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Abstract. Remote sensing based on satellites can provide long-term, consistent, and global coverage of NO2
(an important atmospheric air pollutant) as well as other trace gases. However, satellites often miss data due
to factors including but not limited to clouds, surface features, and aerosols. Moreover, as one of the longest
continuous observational platforms of NO2, the Ozone Monitoring Instrument (OMI) has suffered from miss-
ing data over certain rows since 2007, significantly reducing its spatial coverage. This work uses the OMI-
based tropospheric NO2 (OMNO2) product as well as a NO2 product from the Global Ozone Monitoring
Experiment-2 (GOME-2) in combination with machine learning (eXtreme Gradient Boosting – XGBoost)
and spatial interpolation (data-interpolating empirical orthogonal function – DINEOF) methods to produce
the 16-year global daily High Spatial–Temporal Coverage Merged tropospheric NO2 dataset (HSTCM-NO2;
https://doi.org/10.5281/zenodo.10968462; Qin et al., 2024), which increases the average global spatial coverage
of NO2 from 39.5 % to 99.1 %. The HSTCM-NO2 dataset is validated using upward-looking observations of
NO2 (multi-axis differential optical absorption spectroscopy – MAX-DOAS), other satellites (the Tropospheric
Monitoring Instrument – TROPOMI), and reanalysis products. The comparisons show that HSTCM-NO2 main-
tains a good correlation with the magnitudes of other observational datasets, except for under heavily polluted
conditions (> 6× 1015 molec.cm−2). This work also introduces a new validation technique to validate coherent
spatial and temporal signals (empirical orthogonal function – EOF) and confirms that HSTCM-NO2 is not only
consistent with the original OMNO2 data but in some parts of the world also effectively fills in missing gaps
and yields a superior result when analyzing long-range atmospheric transport of NO2. The few differences are
also reported to be related to areas in which the original OMNO2 signal was very low, which has been shown
elsewhere but not from this perspective, further confirming that applying a minimum cutoff to retrieved NO2 data
is essential. The reconstructed data product can effectively extend the utilization value of the original OMNO2
data, and the data quality of HSTCM-NO2 can meet the needs of scientific research.

1 Introduction

The sum of nitrogen dioxide (NO2) and nitrogen oxide, here-
after referred to as nitrogen oxides (NOx), plays several
important roles in tropospheric chemistry (Eriksson, 1952;
Levy, 1972; Crutzen, 1973, 1979; Fishman et al., 1979; Lo-
gan et al., 1981), specifically with respect to tropospheric
ozone (Sillman et al., 1990) and nitrate aerosol (X. Lu et al.,

2021), which indirectly influence radiative forcing by scatter-
ing downward-propagating visible light (Richter et al., 2005)
and enhancing absorption of black carbon aerosols (Tiwari
et al., 2023), and the concentration of tropospheric OH in-
directly influences both methane and carbon monoxide (Lu
and Khalil, 1993; Spivakovsky et al., 2000). During the day-
time, under low-pollution and low-cloud conditions, the pho-
tochemical cycle of NOx can be scaled somewhat stably to
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NO2, allowing observations of NO2 to be an indicator of
NOx concentrations (D. Schaub et al., 2006). Under more
heavily polluted conditions, such a relationship can also be
established, although it is found to vary in space and month
by month (Qin et al., 2023; Li et al., 2023). Due to its rapid
reactivity with water vapor, NOx forms nitric acid and con-
tributes directly to acid rain (Wang et al., 2024). Additionally,
NOx has been shown to have adverse effects on human health
(Liu et al., 2016), specifically as an irritant of the respiratory
system and via impacts on respiratory diseases when inhaled
at high levels (Manisalidis et al., 2020).

The differential optical absorption spectroscopy (DOAS)
method is used extensively to retrieve total column amounts
of trace gases such as NO2 and others based on UV–Vis mea-
surements of satellite spectrometers (Eskes and Boersma,
2003). The DOAS technique is based on the wavelength-
dependent absorption of light over a specified light path, and
it leads to the application of continuous monitoring of tropo-
spheric pollution levels from space (Platt and Stutz, 2008).
Initially applied to ground-based upward-looking instru-
ments (i.e., multi-axis differential optical absorption spec-
troscopy – MAX-DOAS, Wagner et al., 2004), nowadays
satellite-based measurements are proven to offer reliable in-
versions of column NO2 when compared with ground-based
measurements (Bauer et al., 2012; Wang et al., 2017; Ialongo
et al., 2020), with the errors commonly within a 20 % bound
and nearly always within a 40 % bound (Boersma et al.,
2004; Irie et al., 2012; Wang et al., 2017; Compernolle et al.,
2020; Pinardi et al., 2020; C. Wang et al., 2020; Verhoelst
et al., 2021).

Satellite observations offer the advantages of wide spatial
and long-term temporal coverage (Streets et al., 2013), which
can help fill spatial gaps between ground-based observations,
and they do so using a single platform without the need to
calibrate multiple individual machines (Kolle et al., 2021).
Starting nearly 2 decades ago, and continuing today, an ar-
ray of different satellites has been monitoring global tropo-
spheric NO2 distributions, including GOME (from 1995 to
2003) aboard ERS-2, SCIAMACHY (from 2002 to 2012)
aboard Envisat, the Ozone Monitoring Instrument (OMI)
(from 2004) aboard EOS-AURA, the Global Ozone Moni-
toring Experiment-2 (GOME-2) (from 2006) aboard MetOp,
and the Tropospheric Monitoring Instrument (TROPOMI)
(from 2017) aboard Sentinel-5P (Bovensmann et al., 1999;
Laan et al., 2001; Richter and Burrows, 2002; Veefkind et al.,
2012; Munro et al., 2016). As a result, there have been useful
products relating to estimating surface or near-surface NO2
emissions (Wang et al., 2012; Li et al., 2021) and detecting
the long-term or short-term change in NO2 (van der A et al.,
2006; Cooper et al., 2022).

NOx is emitted any time there is a high-temperature reac-
tion that occurs within the air (Echterhof and Pfeifer, 2011).
For this reason, most sources are related to anthropogenic
combustion of fossil fuels, biomass, and even forests, as well
as a small amount from natural sources induced by lightning

(Sun et al., 2018; Z. Lu et al., 2021; Li et al., 2022). Emis-
sions are frequently computed using a bottom-up approach,
where economic, population, and other factors are merged
with an activity coefficient associated with each parameter
and applied on average over space and time (Li et al., 2017;
Xu et al., 2024). Recent work has looked at using the satellite
observations of NO2 above and applying them on a grid-by-
grid and day-by-day basis to attribute emissions to different
types of industrial sources, population centers, power genera-
tion, transportation, residential uses, agriculture, and natural
sources (Li et al., 2023; Qin et al., 2023). The current best
estimates vary by considerable amounts from each other in
space and time (Wang et al., 2021) and account for both nat-
ural (Deng et al., 2021) and human-based factors (according
to EDGAR and MEIC; Crippa et al., 2023). There is contro-
versy about the amounts that lightning and microbial activity
may or may not contribute (Logan, 1983).

Vertical column densities (VCDs) of tropospheric NO2
retrieved from satellite-based instruments provide plentiful
data under relatively clean and clear atmospheric conditions
but have many missing pixels in both time and space due to
a variety of factors, including very bright surfaces, clouds,
and aerosols (Lin et al., 2014; Xia and Jia, 2022). One of the
underlying sources of error is related to the air mass factor
(AMF), which allows conversion from a slant column to a
vertical column that is highly sensitive to cloud and aerosol
layer height (Leitão et al., 2010), aerosol absorption (Lin
et al., 2014; Cooper et al., 2019), and the spatial and tempo-
ral distribution of NOx emissions (Qin et al., 2023; Li et al.,
2023), which can lead to both uncertainties and biases in re-
trieval (Bousserez, 2014). For these reasons, pixels known
to be impacted by clouds are usually filtered before analy-
sis. However, other impacted pixels may not be properly fil-
tered, leading to other issues. Similarly, for some older satel-
lites, due to their orbit and swath width, this requires 3, 6,
and 1.5 d for GOME, SCIAMACHY, and GOME-2, respec-
tively, to cover the whole globe, with additional missing pix-
els on a day-by-day basis. OMI, which is carried on a near-
polar, Sun-synchronous satellite, is the world’s first sensor
with daily global coverage of NO2 since 2004. However, in
2007, a reduction in OMI’s spatial coverage occurred due
to an equipment malfunction, called the row anomaly (RA),
which began affecting just two rows of data in June 2007 but
gradually worsened over time (Torres et al., 2018). The ab-
sence of data presently affects both short-term estimation of
air quality and long-term quantitative analysis (Duncan et al.,
2013; van Geffen et al., 2020), although OMI is still useful
for the detection of extreme events (S. Wang et al., 2020,
2021; Deng et al., 2021). Due to 19 years of continuous ob-
servations, OMI is a very widely used sensor in the field of
atmospheric trace gas research, and finding ways to compre-
hensively and reasonably fill these missing pixels would al-
low its usefulness to be extended into other fields (de Hoogh
et al., 2019; He et al., 2020; Wu et al., 2021; Wei et al., 2022;
Shao et al., 2023; J. Liu et al., 2024).
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Table 1. Summary of the parameters used in this research.

Data type Parameter Abbreviation Unit

OMI Daily tropospheric NO2 vertical column density OMI molec.cm−2

GOME-2 Daily tropospheric NO2 vertical column density GOME-2_NO2 molec.cm−2

Daily cloud cover cloud_fraction %

Land cover types Water bodies wb –
Evergreen needleleaf vegetation env –
Evergreen broadleaf vegetation ebv –
Deciduous needleleaf vegetation dnv –
Deciduous broadleaf vegetation dbv –
Annual broadleaf vegetation abv –
Annual grass vegetation agv –
Nonvegetated lands nvl –
Urban and built-up lands ubl –

ERA5 single levels Surface pressure sp Pa
Mean surface downward UV radiation flux msdwuvrf Wm−2

Total column ozone tco3 kgm−2

UV visible albedo for diffuse radiation aluvd –
UV visible albedo for direct radiation aluvp –

ERA5 multiple levels Specific rainwater content crwc kgkg−2

Ozone mass mixing ratio o3 kgkg−2

Relative humidity r %
Temperature t K
U component of wind u ms−1

V component of wind v ms−1

Vertical velocity w Pas−1

Others Latitude – –
Longitude – –
Day of year DOY –

There are many existing approaches to fill missing data
from satellite-based platforms, including interpolation tech-
niques – geostatistical (e.g., kriging), deterministic (e.g.,
inverse-distance-weighted, thin-plate splines), and hybrid
(e.g., regression kriging) (Abdulmanov et al., 2021; Achite
et al., 2024) – and machine learning techniques such as ran-
dom forest (Sanabria et al., 2013). As there is a strong corre-
lation in terms of both the geospatial relationships and the re-
trieval approaches used to determine the VCDs of the tropo-
spheric NO2 obtained by different sensors (Park et al., 2020),
issues of spatial–temporal correlation need to be carefully
taken into consideration, something that these previous ap-
proaches may not have fully considered. In this work, ma-
chine learning and data-interpolating empirical orthogonal
function (DINEOF) methods are selected to carry out the re-
construction, which takes advantage of both machine learn-
ing and pattern recognition in tandem, as demonstrated by
previous studies reconstructing satellite chlorophyll-a data
(Wang and Liu, 2013; Chang et al., 2017; Hilborn and Costa,
2018; Park et al., 2020), filling in missing parts of both sea
and land surface temperature data (Alvera-Azcárate et al.,

2009; Zhou et al., 2017) and analyzing sea surface salinity
data (Alvera-Azcárate et al., 2016; Chen et al., 2022), and
Jiang et al. (2022) used DINEOF to reconstruct the XCO2
data of OCO-2 and OCO-3 by fusing the two, effectively im-
proving the spatiotemporal coverage of XCO2 products.

This research aims to accurately and precisely reconstruct
the tropospheric NO2 VCD at a daily time resolution and
a grid-by-grid spatial resolution using OMI for 2007–2022.
With the support of the global daily High Spatial–Temporal
Coverage Merged tropospheric NO2 dataset (HSTCM-NO2),
model validation, spatial distribution analysis, and temporal
change monitoring can be carried out. Also, HSTCM-NO2
can be an ideal tool for improving numerical prediction of air
quality and the AMF, contributing to a better understanding
of typical chemical and dynamic processes in the atmosphere
and future remote sensing retrieval improvements.
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Table 2. Information on the MAX-DOAS sites.

Station Latitude Longitude Range of NO2 observations (molec. cm−2) Time zone Data used

Uccle 50.8° N 4.4° E 0–26× 1015 0 Apr 2011–Jun 2015
OHP 43.9° N 5.7° E 0–7× 1015 0 Jan 2007–Dec 2016
Xianghe 39.8° N 117.0° E 0–59× 1015 UTC+ 8 Apr 2010–Jan 2017

2 Materials and methods

2.1 Tropospheric NO2 products

2.1.1 OMI tropospheric NO2 (OMNO2)

OMI is a UV–Vis charge-coupled device (CCD) spectrome-
ter aboard the Aura satellite, which was launched on 15 July
2004 into a Sun-synchronous orbit with a local Equator-
crossing time of approximately 13:45 local time. OMI cov-
ers a spectrum of 270–500 nm with a spectral resolution be-
tween 0.42 and 0.63 nm and a nominal spatial resolution of
13 km× 24 km at nadir (Boersma et al., 2008; Foret et al.,
2014), providing coverage over 740 wavelength bands along
the satellite track and global coverage via 14 orbits per day.

OMI data are processed and archived at NASA’s Goddard
Earth Sciences Data and Information Services Center (GES
DISC). This work specifically uses the daily L3 global grid-
ded data product that corresponds to the OMNO2 standard
product, and the adopted L3 grid is a 0.25°× 0.25° grid in
latitude and longitude.

2.1.2 GOME-2 tropospheric NO2

GOME-2 is an optical spectrometer aboard the MetOp satel-
lites. MetOp-A was launched on 19 October 2006, MetOp-
B was launched on 17 September 2012, and MetOp-C was
launched on 7 November 2018. GOME-2 senses backscat-
tered and reflected radiance in the UV–Vis part of the spec-
trum from 240 to 790 nm, with a high spectral resolution be-
tween 0.26 and 0.51 nm covering 4096 spectral points from
four detector channels (Fioletov et al., 2013). The spatial
resolution varies from 80 km× 40 km to 40 km× 40 km and
provides daily near-global coverage at the Equator (S. Liu
et al., 2019).

The GOME Data Processor version 4.8 is used for MetOp-
A and MetOp-B, while version 4.9 is used for MetOp-
C. Datasets were resampled at a uniform gridding of
0.25°× 0.25° using the HARP (https://github.com/stcorp/
harp, last access: 12 November 2024) tool.

2.1.3 TROPOMI NO2

TROPOMI was launched on 13 October 2017 aboard the
polar-orbiting Sentinel-5P satellite. It measures solar radia-
tion reflected by and emitted from Earth and provides mea-
surements of atmospheric traces, including NO2, O3, SO2,

HCHO, CH4, and CO, as well as cloud and aerosol proper-
ties. NO2 retrieval is performed using the visible band (400–
496 nm), which has a spectral resolution and sampling of
0.54 and 0.20 nm. The instrument operates in a push-broom
configuration with a swath width of approximately 2600 km
on Earth’s surface. The typical pixel size (near nadir) for NO2
is 7 km× 3.5 km, which was reduced to 5.5 km× 3.5 km in
2019 (Ialongo et al., 2020; Ludewig et al., 2020). This work
specifically uses the level-2 NO2 data products based on ver-
sion 1.4 and an applied quality filter of qa_value > 0.75 (van
Geffen et al., 2019). The TROPOMI data products are also
resampled to a spatial resolution of 0.25°× 0.25° using the
HARP tool.

2.2 Auxiliary data

2.2.1 Land cover type data

The Moderate Resolution Imaging Spectroradiometer
(MODIS) land cover type (MCD12Q1) provides data that
map global land cover at 500 m spatial resolution annually
derived from six different classification schemes. The
maps were created from classifications of spectra-temporal
features derived using the BIOME-Biogeochemical Cycles
approach described by Running (1993).

2.2.2 MAX-DOAS data

MAX-DOAS is a passive-DOAS ground-based remote sens-
ing observation technology using solar scattering as its light
source. MAX-DOAS technology can be used to detect trace
gases in the troposphere and has been widely applied in
related fields. This instrument can observe scattered sun-
light from different perspectives, thus showing high sensi-
tivity to trace gases in the troposphere, specifically using
low-elevation observations as the measurement intensity and
zenith measurements as the reference intensity. The Beer–
Lambert law can be used to determine the total molecu-
lar amount of specific gas categories along the optical path
(subtracting zenith concentrations from non-zenith measure-
ments), which is known as differential slant column con-
centration. The tropospheric vertical column density is in-
verted using a radiative transfer model. This work specif-
ically adopts the QA4ECV NO2 MAX-DOAS reference
datasets, which include 10 sites. The sites are categorized
into three types (suburban, urban, and rural) based on their

Earth Syst. Sci. Data, 16, 5287–5310, 2024 https://doi.org/10.5194/essd-16-5287-2024

https://github.com/stcorp/harp
https://github.com/stcorp/harp


K. Qin et al.: High Spatial-Temporal Coverage Merged tropospheric NO2 5291

location, and three sites of different types are used here. The
information on the three sites is listed in Table 2.

2.2.3 Reanalysis meteorological data

Reanalysis combines model data with observations from
across the world into a globally complete and consistent
dataset using a model of the atmosphere based on the laws
of physics and chemistry. For this reason, this work uses the
fifth-generation ECMWF reanalysis (ERA5) for 12 specific
meteorological parameters as given in Table 1. The dataset
used has an hourly temporal resolution and a 0.25°× 0.25°
spatial resolution. The meteorological products in this work
are used at the following pressure levels: 100, 200, 500,
700, 850, 925, and 1000 hPa. The actual weightings used in
this work are computed using principal component analysis
(PCA) and rely nearly fully on the data from 850 hPa and
below at roughly equal weights.

This study also uses the fourth-generation ECMWF re-
analysis (EAC4), specifically its modeled NO2 column val-
ues, which are used as a means of comparison against the
NO2 fields generated in this work. EAC4 data have a spatial
resolution of 0.25°× 0.25° and a temporal resolution of 3 h.
In this work, a vertical column density of tropospheric NO2
is derived from EAC4 and is used for comparison.

2.3 XGBoost (eXtreme Gradient Boosting) algorithm

A gradient-boosting framework is used by the decision-tree-
based ensemble machine learning approach known as XG-
Boost (Chen and Guestrin, 2016). This method employs a
more regularized model formalization than other techniques
(Cisty and Soldanova, 2018; Zhang et al., 2018), with greater
control against overfitting compared with gradient-boosting
decision tree (GBDT) approaches (Dong et al., 2022). Simi-
larly to the random forest algorithm, XGBoost needs its hy-
perparameters tuned (Kapoor and Perrone, 2021). It has a
more intricate structure and adds regularization components
to the loss function to prevent overfitting so that it can han-
dle complicated data better. Therefore, XGBoost is a better
option for working with vast volumes of data and multidi-
mensional affecting factors like NO2 gap-filling. Addition-
ally, XGBoost has been used to estimate pollutants, and its
results outperform those of certain other statistical and ma-
chine learning methods (Reid et al., 2015; Just et al., 2018;
Zhai and Chen, 2018; Fan et al., 2020). Table 1 shows the
data used in this research, which are input into the machine
learning model.

2.4 SHAP (SHapley Additive exPlanation) values

SHAP values quantitatively represent the conditional ex-
pected value function of the machine learning model, im-
plying the average contribution of a feature to a prediction
(Lloyd Shapley, 1952). The use of a blackbox model, such as

XGBoost in this work, necessitates an explanatory model, in
contrast to interpretable algorithms (i.e., Cohen et al., 2011).
According to each feature’s marginal contribution, SHAP
distributes the overall gain in terms of both negative and pos-
itive contributions. In this work, SHAP values are used to
quantify the importance of features, as shown in Fig. 2.

2.5 DINEOF

DINEOF is used in this work to reconstruct the missing
points in the spatiotemporal field of NO2. This method relies
on an empirical orthogonal function (EOF) decomposition in
space and a principal component (PC) decomposition in time
that identifies spatial–temporal domains of maximal varia-
tion following Cohen (2014). The method allows the assign-
ment of a prediction under conditions in time and/or space
that are missing observational data. By using the weighted
EOFs and PCs in an iterative manner, missing data points can
be re-synthesized based on a weighting of the various under-
lying orthogonal basis functions. The number of iterations
which minimize the cross-validation error is used to obtain
the best-reconstructed data. For a more detailed description
of the overall approach, see Beckers and Rixen (2003) and
Alvera-Azcárate et al. (2009). In this work, the number of
data filled using this approach range from 27 % to 35 % on a
year-by-year basis, as given in Table 3.

2.6 Validation strategy

In order to analyze the performance of the reconstructed
dataset, this work not only uses cross-validation based on
the original data themselves but also refers to the obser-
vations from TROPOMI, MAX-DOAS, and the EAC4 re-
analysis product mentioned above. The root mean square er-
ror (RMSE), Pearson correlation coefficient (R), normalized
mean bias (NMB), and mean absolute error (MAE) are all
used in the validation process.

Also, as an important and innovative approach, EOF de-
composition is performed on the three-dimensional observed
and HSTCM-NO2 fields. These values are compared to en-
sure that the maximum changes in the spatial and temporal
signals are consistent with the original observations. EOF is
an exploratory technique for multivariate data, which is in
essence an eigenvalue problem aiming at explaining and in-
terpreting the variability in the data. Till now, EOF has been
introduced into data analysis of satellite-based remote sens-
ing to estimate the spatiotemporal distribution characteristics
of pollutants such as HCHO (Kim et al., 2014), CO (Baek
and Kim, 2011), aerosols (Cohen et al., 2017), and NO2 (Li
et al., 2023).

2.7 Method selection

The goal of this work is to use all available day-by-day and
pixel-by-pixel NO2 column data from both OMI and GOME-
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Table 3. Reconstruction results of the different time lengths of DINEOF.

Time length 1 month 3 months 6 months 1 year 3 years

Start time 1 Jan 2008 1 Jan 2008 1 Jan 2008 1 Jan 2008 1 Jan 2008
End time 31 Jan 2008 31 Mar 2008 30 Jun 2008 31 Dec 2008 31 Dec 2010
Image number 31 91 182 366 1090
Missing rate 34.2 % 27.7 % 29.1 % 29.3 % 32.0 %
Mean value (× 1015) 0.60 0.54 0.54 0.56 0.58
Standard deviation (× 1015) 1.57 1.35 1.15 1.12 1.13
Iterations made 112 50 16 12 12
Convergence achieved 10.0× 10−4 10.0× 10−4 9.8× 10−4 8.61× 10−3 9.9× 10−4

2 in tandem to reconstruct a consistent global NO2 column
product with the highest possible coverage. Machine learn-
ing used in this work can only predict OMNO2 data, which
also have GOME-2 data at corresponding positions in space
and time. For this reason, this work introduces DINEOF to
reconstruct data in locations where both OMI and GOME-
2 have no values but where data exist at other times or in
nearby locations in space.

Since DINEOF and machine learning have not previously
been used in tandem for this type of issue, a critical compo-
nent of the methodology is to quantify the impact of using the
two approaches individually, in tandem, and, if in tandem, in
what order. To first determine which sets of methods are best
suited for this work, a subset of data from 2007 is selected.
Furthermore, due to the issue of the row anomaly, a second
comparison dataset from 2013 is used as a mask. In this way,
data from 2007 which are masked by data from 2013 will
be separated for validation, and the missing data will be the
major difference assuming that the changes in the climatol-
ogy are not significant. Therefore, the following methods are
applied, as shown in Fig. 1:

I. First, XGBoost is used to predict OMNO2 data based
on GOME-2 data. Subsequently, DINEOF is applied to
fill the remaining gaps.

II. DINEOF is first used to fill the gaps in GOME-2 data.
This is then followed by XGBoost prediction based on
the reconstructed GOME-2 dataset.

III. DINEOF is used solely to fill in gaps in OMNO2.

The reconstructed dataset is evaluated based on compari-
son between the masked data from 2007 and the results. Ad-
ditionally, in order to verify whether and how the absence of
GOME-2 values affects the prediction accuracy, further par-
titioning of the dataset based on the presence or absence of
GOME-2 values is performed. All the results are given in
Fig. 1, where the row is the method and the column is the
amount of GOME-2 data used.

As shown in Fig. 1, the complete or partial datasets recon-
structed by Method (I) all have a maximum R value and min-
imum RMSE and NMB in the same scenario. Meanwhile, by

comparing Column 2 and Column 3, it is obvious that the
presence of GOME-2 observations can greatly improve the
accuracy of the reconstruction and have an impact on the fit-
ted slopes (especially in the cases of Methods I and II). From
Row 3, it can be seen that DINEOF has universality but does
not have an outstanding performance. Therefore, it is only
necessary to use machine learning for prediction in positions
with values obtained from GOME-2 and DINEOF for filling
in positions that do not contain GOME-2 data. In conclusion,
in order to obtain optimal results, Method (I) will be chosen
as the reconstruction scheme in this work, which is consis-
tent with the idea that using the highest amount of actual ob-
servational data possible best supports the machine learning
approach.

3 Results

3.1 Reconstruction process and model evaluation

3.1.1 Quantifying the importance of individual features

The results of the SHAP value and its statistics are given in
Fig. 2 based on global training data from February 2019 as
an example.

The 20 features with the highest contributions are pro-
vided. Data from GOME-2_NO2 have both the highest over-
all mean contribution and the largest absolute contribution
(up to 1.8), which are larger than the absolute values of all
other contributing factors and the only significant source in
terms of positive contribution (greater than 0.6). This result is
consistent with the fact that GOME-2_NO2 is the base obser-
vation upon which machine learning acts. The second most
significant driving feature is the surface pressure, which has
both the second highest mean and the second largest absolute
contribution (down to −1.5) of any factor. This is consistent
with the fact that human settlements tend to be at lower eleva-
tions in general and that changes in pressure tend to accom-
pany changes in the rates of transport and chemical activity
of NO2 in situ (S. Wang et al., 2020; Li et al., 2023). Below
this there are some interesting patterns in which some species
contribute more to the mean SHAP value but not necessarily
to the extreme SHAP value, meaning that the global and lo-
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Figure 1. Cross-validation of the three methods between the reconstructed data and masked OMNO2 in 2007.

cal contribution factors are different in different locations. As
expected, latitude, longitude, day of year, and downwelling
UV radiation are all relatively important in different areas,
which is consistent with the highly heterogenous nature of
NO2 emissions, different driving forces which impact the ra-
tio of NO to NO2 emissions within NOx , issues of geospa-
tial change, and processing once NO2 is in the atmosphere.
These factors are sufficient for capturing the presence of pol-
lution sources within specific pixels, and therefore it is nec-
essary to not only be able to predict the long-term signal but
also to account for short-term changes of a sudden nature.

3.1.2 Separation of models over ocean and land

Globally, the distribution of NO2 observed by satellites is not
balanced, due to the fact that NO2 has a relatively short life-
time and the vast majority of its emissions occur over land in
and around areas of anthropogenic disturbance. Furthermore,
if major shipping lanes and areas of significant downwind
transport are excluded, NO2 generally has lower values over
the sea compared to land. On top of this, the surface absorp-
tion profile over the oceans is different from land, which may
further contribute to differences in the column interpretation.
This section quantitatively explores the impact of separating
those pixels over the sea from those over land in terms of
training the machine learning model and works to quantify
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Figure 2. Feature importance ranking (a) and scatterplot of feature density for each parameter of XGBoost (b), represented as a bee swarm.
Specifically, each row represents a feature, and the order of arrangement is determined by the importance of the feature calculated in the
previous step. The horizontal coordinate is the SHAP value, where the sign of the value indicates the direction of the contribution of that
feature. Each point in each row represents a single sample, and the color of the point indicates the magnitude of the feature value (high in red
and low in blue).

any reduction in the overall error rate of the models between
the separated and unified approaches.

The effects of separating land from the ocean models are
demonstrated clearly over April 2019 in Fig. 3. First, the high
values of NO2 observed over the western Atlantic Ocean
found in all the data models are no longer observed in the
land and separate ocean data models, which is consistent with
TROPOMI NO2 observations. Over western Europe, the high
values off Scotland as confirmed by TROPOMI still remain
in the land and separate ocean data model cases, while the
unusually high values in all the data model cases are reduced
to more reasonable values compared to the observations from
TROPOMI over the areas between Spain and France and be-
tween the UK and France. Even with the separation, there
are still erroneously high values between the UK and Ireland,
and in the eastern Atlantic these are not resolved. The third
row shows the distribution of NO2 concentrations in western
Asia. In the TROPOMI observations, high values are only
observed on the southwestern side of the Arabian Peninsula
over land and mostly on land over northern Türkiye, except
for the Bosporus Strait, which is consistent with what is un-
derstood and what the separate land and ocean data models
are able to capture, while all the data models misrepresent
these values as being higher than the observations suggest.
Overall, there is a considerable improvement observed over
the near-sea areas in terms of retaining enhancement, where

this is justified, and reducing enhancement, where this is not
justified, by using the separately trained models. However,
there are still inconsistencies which are not resolved.

3.1.3 Evaluation of machine learning

After applying XGBoost and the prior knowledge mentioned
above, Fig. 4 demonstrates the reconstructed results and
compares them with the original data on a pixel-by-pixel ba-
sis in 2007.

Of the results predicted by XGBoost, the MAE and RMSE
of the results located over water are slightly lower than those
located over land. The predicted results over East Asia, Eu-
rope, and eastern North America show a higher correlation
with the observations, indicating that the variability is cap-
tured better over regions where the vertical column density of
NO2 is larger. For these reasons, the machine learning model
is trained separately over both land and the ocean, with train-
ing done on a month-by-month basis. The results of this fit-
ting are given in Fig. 5, demonstrating the time series of the
statistics from 2013 to 2015.

As demonstrated, the RMSE and MAE of the ocean model
are both always higher than and less temporally variable than
those of the land model. Also, unlike the land model, which
shows improved performance during winter, the ocean model
does not experience this seasonal improvement. This indi-
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Figure 3. Prediction results with and without prior knowledge versus TROPOMI observations over three regions (eastern North America,
Europe, and western Asia).

Figure 4. Accuracy validation of XGBoost prediction results (MAE, RMSE, and R2).
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Figure 5. Land and ocean model quality of XGBoost from 2013 to 2015.

cates that these errors scale in terms of both the magnitude,
which is higher over land, and the response to the retrieval al-
gorithms themselves, which have different amounts of error
over bright and dark surfaces. Additionally, the abundance of
surface-based measurements over land initially enhanced the
accuracy of these retrievals. The correlation over time of the
land model is slightly higher than that of the ocean model, in-
dicating that the data predicted by the land model may have a
lower uncertainty that is possibly due to better a priori data, a
better-defined AMF over land, or better overall retrieval over
land as compared with water (Richter et al., 2011; Streets
et al., 2013; Lamsal et al., 2021).

The quality of the land model fit shows a strong decrease
over a period of 1 to 3 months every year, experiencing
both interannual and intra-annual variations, while the ocean

model shows a weaker decrease in the fit for a few months
in two of the years and no change in the other years. This
indicates that there must be a few different forces acting on
the fits, including some that are clearly seasonal in nature
with only a small variation (air temperature), while others
are more variable (UV radiation or absorption aerosol opti-
cal depth (AAOD), which is consistent with the results of
S. Wang et al. (2020) and Li et al. (2023). On the one hand,
the UV intensity is generally lowest in December and Jan-
uary, leading to an increase in the residence time of NO2 in
the atmosphere, and is generally highest in May and June,
leading to a decrease in the residence time. However, the
UV radiation itself is also modified by the effects of both
clouds and absorbing aerosols. Cloud coverage tends to af-
fect a larger percentage of the ocean surface compared to
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land. However, absorbing aerosols have a more significant
impact over land, which contributes to the findings men-
tioned earlier. The effects of temperature tend to peak dif-
ferently from those of UV radiation, but these effects tend
to be climatologically more similar from year to year, given
that the years analyzed do not contain any El Niño or La Niña
types of patterns. In addition to this, the vertical column den-
sity of NO2 itself also changes from month to month, with
the peak values over land occurring in December and January
and the magnitudes of the peak and peak month varying from
year to year. This allows for a greater amount of differentia-
tion between the heavily polluted and cleaner regions during
this time, especially over land. As discussed previously, such
high variability may lead to additional machine learning fit-
ting issues. On the other hand, there is generally less cloud
during winter, meaning more observations on a day-by-day
basis and more atmospheric stability in winter and leading
to less vertical and long-range transport of pollutants away
from their source regions. The combination of all of these
things enables the model to make more accurate predictions.

3.1.4 Reconstruction process and accuracy analysis of
DINEOF

The EOF separates the data into their primary basis func-
tions, of which there are spatial and temporal components.
To test the efficacy of the EOF procedure as a function of
the time length of the data used, this work has run the proce-
dure over different time periods from a minimum of 1 month
of data to a maximum of 3 years of data. The annual data,
as shown in Table 3, yield the lowest overall standard devi-
ation. This is consistent with the above results, which show
that there is a clear annual peak in the NO2 columns occur-
ring each winter and indicate that this amount of variability
drives the model more than the smaller year-to-year changes
in the peak or overall characteristics of NO2. This result is
consistent with a year (intra-annual variability) that tends to
be smaller than year-to-year variability, unless a very long
time series is considered (minimum of 20–30 years) (Chowd-
hury, 2022) and a known extreme such as El Niño or La Niña
is captured. (Deng et al., 2021). Based on the timing chosen
and the results below, this work will rely on applying the DI-
NEOF reconstruction of the dataset on a year-by-year basis.

Table 4 shows the DINEOF results for each year, with
most years achieving convergence after 12 to 29 iterations.
The standard deviation is shown to be lowest when analyz-
ing data one year at a time. Interestingly, the year 2009 saw
the most data loss, with more than one-third of the total data
(34.3 %) lost. This indicates that both the geospatial nature
of the data and the range of column loading values are im-
portant factors, in addition to the absolute amount of data
reconstructed.

3.1.5 Overall analysis

The performance of reconstruction can be tested by simulat-
ing the known RA issue, wherein OMI started to lose ac-
cess to specific camera angles on a swath-by-swath basis
starting in 2007, leading to the appearance of missing lines
of data. Since the data are otherwise in good order, a well-
conditioned filling method should be able to produce data to
cover these well-known and geometrically simple gaps. Five
regions (East Asia, Europe, eastern North America, southern
Africa, and South Asia) are used to demonstrate the effec-
tiveness of the procedure in filling these gaps on different
days in 2007.

As shown in Fig. 6, the first column shows the original
OMNO2, and the second column shows the data distribu-
tion after simulating the effect of the RA. Machine learn-
ing reconstructs the image of GOME-2 at positions with val-
ues, keeps the original observations, and only reconstructs
the missing parts. After reconstruction by XGBoost, the im-
age elements that are still missing are reconstructed using
DINEOF to obtain a dataset with more than 99 % coverage.
Comparing the reconstructed data with the original data, it
can be found that the reconstructed results are basically con-
sistent with the distribution of the original OMNO2, with
the following two exceptions: some very high pixels ob-
served in the EU and USA have been removed and replaced
with lower-valued pixels in the reconstruction, while some
moderate- and low-valued pixels in China and India have
been replaced with high-valued pixels in the reconstruction.
In general, the overall shapes are reasonably similar, and the
transition from high to low values seems to make sense based
on the values from the original OMNO2.

3.1.6 Coverage statistics

The spatial coverage of the original OMNO2 declined from
about 50 % in 2007 to 35 %–40 % after 2009 due to the RA
phenomenon and cloud occlusion, and it improved slightly in
late 2012 (while not recovering to its previous levels). The re-
constructed data however have a daily coverage of over 90 %.
As shown in Fig. 7a, the original data have more gaps when
the cloud volume is higher and fewer gaps when the cloud
volume is smaller. The reconstructed data also show such
a trend, although with a much smaller difference between
the high-cloud and low-cloud periods of time, indicating that
some fraction of the cloud-covered data can be reconstructed
successfully, while some other amount has so much data lost
that even the technique used in this work cannot fully recon-
struct them.

Figure 7b shows the comparison between the original
OMNO2 and HSTCM-NO2 in terms of spatial distribution.
OMNO2 in the eastern part of North America, the northwest-
ern part of South America, Europe, and the southeastern part
of Asia is obviously missing, although after reconstruction
all the data in the above locations are reconstructed. The reli-
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Table 4. Statistics of the DINEOF reconstruction results by year.

Year Mean value (× 1015) Standard deviation (× 1015) Iterations made Convergence achieved Missing rate (%)

2007 0.56 1.18 12 9.2× 10−04 31.1
2008 0.55 1.12 12 8.5× 10−04 29.3
2009 0.58 1.07 16 9.7× 10−04 34.3
2010 0.59 1.17 16 9.4× 10−04 32.5
2011 0.59 1.21 14 8.8× 10−04 33.1
2012 0.59 1.21 13 9.4× 10−04 30.7
2013 0.59 1.16 12 9.1× 10−04 23.0
2014 0.58 1.05 14 9.3× 10−04 23.5
2015 0.58 0.98 22 9.6× 10−04 22.6
2016 0.60 0.91 18 9.9× 10−04 23.9
2017 0.59 0.93 22 9.3× 10−04 32.2
2018 0.58 0.92 29 9.9× 10−04 23.2
2019 0.59 0.59 25 9.9× 10−04 21.2
2020 0.58 0.86 42 9.8× 10−04 21.4
2021 0.64 0.93 64 9.9× 10−04 22.9
2022 0.68 0.88 23 9.6× 10−04 21.3

ability of their HSTCM-NO2 is verified over such land-based
and near-land areas. There are a few exceptions, such as per-
petually cloud-covered areas in the North Pacific and along
the Equator, but in these cases there is likely no possible solu-
tion since they are covered for days in a row over huge spatial
areas. Globally, on average, the 39.5 % coverage of OMNO2
increases to a 99.1 % coverage of HSTCM-NO2.

3.2 Multisource validation of HSTCM-NO2

3.2.1 Comparison with MAX-DOAS data

The original OMNO2 and HSTCM-NO2 were validated
against MAX-DOAS, and the following results were ob-
tained. The three sites used in this work are Xianghe, Uccle
and Observatoire de Haute-Provence (OHP), which are clas-
sified separately as suburban, urban, and rural.

Comparisons between the various different products and
MAX-DOAS are shown in Fig. 8. Due to the small amount
of data, there is a missing box which corresponds to a re-
sult that did not pass the p test. In all the cases, there is a
sufficient number of data points to consider the fits under all-
data and extreme-event-filtered-data conditions. At the sites
with very high NO2 column loading (Xianghe) and moder-
ately high NO2 column loading (Uccle), the results using
both XGBoost and DINEOF together are still less good than
those of the original OMI data, regardless of whether the
data were filtered or unfiltered. In Xianghe this difference is
even larger than in Uccle, confirming that the approaches em-
ployed here do not work very well when a substantial number
of data are located at or above 6× 1015 molec.cm−2. How-
ever, it is clear even at these high-elevation sites that using
both XGBoost and DINEOF together yields a final product
that is more representative of OMI than when using only one

method independently. In the case of Xianghe, using all data
with XGBoost alone or using filtered data with either XG-
Boost or DINEOF alone yields similar results that are worse
than when applying both XGBoost and DINEOF in tandem.
At Uccle, applying XGBoost on its own always yields a re-
sult with a much higher R coefficient and a lower RMSE
coefficient than when DINEOF is applied on its own, which
is consistent across both filtered and unfiltered data. Interest-
ingly, under the relatively cleaner conditions found at OHP,
the results from applying both XGBoost and DINEOF to-
gether yield a result that is better than the result of OMI in
terms of RMSE and similar in terms of R. The application of
either XGBoost or DINEOF independently at this location
yields results that are quite good when compared with OMI.
This set of results makes it clear that, under cleaner condi-
tions, the use of one or both of XGBoost and/or DINEOF
yields benefits and can be considered trustworthy, while their
combination yields a large amount of additional data and still
works well. Clearly the benefits of the gap-filling and predic-
tion are consistent with the observations under these condi-
tions, allowing the conclusions observed above under differ-
ent polluted conditions to be confirmed further.

3.2.2 Comparison with TROPOMI

Compared with OMI, TROPOMI has a higher spatial reso-
lution and a wider swath angle, allowing improved spatial
observation of tropospheric NO2, with the caveat that higher
resolution may mean that some pixels are cloud-covered,
whereas at lower resolution this may not be the case. For
these reasons, TROPOMI NO2 is used as an external data
source to allow comparison with the various products and to
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Figure 6. Results of stepwise reconstruction of masked data over five regions (East Asia, Europe, eastern North America, southern Africa,
and South Asia).

serve as a means of ensuring that the derived products are
reasonable.

The spatial distribution on 4 specific days in 2019 and the
annual average coverage over East Asia, South Asia, Europe,

and North America are used to compare OMNO2, HSTCM-
NO2, and TROPOMI NO2, as shown in Fig. 9.

As shown in Fig. 9a, the coastal areas of China are severely
affected by the RA, leading to a significant portion of the data
missing in OMNO2. The reconstructed results of HSTCM-

https://doi.org/10.5194/essd-16-5287-2024 Earth Syst. Sci. Data, 16, 5287–5310, 2024



5300 K. Qin et al.: High Spatial-Temporal Coverage Merged tropospheric NO2

Figure 7. Coverage statistics of HSTCM-NO2 from 2007 to 2022. Daily coverage (0.3 is used as a cutoff) is shown in panel (a), and the
number of days with data for each pixel is shown in panel (b).

NO2 are similar to those of TROPOMI on average and in par-
ticular in Hebei, Henan, Shanxi, Shaanxi, parts of industrial
Inner Mongolia, the Pearl River Delta, and even the transport
corridors between China and South Korea in the East China
Sea. However, there are some regions in Shandong, south-
ern Jiangsu, Wuhan, and Shanghai where the average char-
acteristics may be acceptable but where high and low values
are too smoothed over and extremes are not well predicted
by HSTCM-NO2 as compared with TROPOMI. Due to the
effects of cloud cover, both OMNO2 and TROPOMI show
no data over the megacities of Chongqing and Chengdu,
while HSTCM-NO2 effectively solves this problem in terms
of large-scale spatial averaging, with a coverage of almost
100 %. However, the fine-scale centers of the two cities are
not clear in this case.

In Fig. 9b, again due to the RA, OMNO2 lacks data over
New Delhi, Lahore, and other cities in central and west-
ern India. The reconstructed HSTCM-NO2 products fill this
part of the data well, and the NO2 distribution shown in
HSTCM-NO2 is similar to that of TROPOMI, with the ma-

jor issue being that heavily polluted areas are more diffuse
than in TROPOMI. In particular, the areas of northeastern
India which are known to have seasonal fires at this time
of the year are reflected well in HSTCM-NO2 but not in
TROPOMI, possibly indicating that the information from the
morning provided by GOME-2 identifies information which
is missed by TROPOMI in the afternoon. The special geo-
graphical environment of the Qinghai–Tibetan Plateau has
led to both high cloud cover and significant surface reflec-
tion in the region. As a result, the coverage of the OMI and
TROPOMI products in the Qinghai–Tibetan Plateau region
is relatively low, and HSTCM-NO2 is able to provide some
amount of geospatial information, likely again from GOME-
2, while filling the climatological gap.

As shown in Fig. 9c, due to the influence of the marine cli-
mate, high cloud coverage often occurs in the European re-
gion, which causes significant interference in satellite obser-
vations. The coverage of both the OMNO2 and TROPOMI
products in the European region is relatively low on this
day. HSTCM-NO2 has effectively reconstructed missing data
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Figure 8. Scatterplots of comparison between MAX-DOAS observations (Xianghe, Uccle, and OHP) and HSTCM-NO2. The figures in the
left panels (a, c, and e) all use all observations of MAX-DOAS, while those in the right panels (b, d, and f) are filtered-out extreme cases.
The boxes in the upper left corner summarize the statistical comparisons, while the boxes to the right of each subfigure represent the statistics
of each individual reconstruction step.
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Figure 9. Distribution and coverage statistics of OMI, HSTCM-NO2, and TROPOMI over East Asia (a), South Asia (b), Europe (c), and
North America (d) in 2019.

in the UK from Scotland through London, most of central
France, and even into Algeria and Tunisia while greatly in-
creasing data coverage throughout Europe as a whole.

As shown in Fig. 9d, missing data in areas such as the
western coast of North America, Texas, and Oklahoma have
been reconstructed well. Due to the impact of the RA, the
spatial coverage of OMNO2 is lower than that of TROPOMI,
and the coverage of both is not ideal in high-latitude and
high-altitude regions. Through the comparison of the four
regions, it can be seen that HSTCM-NO2 solves this prob-
lem and has high consistency with TROPOMI NO2. It works
particularly well along the western coast from San Fran-
cisco up through Vancouver, energy-producing areas from
Texas through New Mexico, and in general around urban and
energy-producing areas along the eastern edge of the Rock-
ies.

As shown in Fig. 10, each day and grid which con-
tain a value of both HSTCM-NO2 and TROPOMI NO2
are compared for 2019. The comparison consists of a total
of 171 297 320 pixels and shows a reasonable fit globally,
with an RMSE of 0.64, R of 0.75, and NMB of 0.09. As
pointed out elsewhere in this work, at values higher than
6× 1015 molec.cm−2 and especially at values higher than
20× 1015 molec.cm−2, there are some small differences in
the overall shape.

Figure 10. Comparison between global HSTCM-NO2 and
TROPOMI data in 2019.

3.2.3 Comparison with EAC4 data

Global results as well as results over three regions with a
sufficient number of pixels with high NO2 vertical column
densities (East Asia, North America, and Europe) were se-
lected to compare the reconstruction results with EAC4 data
for February 2008. The reconstructed data at a global scale
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Figure 11. Global and regional (East Asia, Europe, and North America) comparisons between HSTCM-NO2 and EAC4 data.

contain more than 2.6 million points and have an RMSE of
1.02, R of 0.77, and NMB of −0.25. Of the three regions,
East Asia has the validation results with the highest R and
the lowest NMB, followed by North America and Europe, as
shown in Fig. 11.

3.3 Results of EOF analysis

In order to verify the performance of HSTCM-NO2, the tem-
poral and spatial patterns are expected to match the observed
variability. Specifically, analysis was done over the time pe-
riod from 2019 to 2021. The first three modes contribute
7.6 %, 2.2 %, and 2.0 % of the total original OMNO2, while
they contribute 26.1 %, 4.0 %, and 3.2 % for HSTCM-NO2.
This indicates that a spatial and temporal comparison us-
ing the first mode is sufficient to demonstrate the ability of
HSTCM-NO2 to reproduce OMNO2, given the fact that they
both contribute more than the approximated global back-
ground 5 % of the error associated with the NO2 retrieval it-
self. The contribution of HSTCM-NO2’s first mode to the to-
tal variance indicates that the reconstructed data are missing
many finer modes of variability. However, as demonstrated

below, the good spatial and temporal match shows that it is
able to reproduce the signal reasonably well in actuality, with
the major sources of this difference being regions north of
40° N and south of 40° S, all of which tend to be relatively
clean and owe the majority of their variability to noise in the
retrievals themselves, which is not explicitly considered by
the methods employed herein.

Figure 12 shows the spatial and temporal patterns after
EOF variance maximization is performed on both OMNO2
and HSTCM-NO2. First and foremost, the EOFs represent
a few general patterns, seeming to capture a combination of
biomass burning (across Africa, South America, and Aus-
tralia), urbanization (across southern Africa, northeastern
China, and Japan), energy-producing regions in the south-
ern USA and northern Mexico, and transport regions from
the Mediterranean Sea to the Indian Ocean. This includes
the large areas of pollution transported downwind over the
various oceans and the uncertainty associated with clouds,
sea salt, and low signal strengths near where the Southern
Ocean intrudes into the cleaner areas of the Indian and Pacific
oceans, respectively. The overall patterns look reasonable in
both space and time.
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Figure 12. Spatial and temporal patterns after EOF variance maximization is performed on both OMNO2 and HSTCM-NO2. EOF1 is given
for OMNO2 positive (a), OMNO2 negative (b), HSTCM-NO2 positive (c), and HSTCM-NO2 negative (d). The temporal mean values of
OMNO2 over the EOF1 positive region and EOF1 negative region are given in panels (e) and (f), respectively, while PC1 is given in panel (g),
where red and blue represent the peaks of the positive and negative factors, respectively. Panels (h)–(j) are similar to panels (e)–(g), except
when applied to HSTCM-NO2.

A more detailed analysis clearly demonstrates that three
such examples are consistently represented between the orig-
inal OMNO2 and HSTCM-NO2. First, the negative mode of
EOF1 representing biomass burning over Congo and its sub-
sequent transport over the South Atlantic Ocean and the pos-
itive mode of EOF1 representing biomass burning and urban-
ization over the respective parts of southern Africa are inter-
polated well and are line-filled by the respective negative and
positive modes of the HSTCM-NO2 EOF1 (Du et al., 2020).
Second, the wildfires off southwestern Australia and the sub-
sequent transport into the Southern Ocean are clearly shown
by the negative mode of EOF1, while the negative mode of
EOF1 of HSTCM-NO2 expands these observations into the
Indian Ocean and all the way to New Zealand while narrow-
ing the band and reducing the error due to the mixing from
the Southern Ocean, which is consistent with the observa-
tions (Wenig et al., 2003). Third, the positive region of EOF1
loosely picks up the transported wave trains from East Asia
to North America, while HSTCM-NO2 is able to clearly pick
up the entire wave train that clearly originates in industrial
regions of Japan and spreads some of the time to Luzon and
other times to the USA (Wang et al., 2023). In terms of time,
it is clear that the negative EOF1 regions in both plots are
well represented by the positive PC1 values. All three peaks
demonstrated are clearly observed in the average values of
NO2 over the negative EOF1 regions. There are four large
peaks and two small peaks represented in the negative PC1
values, all of which are picked up well in the average values

of NO2 over the positive EOF1 regions. All of the peak times
are represented in the time series using different colors.

While the distribution of the HSTCM-NO2 EOF is more
smeared spatially than the OMNO2 product in some regions,
this is not unexpected. In some cases, this makes the story
consistent by filling in missing data, especially in cases of
long-range-transported plumes which are otherwise missing
and where the known variation is observed over Henan and
Shandong. However, some of the smearing is also noise,
as identified over the low-NO2-concentration regions near
where the Indian and Pacific oceans intersect with the South-
ern Ocean.

This analysis shows that the HSTCM-NO2 product does a
decent job at representing the temporal and spatial extremes
in the original OMNO2 dataset. While this test is not fre-
quently done in the community (Cohen, 2014; Z. Liu et al.,
2024), this clearly demonstrates in an objective manner a new
and additional way of testing the goodness of the final prod-
uct, in that it requires the product to match not only observed
mean conditions in space and time but also observed extreme
conditions. The fact that there is spatial smearing in some as-
pects is good, in that this fills in missing long-range transport
events that are missed between swaths or are due to clouds
in situ. In other aspects, this may extend the actual signals
too far in space. For these reasons, care must be taken when
applying the results. We hope that this section will set a gold
standard by which future big-data products are more care-
fully compared with and validated against underlying data.
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4 Data availability

The global daily High Spatial–Temporal Coverage Merged
tropospheric NO2 dataset (HSTCM-NO2) from 2007 to 2022
based on OMI and GOME-2 can be accessed directly at https:
//doi.org/10.5281/zenodo.10968462 (Qin et al., 2024).

5 Conclusions and discussion

In order to improve the spatial coverage of OMNO2 due to
data loss caused by cloud occlusion, the row anomaly, high
retrieval noise, and other issues, this study proposes an effec-
tive method of reconstruction consisting of machine learning
(XGBoost) and gap-filling (DINEOF) to produce a new re-
constructed product (HSTCM-NO2).

First, the process of applying XGBoost first, followed by
DINEOF, yields the highest correlation and the lowest RMSE
between OMNO2 and HSTCM-NO2. One reason for this is
that XGBoost requires the presence of GOME-2 data, allow-
ing for additional observational support in the final recon-
structed product. This is consistent with the fact that GOME-
2 has a very high SHAP value. There are a few qualifiers,
however: first, cases without prior knowledge perform less
well than cases with prior knowledge, and second, locations
with a lower column loading of OMNO2 work better than
locations with a higher column loading of OMNO2. Since
the majority of the global data points are biased towards
lower (i.e., non-polluted) areas, comparison with additional
datasets and use of different approaches are essential.

Second, external observations from MAX-DOAS and
TROPOMI together with reanalysis data from EAC4 are used
to validate HSTCM-NO2 on a column-by-column, large-area
basis. HSTCM-NO2 shows good correlations with all of the
observations above, especially when the VCDs are below
6× 1015 molec.cm−2. Specific issues in terms of spatial dis-
tribution mismatches and issues reproducing very high VCDs
are explained in detail in the paper. There are a few excep-
tions to this, specifically over Wuhan and the Yangtze River
from Wuhan up to Nanjing, and specific urban parts of India
(such as New Delhi) are reasonably well represented.

Third, additional analysis to verify the goodness of
HSTCM-NO2 in terms of being able to capture extreme
events observed in the OMNO2 data is performed. In
this case, variance maximization is used to decompose the
OMNO2 data into standing spatial (EOF) and temporal (PC)
signals. A similar analysis is performed on the HSTCM-
NO2 data, with the resulting signals compared. It is shown
that, in addition to generally matching in terms of space and
time, data after gap-filling observed by HSTCM-NO2, es-
pecially downwind from high-pollution areas over various
oceans (South Atlantic, Indian, South Pacific, and North Pa-
cific), are improved. Interestingly, some of the strongest sig-
nals, including biomass burning from central and northern
Africa (including in Algeria and including pixels over a value

of 6× 1015 molec.cm−2) are also well represented in terms
of the magnitude and spatial and temporal extremes.

This combination of findings indicates that the new
HSTCM-NO2 product works well in terms of representing
both grid-by-grid and climatological mean conditions as well
as extreme events, with the caveats that first there is some a
priori knowledge and second that the original OMNO2 data
have a VCD below 6× 1015 molec.cm−2 (i.e., are not heav-
ily polluted). In the future, related work will focus on how
to enhance the application of datasets in polluted scenarios.
Separating low and high values for training might be an ef-
fective approach, since it is known that there are different
retrieval assumptions and impacts that occur under polluted
and non-polluted conditions (Boersma et al., 2007; Chimot
et al., 2016; Lorente et al., 2018; M. Liu et al., 2019; Zhou
et al., 2024). Presently the criteria for demarcation and the
sets of impacting variables are still under discussion by the
community and are not yet agreed upon. Whether there are
better methods or combinations of methods that can be ap-
plied across the full range of scenarios at the same time is
also something that needs to be considered.
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