frank Hase, Mahesh Kumar Sha, Darko Dubravica, Carlos Alberti, and Dan Smale
Earth Syst. Sci. Data, 14, 5427–5437, https://doi.org/10.5194/essd-14-5427-2022, https://doi.org/10.5194/essd-14-5427-2022, 2022
Short summary
Short summary
We describe measurements made in Antarctica using an EM27/SUN, a near-infrared, portable, low-resolution spectrometer from which we can retrieve the average atmospheric concentration of several greenhouse gases. We show that these measurements are reliable and comparable to other, similar ground-based measurements. Comparisons to the ESA's Sentinel-5 precursor (S5P) satellite demonstrate the usefulness of these data for satellite validation.
Giacomo Grassi, Giulia Conchedda, Sandro Federici, Raul Abad Viñas, Anu Korosuo, Joana Melo, Simone Rossi, Marieke Sandker, Zoltan Somogyi, Matteo Vizzarri, and Francesco N. Tubiello
Earth Syst. Sci. Data, 14, 4643–4666, https://doi.org/10.5194/essd-14-4643-2022, https://doi.org/10.5194/essd-14-4643-2022, 2022
Short summary
Short summary
Despite increasing attention on the role of land use CO2 fluxes in climate change mitigation, there are large differences in available databases. Here we present the most updated and complete compilation of land use CO2 data based on country submissions to United Nations Framework Convention on Climate Change and explain differences with other datasets. Our dataset brings clarity of land use CO2 fluxes and helps track country progress under the Paris Agreement.
Thorsten Hoeser, Stefanie Feuerstein, and Claudia Kuenzer
Earth Syst. Sci. Data, 14, 4251–4270, https://doi.org/10.5194/essd-14-4251-2022, https://doi.org/10.5194/essd-14-4251-2022, 2022
Short summary
Short summary
The DeepOWT (Deep-learning-derived Offshore Wind Turbines) data set provides offshore wind energy infrastructure locations and their temporal deployment dynamics from July 2016 until June 2021 on a global scale. It differentiates between offshore wind turbines, platforms under construction, and offshore wind farm substations. It is derived by applying deep-learning-based object detection to Sentinel-1 imagery.
Cited articles
Abdulmanov, R., Miftakhov, I., Ishbulatov, M., Galeev, E., and Shafeeva, E.: Comparison of the effectiveness of GIS-based interpolation methods for estimating the spatial distribution of agrochemical soil properties, Environ. Technol. Innov., 24, 101970, https://doi.org/10.1016/j.eti.2021.101970, 2021.
Achite, M., Katipoğlu, Okan Mert, Javari, M., and Caloiero, T.: Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria, Theor. Appl. Climatol., 155, 1139–1166, https://doi.org/10.1007/s00704-023-04685-w, 2024.
Alvera-Azcárate, A., Barth, A., Sirjacobs, D., and Beckers, J.-M.: Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF, Ocean Sci., 5, 475–485, https://doi.org/10.5194/os-5-475-2009, 2009.
Alvera-Azcárate, A., Barth, A., Parard, G., and Beckers, J.-M.: Analysis of SMOS sea surface salinity data using DINEOF, Remote Sens. Environ., 180, 137–145, https://doi.org/10.1016/j.rse.2016.02.044, 2016.
Baek, K. and Kim, J.: Analysis of Characteristics of Satellite-derived Air Pollutant over Southeast Asia and Evaluation of Tropospheric Ozone using Statistical Methods, J. Korean Soc. Atmos. Environ., 27, 650–662, https://doi.org/10.5572/kosae.2011.27.6.650, 2011.
Bauer, R., Rozanov, A., McLinden, C. A., Gordley, L. L., Lotz, W., Russell III, J. M., Walker, K. A., Zawodny, J. M., Ladstätter-Weißenmayer, A., Bovensmann, H., and Burrows, J. P.: Validation of SCIAMACHY limb NO2 profiles using solar occultation measurements, Atmos. Meas. Tech., 5, 1059–1084, https://doi.org/10.5194/amt-5-1059-2012, 2012.
Beckers, J.-M. and Rixen, M.: EOF Calculations and Data Filling from Incomplete Oceanographic Datasets, J. Atmos. Ocean. Tech., 20, 1839–1856, https://doi.org/10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2, 2003.
Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, https://doi.org/10.1029/2003JD003962, 2004.
Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007.
Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J., and van der A, R. J.: Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space, J. Geophys. Res., 113, D16S26, https://doi.org/10.1029/2007JD008816, 2008.
Bousserez, N.: Space-based retrieval of NO2 over biomass burning regions: quantifying and reducing uncertainties, Atmos. Meas. Tech., 7, 3431–3444, https://doi.org/10.5194/amt-7-3431-2014, 2014.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Chang, N., Bai, K., and Chen, C.: Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management, J. Environ. Manage., 201, 227–240, https://doi.org/10.1016/j.jenvman.2017.06.045, 2017.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, August 2016, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Chen, Z., Wang, P., Bao, S., and Zhang, W.: Rapid reconstruction of temperature and salinity fields based on machine learning and the assimilation application, Front. Mar. Sci., 9, https://doi.org/10.3389/fmars.2022.985048, 2022.
Chimot, J., Vlemmix, T., Veefkind, J. P., de Haan, J. F., and Levelt, P. F.: Impact of aerosols on the OMI tropospheric NO2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model?, Atmos. Meas. Tech., 9, 359–382, https://doi.org/10.5194/amt-9-359-2016, 2016.
Chowdhury, M. R.: Overview of Weather, ENSO, and Climate Scale, in: Seasonal Flood Forecasts and Warning Response Opportunities: ENSO Applications in Bangladesh, Springer, Cham, 59–74, https://doi.org/10.1007/978-3-031-17825-2, 2022.
Cisty, M. and Soldanova, V.: Flow Prediction Versus Flow Simulation Using Machine Learning Algorithms, in: Machine Learning and Data Mining in Pattern Recognition, vol. 10935, edited by: Perner, P., Springer, Cham, 369–382, https://doi.org/10.1007/978-3-319-96133-0_28, 2018.
Cohen, J. B.: Quantifying the occurrence and magnitude of the Southeast Asian fire climatology, Environ. Res. Lett., 9, 114018, https://doi.org/10.1088/1748-9326/9/11/114018, 2014.
Cohen, J. B., Prinn, R. G., and Wang, C.: The impact of detailed urban-scale processing on the composition, distribution, and radiative forcing of anthropogenic aerosols, Geophys. Res. Lett., 38, L10808, https://doi.org/10.1029/2011gl047417, 2011.
Cohen, J. B., Lecoeur, E., and Hui Loong Ng, D.: Decadal-scale relationship between measurements of aerosols, land-use change, and fire over Southeast Asia, Atmos. Chem. Phys., 17, 721–743, https://doi.org/10.5194/acp-17-721-2017, 2017.
Compernolle, S., Verhoelst, T., Pinardi, G., Granville, J., Hubert, D., Keppens, A., Niemeijer, S., Rino, B., Bais, A., Beirle, S., Boersma, F., Burrows, J. P., De Smedt, I., Eskes, H., Goutail, F., Hendrick, F., Lorente, A., Pazmino, A., Piters, A., Peters, E., Pommereau, J.-P., Remmers, J., Richter, A., van Geffen, J., Van Roozendael, M., Wagner, T., and Lambert, J.-C.: Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties, Atmos. Chem. Phys., 20, 8017–8045, https://doi.org/10.5194/acp-20-8017-2020, 2020.
Cooper, M. J., Martin, R. V., Hammer, M. S., and McLinden, C. A.: An Observation-Based Correction for Aerosol Effects on Nitrogen Dioxide Column Retrievals Using the Absorbing Aerosol Index, Geophys. Res. Lett., 46, 8442–8452, https://doi.org/10.1029/2019GL083673, 2019.
Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., Krotkov, N. A., Brook, J. R., and McLinden, C. A.: Global fine-scale changes in ambient NO2 during COVID-19 lockdowns, Nature, 601, 380–387, https://doi.org/10.1038/s41586-021-04229-0, 2022.
Crutzen, P. J.: Gas-Phase Nitrogen and Methane Chemistry in the Atmosphere, in: Physics and Chemistry of Upper Atmosphere, edited by: McCormac, B. M., Astrophysics and Space Science Library, vol. 35, Springer, Dordrecht, 110–124, https://doi.org/10.1007/978-94-010-2542-3_12, 1973.
Crutzen, P. J.: The Role of NO and NO2 in the Chemistry of the Troposphere and Stratosphere, Annu. Rev. Earth Pl. Sc., 7, 443–472, https://doi.org/10.1146/annurev.ea.07.050179.002303, 1979.
de Hoogh, K., Saucy, A., Shtein, A., Schwartz, J., West, E. A., Strassmann, A., Puhan, M., Röösli, M., Stafoggia, M., and Kloog, I.: Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland, Environ. Sci. Technol., 53, 10279–10287, https://doi.org/10.1021/acs.est.9b03107, 2019.
Deng, W., Cohen, J. B., Wang, S., and Lin, C.: Improving the understanding between climate variability and observed extremes of global NO2 over the past 15 years, Environ. Res. Lett., 16, 054020, https://doi.org/10.1088/1748-9326/abd502, 2021.
Dong, J., Chen, Y., Yao, B., Zhang, X., and Zeng, N.: A neural network boosting regression model based on XGBoost, Appl. Soft. Comput., 125, 109067, https://doi.org/10.1016/j.asoc.2022.109067, 2022.
Du, M., Chen, L., Lin, J., Liu, Y., Feng, K., Liu, Q., Liu, Y., Wang, J., Ni, R., Zhao, Y., Si, W., Li, Y., Kong, H., Weng, H., Liu, M., and Adeniran, J. A.: Winners and losers of the Sino–US trade war from economic and environmental perspectives, Environ. Res. Lett., 15, 094032, https://doi.org/10.1088/1748-9326/aba3d5, 2020.
Duncan, B. N., Yoshida, Y., de Foy, B., Lamsal, L. N., Streets, D. G., Lu, Z., Pickering, K. E., and Krotkov, N. A.: The observed response of Ozone Monitoring Instrument (OMI) NO2 columns to NOx emission controls on power plants in the United States: 2005–2011, Atmos. Environ., 81, 102–111, https://doi.org/10.1016/j.atmosenv.2013.08.068, 2013.
Echterhof, T. and Pfeifer, H.: Nitrogen Oxide Formation in the Electric Arc Furnace—Measurement and Modeling, Metall. Mater. Trans. B, 43, 163–172, https://doi.org/10.1007/s11663-011-9564-8, 2011.
Eriksson, E.: Composition of Atmospheric Precipitation, Tellus, 4, 280–303, https://doi.org/10.3402/tellusa.v4i4.8813, 1952.
Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291, https://doi.org/10.5194/acp-3-1285-2003, 2003.
Crippa, M., Guizzardi, D., and Schaaf, E., Monforti-Ferrario, F., and Quadrelli, R.: GHG emissions of all world countries, European Commission, Joint Research Centre, Publications Office of the European Union, https://doi.org/10.2760/953322, 2023.
Fan, Z., Zhan, Q., Yang, C., Liu, H., and Bilal, M.: Estimating PM2.5 Concentrations Using Spatially Local Xgboost Based on Full-Covered SARA AOD at the Urban Scale, Remote Sens.-Basel, 12, 3368, https://doi.org/10.3390/rs12203368, 2020.
Fioletov, V. E., McLinden, C. A., Krotkov, N., Yang, K., Loyola, D. G., Valks, P., Theys, N., Van Roozendael, M., Nowlan, C. R., Chance, K., Liu, X., Lee, C., and Martin, R. V.: Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources, J. Geophys. Res.-Atmos., 118, 11, 399–11, 418, https://doi.org/10.1002/jgrd.50826, 2013.
Fishman, J., Solomon, S., and Crutzen, P. J.: Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone, Tellus, 31, 432–446, https://doi.org/10.1111/j.2153-3490.1979.tb00922.x, 1979.
Foret, G., Eremenko, M., Cuesta, J., Sellitto, P., Barré, J., Gaubert, B., Coman, A., Dufour, G., Liu, X., Joly, M., Doche, C., and Beekmann, M.: Ozone pollution: What can we see from space? A case study, J. Geophys. Res.-Atmos., 119, 8476–8499, https://doi.org/10.1002/2013JD021340, 2014.
He, Q., Qin, K., Cohen, J. B., Loyola, D., Li, D., Shi, J., and Xue, Y.: Spatially and temporally coherent reconstruction of tropospheric NO2 over China combining OMI and GOME-2B measurements, Environ. Res. Lett., 15, 125011, https://doi.org/10.1088/1748-9326/abc7df, 2020.
Hilborn, A. and Costa, M.: Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region, Remote Sens.-Basel, 10, 1449, https://doi.org/10.3390/rs10091449, 2018.
Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki, Atmos. Meas. Tech., 13, 205–218, https://doi.org/10.5194/amt-13-205-2020, 2020.
Irie, H., Boersma, K. F., Kanaya, Y., Takashima, H., Pan, X., and Wang, Z. F.: Quantitative bias estimates for tropospheric NO2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia, Atmos. Meas. Tech., 5, 2403–2411, https://doi.org/10.5194/amt-5-2403-2012, 2012.
Jiang, Y., Gao, Z., He, J., Wu, J., and Christakos, G.: Application and Analysis of XCO2 Data from OCO Satellite Using a Synthetic DINEOF–BME Spatiotemporal Interpolation Framework, Remote Sens.-Basel, 14, 4422, https://doi.org/10.3390/rs14174422, 2022.
Just, A. C., Margherita, C., Shtein, A., Dorman, M., Lyapustin, A., and Kloog, I.: Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA, Remote Sens.-Basel, 10, 803, https://doi.org/10.3390/rs10050803, 2018.
Kapoor, S. and Perrone, V.: A Simple and Fast Baseline for Tuning Large XGBoost Models, arXiv (Cornell University), https://doi.org/10.48550/arxiv.2111.06924, 2021.
Kim, J., Baek, K., and Kim, S.: Validation of OMI HCHO with EOF and SVD over Tropical Africa, Korean J. Remote Sensing, 30, 417–430, https://doi.org/10.7780/kjrs.2014.30.4.1, 2014.
Kolle, O., Kalthoff, N., Kottmeier, C., and William, M. J.: Ground-Based Platforms, in: Springer Handbook of Atmospheric Measurements, edited by: Foken, T., Springer International Publishing, Cham, 155–182, https://doi.org/10.1007/978-3-030-52171-4_6, 2021.
Laan, E., de Winter, D., de Vries, J., Levelt, P. F., van den Oord, G. H., Malkki, A., Leppelmeier, G. W., and Hilsenrath, E.: Toward the use of the Ozone Monitoring Instrument (OMI), P. SPIE, 4540, 270–277, 2001.
Lamsal, L. N., Krotkov, N. A., Vasilkov, A., Marchenko, S., Qin, W., Yang, E.-S., Fasnacht, Z., Joiner, J., Choi, S., Haffner, D., Swartz, W. H., Fisher, B., and Bucsela, E.: Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments, Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, 2021.
Leitão, J., Richter, A., Vrekoussis, M., Kokhanovsky, A., Zhang, Q. J., Beekmann, M., and Burrows, J. P.: On the improvement of NO2 satellite retrievals – aerosol impact on the airmass factors, Atmos. Meas. Tech., 3, 475–493, https://doi.org/10.5194/amt-3-475-2010, 2010.
Levy, H.: Photochemistry of the lower troposphere, Planet. Space Sci., 20, 919–935, https://doi.org/10.1016/0032-0633(72)90177-8, 1972.
Li, D., Qin, K., Cohen, J. B., He, Q., Wang, S., Li, D., Zhou, X., Ling, X., and Xue, Y.: Combing GOME-2B and OMI Satellite Data to Estimate Near-Surface NO2 of Mainland China, IEEE J. Sel. Top. Appl., 14, 10269–10277, https://doi.org/10.1109/JSTARS.2021.3117396, 2021.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150, 2017.
Li, M., Mao, J., Chen, S., Bian, J., Bai, Z., Wang, X., Chen, W., and Yu, P.: Significant contribution of lightning NOx to summertime surface O3 on the Tibetan Plateau, Sci. Total Environ., 829, 154639, https://doi.org/10.1016/j.scitotenv.2022.154639, 2022.
Li, X., Cohen, J. B., Qin, K., Geng, H., Wu, X., Wu, L., Yang, C., Zhang, R., and Zhang, L.: Remotely sensed and surface measurement-derived mass-conserving inversion of daily NOx emissions and inferred combustion technologies in energy-rich northern China, Atmos. Chem. Phys., 23, 8001–8019, https://doi.org/10.5194/acp-23-8001-2023, 2023.
Lin, J.-T., Martin, R. V., Boersma, K. F., Sneep, M., Stammes, P., Spurr, R., Wang, P., Van Roozendael, M., Clémer, K., and Irie, H.: Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide, Atmos. Chem. Phys., 14, 1441–1461, https://doi.org/10.5194/acp-14-1441-2014, 2014.
Liu, F., Zhang, Q., van der A, R. J., Zheng, B., Tong, D., Yan, L., Zheng, Y., and He, K.: Recent reduction in NOx missions over China: synthesis of satellite observations and emission inventories, Environ. Res. Lett., 11, 114002, https://doi.org/10.1088/1748-9326/11/11/114002, 2016.
Liu, J., Cohen, J. B., He, Q., Tiwari, P., and Qin, K.: Accounting for NOx emissions from biomass burning and urbanization doubles existing inventories over South, Southeast and East Asia, Commun. Earth Environ., 5, 255, https://doi.org/10.1038/s43247-024-01424-5, 2024.
Liu, M., Lin, J., Boersma, K. F., Pinardi, G., Wang, Y., Chimot, J., Wagner, T., Xie, P., Eskes, H., Van Roozendael, M., Hendrick, F., Wang, P., Wang, T., Yan, Y., Chen, L., and Ni, R.: Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile, Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019, 2019.
Liu, S., Valks, P., Pinardi, G., De Smedt, I., Yu, H., Beirle, S., and Richter, A.: An improved total and tropospheric NO2 column retrieval for GOME-2, Atmos. Meas. Tech., 12, 1029–1057, https://doi.org/10.5194/amt-12-1029-2019, 2019.
Liu, Z., Cohen, J. B., Wang, S., Wang, X., Tiwari, P., and Qin, K.: Remotely sensed BC columns over rapidly changing Western China show significant decreases in mass and inconsistent changes in number, size, and mixing properties due to policy actions, npj Clim. Atmos. Sci., 7, 124, https://doi.org/10.1038/s41612-024-00663-9, 2024.
Logan, J. A.: Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res., 88, 10785, https://doi.org/10.1029/jc088ic15p10785, 1983.
Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric chemistry: A global perspective, J. Geophys. Res., 86, 7210, https://doi.org/10.1029/jc086ic08p07210, 1981.
Lorente, A., Boersma, K. F., Stammes, P., Tilstra, L. G., Richter, A., Yu, H., Kharbouche, S., and Muller, J.-P.: The importance of surface reflectance anisotropy for cloud and NO2 retrievals from GOME-2 and OMI, Atmos. Meas. Tech., 11, 4509–4529, https://doi.org/10.5194/amt-11-4509-2018, 2018.
Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M., Zheng, B., Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L., and Zhang, Y.: The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China, Nat. Commun., 12, 5021, https://doi.org/10.1038/s41467-021-25147-9, 2021.
Lu, Y. and Khalil, M. A. K.: Methane and carbon monoxide in OH chemistry: The effects of feedbacks and reservoirs generated by the reactive products, Chemosphere, 26, 641–655, https://doi.org/10.1016/0045-6535(93)90450-J, 1993.
Lu, Z., Liu, X., Zaveri, R. A., Easter, R. C., Tilmes, S., Emmons, L. K., Vitt, F., Singh, B., Wang, H., Zhang, R., and Rasch, P. J.: Radiative Forcing of Nitrate Aerosols From 1975 to 2010 as Simulated by MOSAIC Module in CESM2-MAM4, J. Geophys. Res.-Atmos., 126, e2021JD034809, https://doi.org/10.1029/2021jd034809, 2021.
Ludewig, A., Kleipool, Q., Bartstra, R., Landzaat, R., Leloux, J., Loots, E., Meijering, P., van der Plas, E., Rozemeijer, N., Vonk, F., and Veefkind, P.: In-flight calibration results of the TROPOMI payload on board the Sentinel-5 Precursor satellite, Atmos. Meas. Tech., 13, 3561–3580, https://doi.org/10.5194/amt-13-3561-2020, 2020.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.: Environmental and Health Impacts of Air Pollution: A Review, Front. Public Health, 8, 1–13, https://doi.org/10.3389/fpubh.2020.00014, 2020.
Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., Huckle, R., Lacan, A., Grzegorski, M., Holdak, A., Kokhanovsky, A., Livschitz, J., and Eisinger, M.: The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview, Atmos. Meas. Tech., 9, 1279–1301, https://doi.org/10.5194/amt-9-1279-2016, 2016.
Park, J., Kim, H., Bae, D., and Jo, Y.: Data Reconstruction for Remotely Sensed Chlorophyll-a Concentration in the Ross Sea Using Ensemble-Based Machine Learning, Remote Sens.-Basel, 12, 1898, https://doi.org/10.3390/rs12111898, 2020.
Pinardi, G., Van Roozendael, M., Hendrick, F., Theys, N., Abuhassan, N., Bais, A., Boersma, F., Cede, A., Chong, J., Donner, S., Drosoglou, T., Dzhola, A., Eskes, H., Frieß, U., Granville, J., Herman, J. R., Holla, R., Hovila, J., Irie, H., Kanaya, Y., Karagkiozidis, D., Kouremeti, N., Lambert, J.-C., Ma, J., Peters, E., Piters, A., Postylyakov, O., Richter, A., Remmers, J., Takashima, H., Tiefengraber, M., Valks, P., Vlemmix, T., Wagner, T., and Wittrock, F.: Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations, Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, 2020.
Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy: Principles and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-75776-4_6, 2008.
Qin, K., Lu, L., Liu, J., He, Q., Shi, J., Deng, W., Wang, S., and Cohen, J. B.: Model-free daily inversion of NOx emissions using TROPOMI (MCMFE-NOx) and its uncertainty: Declining regulated emissions and growth of new sources, Remote Sens. Environ., 295, 113720, https://doi.org/10.1016/j.rse.2023.113720, 2023.
Qin, K., Gao, H., Liu, X., He, Q., and Cohen, J. B.: HSTCM-NO2 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10968462, 2024.
Reid, C. E., Jerrett, M., Petersen, M. L., Pfister, G. G., Morefield, P. E., Tager, I. B., Raffuse, S. M., and Balmes, J. R.: Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning, Environ. Sci. Technol., 49, 3887–3896, https://doi.org/10.1021/es505846r, 2015.
Richter, A. and Burrows, J. P.: Tropospheric NO2 from GOME measurements, Adv. Space Res., 29, 1673–1683, https://doi.org/10.1016/S0273-1177(02)00100-X, 2002.
Richter, A., Burrows, J. P., Nüß, H., Granier, C., and Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129–132, https://doi.org/10.1038/nature04092, 2005.
Richter, A., Begoin, M., Hilboll, A., and Burrows, J. P.: An improved NO2 retrieval for the GOME-2 satellite instrument, Atmos. Meas. Tech., 4, 1147–1159, https://doi.org/10.5194/amt-4-1147-2011, 2011.
Running, S. W.: Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models, Scaling Physiological Processes Leaf to Globe, 1993, 141–158, https://doi.org/10.1016/B978-0-12-233440-5.50014-2, 1993.
Sanabria, L. A., Qin, X., Li, J., Cechet, R. P., and Lucas, C.: Spatial interpolation of McArthur's Forest Fire Danger Index across Australia: Observational study, Environ. Modell. Softw., 50, 37–50, https://doi.org/10.1016/j.envsoft.2013.08.012, 2013.
Schaub, D., Boersma, K. F., Kaiser, J. W., Weiss, A. K., Folini, D., Eskes, H. J., and Buchmann, B.: Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements, Atmos. Chem. Phys., 6, 3211–3229, https://doi.org/10.5194/acp-6-3211-2006, 2006.
Shao, Y., Zhao, W., Liu, R., Yang, J., Liu, M., Fang, W., Hu, L., Adams, M., Bi, J., and Ma, Z.: Estimation of daily NO2 with explainable machine learning model in China, 2007–2020, Atmos. Environ., 314, 120111, https://doi.org/10.1016/j.atmosenv.2023.120111, 2023.
Shapley, L. S.: A Value for N-Person Games, RAND Corporation, Santa Monica, CA, https://doi.org/10.7249/P0295, 1952.
Sillman, S., Logan, J. A., and Wofsy, S. C.: The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes, J. Geophys. Res., 95, 1837, https://doi.org/10.1029/jd095id02p01837, 1990.
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res., 105, 8931–8980, https://doi.org/10.1029/1999jd901006, 2000.
Streets, D. G., Canty, T., Carmichael, G. R., de Foy, B., Dickerson, R. R., Duncan, B. N., Edwards, D. P., Haynes, J. A., Henze, D. K., Houyoux, M. R., Jacob, D. J., Krotkov, N. A., Lamsal, L. N., Liu, Y., Lu, Z., Martin, R. V., Pfister, G. G., Pinder, R. W., Salawitch, R. J., and Wecht, K. J.: Emissions estimation from satellite retrievals: A review of current capability, Atmos. Environ., 77, 1011–1042, https://doi.org/10.1016/j.atmosenv.2013.05.051, 2013.
Sun, W., Shao, M., Granier, C., Liu, Y., Ye, C., and Zheng, J.: Long-Term Trends of Anthropogenic SO2, NOx, CO, and NMVOCs Emissions in China, Earths Future, 6, 1112–1133, https://doi.org/10.1029/2018ef000822, 2018.
Tiwari, P., Cohen, J. B., Wang, X., Wang, S., and Qin, K.: Radiative forcing bias calculation based on COSMO (CoreShell Mie model Optimization) and AERONET data, npj Clim. Atmos. Sci., 6, 193, https://doi.org/10.1038/s41612-023-00520-1, 2023.
Torres, O., Bhartia, P. K., Jethva, H., and Ahn, C.: Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products, Atmos. Meas. Tech., 11, 2701–2715, https://doi.org/10.5194/amt-11-2701-2018, 2018.
van der A, R. J., Peters, D. H. M. U., Eskes, H., Boersma, K. F., Van Roozendael, M., De Smedt, I., and Kelder, H. M.: Detection of the trend and seasonal variation in tropospheric NO2 over China, J. Geophys. Res., 111, 1–10, https://doi.org/10.1029/2005JD006594, 2006.
van Geffen, J., Eskes, H. J., Boersma, K. F., Maasakkers, J. D., and Veefkind, J. P.: TROPOMI ATBD of the total and tropospheric NO2 data products, Tech. Rep., KNMI, S5P-KNMI-L2-0005-RP, https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products.pdf (last access: 12 November 2024), 2019.
van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and Veefkind, J. P.: S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315–1335, https://doi.org/10.5194/amt-13-1315-2020, 2020.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., and Vink, R.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 120, 70–83, https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K. F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., Liu, C., Müller, M., Navarro Comas, M., Piters, A. J. M., Pommereau, J.-P., Portafaix, T., Prados-Roman, C., Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V. P., Stremme, W., Strong, K., Van Roozendael, M., Veefkind, J. P., Wagner, T., Wittrock, F., Yela González, M., and Zehner, C.: Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks, Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, 2021.
Wagner, T., Dix, B., Friedeburg, C. V., Frieß, U., Sanghavi, S., Sinreich, R., and Platt, U.: MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content, J. Geophys. Res.-Atmos., 109, D22205, https://doi.org/10.1029/2004jd004904, 2004.
Wang, C., Wang, T., Wang, P., and Rakitin, V.: Comparison and Validation of TROPOMI and OMI NO2 Observations over China, Atmosphere, 11, 636, https://doi.org/10.3390/atmos11060636, 2020.
Wang, S., Cohen, J. B., Lin, C., and Deng, W.: Constraining the relationships between aerosol height, aerosol optical depth and total column trace gas measurements using remote sensing and models, Atmos. Chem. Phys., 20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020, 2020.
Wang, S., Cohen, J. B., Deng, W., Qin, K., and Guo, J.: Using a New Top-Down Constrained Emissions Inventory to Attribute the Previously Unknown Source of Extreme Aerosol Loadings Observed Annually in the Monsoon Asia Free Troposphere, Earths Future, 9, e2021EF002167, https://doi.org/10.1029/2021ef002167, 2021.
Wang, S., Ma, X., Zhou, S., Wu, L., Wang, H., Tang, Z., Xu, G., Jing, Z., Chen, Z., and Gan, B.: Extreme atmospheric rivers in a warming climate, Nat. Commun., 14, 3219, https://doi.org/10.1038/s41467-023-38980-x, 2023.
Wang, S., Cohen, J. B., Guan, L., Tiwari, P., and Qin, K.: Classifying and quantifying decadal changes in wet deposition over Southeast and East Asia using EANET, OMI, and GPCP, Atmos. Res., 304, 107400, https://doi.org/10.1016/j.atmosres.2024.107400, 2024.
Wang, S. W., Zhang, Q., Streets, D. G., He, K. B., Martin, R. V., Lamsal, L. N., Chen, D., Lei, Y., and Lu, Z.: Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations, Atmos. Chem. Phys., 12, 4429–4447, https://doi.org/10.5194/acp-12-4429-2012, 2012.
Wang, Y. and Liu, D.: Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: a case study in the Bohai and Yellow seas, China, Int. J. Remote Sens., 35, 204–217, https://doi.org/10.1080/01431161.2013.866290, 2013.
Wang, Y., Beirle, S., Lampel, J., Koukouli, M., De Smedt, I., Theys, N., Li, A., Wu, D., Xie, P., Liu, C., Van Roozendael, M., Stavrakou, T., Müller, J.-F., and Wagner, T.: Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products, Atmos. Chem. Phys., 17, 5007–5033, https://doi.org/10.5194/acp-17-5007-2017, 2017.
Wang, Z., Wang, G., Guo, X., Bai, Y., Xu, Y., and Dai, M.: Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis, Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, 2023.
Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., Xue, W., and Cribb, M.: Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China, Remote Sens. Environ., 270, 112775, https://doi.org/10.1016/j.rse.2021.112775, 2022.
Wenig, M., Spichtinger, N., Stohl, A., Held, G., Beirle, S., Wagner, T., Jähne, B., and Platt, U.: Intercontinental transport of nitrogen oxide pollution plumes, Atmos. Chem. Phys., 3, 387–393, https://doi.org/10.5194/acp-3-387-2003, 2003.
Wu, Y., Di, B., Luo, Y., Grieneisen, M. L., Zeng, W., Zhang, S., Deng, X., Tang, Y., Shi, G., Yang, F., and Zhan, Y.: A robust approach to deriving long-term daily surface NO2 levels across China: Correction to substantial estimation bias in back-extrapolation, Environ. Int., 154, 106576, https://doi.org/10.1016/j.envint.2021.106576, 2021.
Xia, M. and Jia, K.: Reconstructing Missing Information of Remote Sensing Data Contaminated by Large and Thick Clouds Based on an Improved Multitemporal Dictionary Learning Method, IEEE T. Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2021.3095067, 2022.
Xu, R., Tong, D., Xiao, Q., Qin, X., Chen, C., Yan, L., Cheng, J., Cui, C., Hu, H., Liu, W., Yan, X., Wang, H., Liu, X., Geng, G., Lei, Y., Guan, D., He, K., and Zhang, Q.: MEIC-global-CO2: A new global CO2 emission inventory with highly-resolved source category and sub-country information, Sci. China Earth Sci., 67, 450–465, https://doi.org/10.1007/s11430-023-1230-3, 2024.
Zhai, B. and Chen, J.: Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in Beijing, China, Sci. Total Environ., 635, 644–658, https://doi.org/10.1016/j.scitotenv.2018.04.040, 2018.
Zhang, W., Quan, H., and Srinivasan, D.: Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination, Energy, 160, 810–819, https://doi.org/10.1016/j.energy.2018.07.019, 2018.
Zhou, W., Peng, B., and Shi, J.: Reconstructing spatial–temporal continuous MODIS land surface temperature using the DINEOF method, J. Appl. Remote Sens., 11, 1–15, https://doi.org/10.1117/1.JRS.11.046016, 2017.
Zhou, W., Qin, K., He, Q., Wang, L., Luo, J., Xie, W.: Comparison and Optimization of Ground-Level NO2 Concentration Estimation in China Based on TROPOMI and OMI, Acta Opt. Sin., 44, 0601010, https://doi.org/10.3788/AOS231013, 2024.
Short summary
Satellites have brought new opportunities for monitoring atmospheric NO2, although the results are limited by clouds and other factors, resulting in missing data. This work proposes a new process to obtain reliable data products with high coverage by reconstructing the raw data from multiple satellites. The results are validated in terms of traditional methods as well as variance maximization and demonstrate a good ability to reproduce known polluted and clean areas around the world.
Satellites have brought new opportunities for monitoring atmospheric NO2, although the results...
Altmetrics
Final-revised paper
Preprint