Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3547-2023
https://doi.org/10.5194/essd-15-3547-2023
Data description paper
 | 
09 Aug 2023
Data description paper |  | 09 Aug 2023

China Building Rooftop Area: the first multi-annual (2016–2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from Sentinel-2 imagery

Zeping Liu, Hong Tang, Lin Feng, and Siqing Lyu

Related authors

Deep learning of the aftershock hysteresis effect based on the elastic dislocation theory
Jin Chen, Hong Tang, and Wenkai Chen
Nat. Hazards Earth Syst. Sci., 20, 3117–3134, https://doi.org/10.5194/nhess-20-3117-2020,https://doi.org/10.5194/nhess-20-3117-2020, 2020
Short summary
ANALYSIS OF RESPONSE AND RECOVERY OF VEGETATION TO FOREST FIRE
A. Gong, J. Li, Y. Yang, Y. Chen, T. Zeng, J. Wu, J. Li, Y. Chen, H. Tang, and J. Yue
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 1207–1212, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1207-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1207-2020, 2020
BUILDING DAMAGE EXTRACTION TRIGGERED BY EARTHQUAKE USING THE UAV IMAGERY
S. Li and H. Tang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 929–936, https://doi.org/10.5194/isprs-archives-XLII-3-929-2018,https://doi.org/10.5194/isprs-archives-XLII-3-929-2018, 2018
MULTI-SATELLITE OBSERVATION SCHEDULING FOR LARGE AREA DISASTER EMERGENCY RESPONSE
X. N. Niu, H. Tang, and L. X. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1327–1331, https://doi.org/10.5194/isprs-archives-XLII-3-1327-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1327-2018, 2018
DISASTER MONITORING AND EMERGENCY RESPONSE SERVICES IN CHINA
J. Wu, X. Han, Y. Zhou, P. Yue, X. Wang, J. Lu, W. Jiang, J. Li, H. Tang, F. Wang, X. Li, and J. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1879–1881, https://doi.org/10.5194/isprs-archives-XLII-3-1879-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1879-2018, 2018

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024,https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024,https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024,https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021
Fang Chen, Lei Wang, Yu Wang, Haiying Zhang, Ning Wang, Pengfei Ma, and Bo Yu
Earth Syst. Sci. Data, 16, 3369–3382, https://doi.org/10.5194/essd-16-3369-2024,https://doi.org/10.5194/essd-16-3369-2024, 2024
Short summary
A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types
Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian
Earth Syst. Sci. Data, 16, 3307–3332, https://doi.org/10.5194/essd-16-3307-2024,https://doi.org/10.5194/essd-16-3307-2024, 2024
Short summary

Cited articles

Abraham, N. and Khan, N. M.: A novel focal tversky loss function with improved attention u-net for lesion segmentation, in: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), 8–11 April 2019, Venice, Italy, 683–687, 2019. 
Adriano, B., Yokoya, N., Xia, J., Miura, H., Liu, W., Matsuoka, M., and Koshimura, S.: Learning from multimodal and multitemporal earth observation data for building damage mapping, ISPRS J. Photogramm. Remote, 175, 132–143, 2021. 
Arcgis online: https://www.arcgis.com/home/index.html, last access: 24 November 2022. 
Appolloni, E., Orsini, F., Specht, K., Thomaier, S., Sanye-Mengual, E., Pennisi, G., and Gianquinto, G.: The global rise of urban rooftop agriculture: A review of worldwide cases, J. Clean Prod., 296, 126556, https://doi.org/10.1016/j.jclepro.2021.126556, 2021. 
Ayush, K., Uzkent, B., Meng, C., Tanmay, K., Burke, M., Lobell, D., and Ermon, S.: Geography-aware self-supervised learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 11–17 October 2021, 10181–10190, 2021a. 
Download
Short summary
Large-scale maps of building rooftop area (BRA) are crucial for addressing policy decisions and sustainable development. In this paper, we propose a deep-learning method for high-resolution BRA mapping (2.5 m) from Sentinel-2 imagery (10 m). The resulting China building rooftop area dataset (CBRA) is the first multi-annual (2016–2021) and high-resolution (2.5 m) BRA dataset in China. Cross-comparisons show that the CBRA achieves the best performance in capturing the spatiotemporal information.
Altmetrics
Final-revised paper
Preprint