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Abstract. Large-scale and multi-annual maps of building rooftop area (BRA) are crucial for addressing policy
decisions and sustainable development. In addition, as a fine-grained indicator of human activities, BRA could
contribute to urban planning and energy modeling to provide benefits to human well-being. However, it is still
challenging to produce a large-scale BRA due to the rather tiny sizes of individual buildings. From the viewpoint
of classification methods, conventional approaches utilize high-resolution aerial images (metric or submetric
resolution) to map BRA; unfortunately, high-resolution imagery is both infrequently captured and expensive
to purchase, making the BRA mapping costly and inadequate over a consistent spatiotemporal scale. From the
viewpoint of learning strategies, there is a nontrivial gap that persists between the limited training references
and the applications over geospatial variations. Despite the difficulties, existing large-scale BRA datasets, such
as those from Microsoft or Google, do not include China, and hence there are no full-coverage maps of BRA
in China yet. In this paper, we first propose a deep-learning method, named the Spatio-Temporal aware Super-
Resolution Segmentation framework (STSR-Seg), to achieve robust super-resolution BRA extraction from rela-
tively low-resolution imagery over a large geographic space. Then, we produce the multi-annual China Building
Rooftop Area (CBRA) dataset with 2.5 m resolution from 2016–2021 Sentinel-2 images. CBRA is the first full-
coverage and multi-annual BRA dataset in China. With the designed training-sample-generation algorithms and
the spatiotemporally aware learning strategies, CBRA achieves good performance with a F1 score of 62.55 %
(+ 10.61 % compared with the previous BRA data in China) based on 250 000 testing samples in urban areas
and a recall of 78.94 % based on 30 000 testing samples in rural areas. Temporal analysis shows good perfor-
mance consistency over years and good agreement with other multi-annual impervious surface area datasets.
STSR-Seg will enable low-cost, dynamic, and large-scale BRA mapping (https://github.com/zpl99/STSR-Seg,
last access: 12 July 2023). CBRA will foster the development of BRA mapping and therefore provide basic data
for sustainable research (Liu et al., 2023; https://doi.org/10.5281/zenodo.7500612).
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1 Introduction

Building rooftop area has been an essential indicator of hu-
man activity (W. Huang et al., 2021), sustainable urbaniza-
tion (Appolloni et al., 2021; Burke et al., 2021), building en-
ergy modeling (Byrne et al., 2015; Chen et al., 2022), urban
planning (Nadal et al., 2017), and quick response to natural
disasters (Chen et al., 2022; Ge et al., 2023) in recent years.
Such a dataset has thus become pivotal in a range of pol-
icy decisions by the government, such as arranging the cor-
relation between economic development and demographic
growth and how and where to implement public service.
However, many regions might lack the kind of information
to systematically assess this development in both large geo-
graphical regions and long time periods (Burke et al., 2021).
In the meantime, satellite remote sensing has been the promi-
nent measure for urban mapping of our earth (X. X. Zhu et
al., 2022), especially in developing regions where survey data
or human-labeled data are rather difficult to obtain (Ayush et
al., 2021b). Compared to the traditional survey-based meth-
ods (Kuthanazhi et al., 2016; Jones and Hobbs, 2021), remote
sensing could observe large areas at a potentially low cost,
thus allowing tracking of the building dynamic of develop-
ing regions.

Unlike other datasets containing building information
from satellite imagery, such as impervious surface area (ISA)
or human settlement footprint (HSF), building rooftop area
(BRA) requires a higher spatial resolution for good identifi-
cation due to the tiny sizes of objects of interest (e.g., resi-
dential houses). Typically, ISA (X. Zhang et al., 2022; Huang
et al., 2022) and HSF (Marconcini et al., 2020; Qiu et al.,
2020) are derived from the imagery with a spatial resolu-
tion of decametric level (e.g., 30 or 10 m), while BRA (Liu
et al., 2022; Z. Zhang et al., 2022) utilizes high-resolution
aerial imagery with a resolution of metric level (e.g., 1 m).
However, high-resolution aerial imagery is costly and po-
tentially not publicly available. For example, the price of
WorldView-2 is USD 23 per square kilometer (HR Imagery
Ordering, 2022). The high data expenditure makes large-
scale BRA possible only for large companies, e.g., Google
and Microsoft, which have implemented the continental-
scale BRA of Africa (Sirko et al., 2021) and global BRA
(GlobalMLBuildingFootprints, 2022) using Google Maps
and Bing Maps, respectively. To overcome the cost bar-
rier, international efforts utilize open-access Google Earth
satellite (GES) images (Liang et al., 2018). Most recently,
Z. Zhang et al. (2022) utilized GES imagery and obtained
90-cities-BRA for China at a resolution of 1 m. However,
due to the uneven distribution of GES image patches and in-
consistent acquisition times, the existing BRA has geospa-
tial inconsistency, limiting its generalization to questions of
broad social importance, particularly in large geographic and
timescale mapping.

China is a rapidly developing country, with 4.3 % urban-
ization growth in the past 5 years. According to the Na-

tional Bureau of Statistics of China, the urbanization rate of
China reached 64.72 % in 2021, but the rural population is
still large, accounting for 509.79 million people. The “dual-
track” society structure indicates that human activity occurs
variously in both developed and developing regions of China
(Guan et al., 2018). The existing large-scale BRA dataset
provided by Microsoft and Google does not include China,
while the BRA produced by Z. Zhang et al. (2022) only cov-
ers 90 cities in China. In addition, to the best of our knowl-
edge, few of the existing BRAs provide multi-annual results,
and such temporal information is of great significance to de-
veloping countries such as China.

To foster the development of the observation of human
living space and to provide all stakeholders with free ac-
cess to data to monitor building rooftop dynamics at a na-
tional scale and high spatiotemporal resolution, we intro-
duce the China Building Rooftop Area (CBRA) dataset,
which reports the pixel-level building rooftops’ distribution
along with their dynamics, from 2016 to 2021, on a national
scale. CBRA is derived from the Sentinel-2 imagery (up to
10 m spatial resolution). To meet the spatial resolution of the
BRA needs and to tackle the lack of reliable training refer-
ences, we propose a deep-learning-based framework, called
the Spatio-Temporal aware Super-Resolution Segmentation
(STSR-Seg) framework. STSR-Seg can capture the high-
resolution context from the Sentinel-2 imagery and the low-
resolution land cover data, thus achieving robust spatiotem-
poral results of the BRA at 2.5 m resolution. With the pro-
posed STSR-Seg, CBRA outperforms the existing BRA in
the urban region of China, with overall accuracy and an F1
score of 82.85 % and 62.55 %, respectively. The main contri-
butions are as follows.

1. The free access to CBRA is the first multi-annual
(2016–2021) and 2.5 m BRA product at a national scale
(e.g., China). CBRA is also the full-coverage BRA
dataset in China, including both urban regions and ru-
ral regions.

2. CBRA is a spatiotemporal consistency dataset among
the existing BRA datasets but generated by Sentinel-2
satellite imagery with a specific acquisition time and lo-
cation.

3. The proposed STSR-Seg framework could achieve ro-
bust spatiotemporal super-resolution output, thus reduc-
ing the data expenditure of both the high-resolution im-
agery and training references for the large-scale BRA
applications.

The remainder of this paper is arranged as follows. Section 2
reviews and analyzes the background of our methodology
and the building-related datasets. Section 3 introduces the
data we used for dataset generation. Section 4 describes the
methodology in detail. The following Sect. 5 provides re-
sults, evaluations, and analyses of CBRA. Discussions are
listed in Sect. 6. Finally, the conclusions are drawn in Sect. 7.
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2 Background

To provide an overview of the involved methodology and
dataset, Sect. 2.1 will briefly describe the methodological
background. Moreover, the existing building-related prod-
ucts will be reviewed in Sect. 2.2.

2.1 Methodological background

Figure 1 shows an overview of the background of the in-
volved methods and their relations to our methodology.
Specifically, we will focus on two fields of deep learning in
earth observation, i.e., the super-resolution and semantic seg-
mentation classification methods and the weakly supervised
learning algorithms.

2.1.1 Super-resolution and semantic segmentation
methods

The great success of deep convolutional neural networks
(CNNs) in the computer vision field has already revealed
a new era for earth observation (Hoeser et al., 2022), like
super resolution (SR) and semantic segmentation (SS). Uti-
lizing the SR methods could transfer the low-resolution im-
age to high resolution, thus expanding the cheaper satel-
lite with a coarser resolution to the application demanding
high-resolution data (Shermeyer and van Etten, 2019). He
et al. (2021) utilize low-resolution and high-resolution im-
age pairs to learn the SR model and map the low-resolution
image to the high resolution, while Xu et al. (2021) apply
only the high-resolution label, achieving strong performance
in the downstream high-resolution tasks. The SS, which is a
pixel-wise classification task, also has a lot of applications
in earth observation, such as land use mapping (Q. Zhu et
al., 2022) and disaster detection (Munawar et al., 2022). Re-
cently, the SR and SS were combined to realize high-spatial-
resolution tasks, like building counting (He et al., 2022) and
boat detection (Zhang et al., 2019). Such state-of-the-art SR
and SS approaches have shown great accuracy in various
benchmark datasets and competitions (Wang et al., 2022),
and their huge potential in large-scale and time-series build-
ing rooftop mapping is ripe for discovery.

2.1.2 Weakly supervised learning algorithms

Remote sensing offers an enormous supply of data provided
by the over 1000 satellites currently in orbit. Many down-
stream tasks, however, are limited by the lack of reliable an-
notations, which are particularly costly as they often require
expert knowledge or expensive ground sensors (Robinson et
al., 2019; Manas et al., 2021). In addition, satellite imagery
is various in both geography and time. Factors like season
and climate pose great generalization challenges to the deep-
learning model, while these factors are difficult for human
labeling and explicit learning by the model.

Recent years have seen a proliferation of studies to tackle
the above challenges, among which the weakly supervised
learning algorithm has gained great attention in the earth ob-
servation field (Yue et al., 2022). One is the pre-text task-
learning algorithm. It is implemented by forcing the model
to learn representations of other related tasks simultaneously,
e.g., the coordinates of the input imagery (Muhtar et al.,
2022) and the nighttime light intensities (Xie et al., 2016).
Another is the contrastive learning algorithm, which aims to
learn the representations by pulling positive (similar) feature
pairs closely in latent space and pushing the negative (dissim-
ilar) feature far away from the positive feature. For example,
Manas et al. (2021) and Ayush et al. (2021a) denote the im-
agery of the same location but at different times as positive,
while Yang and Ma (2022) denote the patch in images with
the same land cover class as positive and different types as
negative. The intuition of the weakly supervised learning al-
gorithm is to learn the representation from other related tasks
with easily accessible labeled data or to learn the latent in-
variance from the observed imagery itself, thus alleviating
the limitation of annotations of the downstream tasks.

Due to spatiotemporal variations, there is a shortage of re-
liable annotations for national-scale and multi-annual build-
ing rooftop detection. In the meantime, information such as
acquisition time, image location, and land cover data is plen-
tiful in the community. Overall, there are two primary chal-
lenges, each with a possible solution.

1. The lack of reliable building rooftop annotations, espe-
cially in rural areas, poses a weakly supervised prob-
lem – utilizing low-resolution land cover data as super-
vision, since they could provide the information about
“where they possibly have built”.

2. The different acquisition time of imagery makes the im-
age of the same location but at a different time have a
different image style, posing a challenge for the model
generalization – implementing the contrastive learning
algorithm to make the model invariant for the temporal
discrepancies.

Based on the above observation, we propose a novel frame-
work (STSR-Seg) where we utilize the state-of-the-art SR
and SS approaches and the weakly supervised learning algo-
rithm to achieve robust building rooftop detection in China.

2.2 Building-related products

So far, there have been a lot of studies focused on hu-
man living space or the land surface cover from different
scales. These studies also give information about buildings.
Early efforts usually focused on using very-low-resolution
satellite data, e.g., Defense Meteorological Satellite Program
(DMSP) and Moderate Resolution Imaging Spectroradiome-
ter (MODIS) data, to produce the Land Use and land Cover
Change (LUCC) data (including urban or built cover infor-
mation) at 100 m to 1 km spatial resolution (Schneider et
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Figure 1. An overview of the methodological background and its relation to our proposed methodology.

al., 2003; Tateishi et al., 2011). With the free availability
of Landsat and Sentinel satellite data as well as the power-
ful geospatial cloud platforms (e.g., Google Earth Engine,
GEE), more international studies are working towards map-
ping at a finer spatial resolution (e.g., decametric) over long
periods and large geography and providing more detailed
building-related products such as the ISA and the HSF. For
LUCC, ISA, and HSF, a series of global mapping efforts was
witnessed in recent years, such as FROM_GLC (Gong et al.,
2013), Global Artificial Impervious Area (GAIA) (Gong et
al., 2020a), 10m Global Impervious Surface Area (GISA-
10m) (Huang et al., 2022), the Global Human Settlement
Layer (GHSL) (Corbane et al., 2021), and World Settlement
Footprint (WSF) (Marconcini et al., 2020). The spatial res-
olution of the aforementioned products ranges from 30 to
10 m, and the period ranges from 40 years to only 1 year
(Table 1). These data provide the built cover information or
the impervious surface information and are frequently used
to conduct building-related studies (Fox et al., 2019). How-
ever, due to the resolution gap, these data may contain errors
when specific to individual buildings (Fig. 2), which has thus
inspired the investigation of BRA that can describe the indi-
vidual buildings.

However, BRA mapping remains challenging and is not
well solved due to the tiny sizes of individual buildings. Typ-
ically, BRA demands remote-sensing images with a metric
or submetric resolution. Purchasing these images needs a
very high data expenditure; hence, large-scale BRA mapping
is relatively hampered compared with other aforementioned
building-related data. Currently, the open-access large-scale
BRA data are from Google (Sirko et al., 2021) and Mi-
crosoft (GlobalMLBuildingFootprints, 2022) due to the fact
that these companies can afford the high cost of large-scale
building mapping. They utilize deep-learning (e.g., seman-
tic segmentation) methods, high-resolution imagery from
Google Maps or Bing Maps, and building rooftop ground
truths by human labeling to achieve continent-scale map-
ping (e.g., Africa) and global mapping, respectively. Unfor-
tunately, China is not included in their products.

Recently, Z. Zhang et al. (2022) applied GES images and
semantic segmentation methods to detect building rooftops
of 90 cities in China in the year 2020. However, the GES
images are collected from various kinds of high-resolution
satellites and have two potential problems when applied to

large-scale mapping: (1) inconsistent geographical offset (il-
lustrated in Fig. S1) and (2) inconsistent acquisition time
(e.g., the image is obtained from various satellite sensors
with different acquisition times), which results in spatiotem-
poral inconsistency in the generated product. Also, the prod-
uct from Z. Zhang et al. (2022b) does not cover the living
space of more than 36 % of China’s population, e.g., the ru-
ral area.

Moreover, China is undergoing rapid urbanization and a
rural–urban demographic transition (Guan et al., 2018). A
single year of building rooftop distribution may not be suffi-
cient for research about sustainable development. To the best
of our knowledge, few of the existing BRAs provide multi-
annual mapping on a large scale (e.g., national) or in a devel-
oping region (e.g., rural). Therefore, there is an urgent need
for BRA over both a large-scale area and a specific time span
to support various fine-scale applications.

Overall, the large-scale BRA data are currently limited, es-
pecially in China. In addition, there are no simultaneously
multi-annual and large-scale BRA data freely available to
the public (summarized in Table 1). To this end, we present
the CBRA dataset by using the proposed STSR-Seg deep-
learning method in this study, which has 2.5 m of spatial res-
olution and 1 year of temporal resolution ranging from 2016
to 2021.

3 Data

3.1 Satellite imagery

Sentinel-2 optical images are used for the CBRA mapping.
Sentinel-2 is an earth observation mission under the Euro-
pean Space Agency (ESA) Copernicus program, including a
constellation of two satellites, i.e., Sentinel-2A and Sentinel-
2B. The first Sentinel-2 satellite has observed the earth since
June 2015, mainly providing four 10 m visible bands (i.e.,
RGB), the near-infrared (NIR) bands, six 20 m shortwave
infrared (SWIR) and red-edge bands, and three 60 m bands
(Huang et al., 2022). In this paper, we only utilize the band
with 10 m (i.e., RGB and NIR), since the previous study
shows that introducing bands with coarser resolution poten-
tially brings degradation in the performance of deep-learning
models (Adriano et al., 2021). After the testing and adjust-
ment by the ESA, Sentinel-2 has achieved complete coverage
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Figure 2. An example of the result from several representative building-related datasets (31.093870◦ N, 121.344419◦ E). The GAIA (Gong
et al., 2020b) reflects the impervious area (30 m). The WSF (Marconcini et al., 2020) and GHSL (Corbane et al., 2021) are the human
settlement data (10 m). CBRA (ours) is the building rooftop area data (2.5 m).

Table 1. The recent well-known building-related datasets and the existing large-scale BRA datasets.

Dataset Data, scale, and time span Resolution Classification method and strat-
egy

Type definition

FROM-GLC30
(Gong et al., 2013)

Landsat, global, 2015 30 m Maximum likelihood classifier,
random forests, and the support
vector machine

LUCC data
(including ISA)

GISA
(X. Huang et al., 2021)

Landsat, global, 1972–2019 30 m Random forest classifier via
hexagonal partitioning

ISA data

GAIA
(Gong et al., 2020b)

Landsat, global, 1985–2018 30 m An exclusion–inclusion
approach

ISA data

WSF
(Marconcini et al., 2020)

Landsat 8 and Sentinel-1,
global, 2015

10 m Support vector machine HSF data

GISA-10m
(Huang et al., 2022)

Sentinel-1 and Sentinel-2,
global, 2016

10 m Random forest classifier via
hexagonal partitioning

ISA data

GHSL
(Corbane et al., 2021)

Sentinel-2, global, 2018 10 m Convolutional neural networks
with two-stage training

HSF data

Google BRA∗

(Sirko et al., 2021)
Google map, Africa, no specific
time

0.5 m Semantic segmentation, pre-
training, self-training, and poly-
gonization

BRA data

Microsoft BRA∗

(GlobalMLBuildingFootprints,
2022)

Bing map, global (not cover
China), no specific time

< 1 m Semantic segmentation and
polygonization

BRA data

90-cities-BRA
(Z. Zhang et al., 2022)

Google Earth satellite (GES)
image, 90 cities in China, 2020

1 m Semantic segmentation and
vectorization

BRA data

CBRA
(ours)

Sentinel-2, China, 2016–2021 2.5 m Super-resolution segmentation
and spatiotemporally aware
learning

BRA data

* Results from Google and Microsoft are not specific in time, because the images they collected worldwide do not have consistent acquisition times.

of China since 2016 (Huang et al., 2022). Therefore, we uti-
lize the Level-1C top-of-atmosphere (TOA) reflectance prod-
uct, which has been conducted with systematic radiometric
calibration and geometric and terrain correction by the ESA.
To tackle the cloud noise, we utilize the GEE (Gorelick et
al., 2017) to filter out the images with more than 20 % clouds

and further conduct cloud and shadow removal by the quality
bands to get cloud-free pixels. Finally, we perform median
composition of the filtered images within 1-year intervals.
The number of image tiles for median composition (cloud
under 20 %) over China from 2016 to 2021 is shown in Fig. 3.
Note that there are several missing images in parts of south-
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western China. However, there are few human activities in
these regions, and thus the impact on our results is negligible
(Table S1).

3.2 Reference data

For the deep-learning-based method, the supervised infor-
mation (e.g., reference data) is crucial to the model perfor-
mance. In this study, we collect three kinds of reference data
for training and evaluation, i.e., the survey building rooftop
data (2.5 m), the volunteered building rooftop data (2.5 m),
and the land cover data (10 m).

The survey data should reflect the precise building rooftop
distribution in the region of interest. Hence, in this study, we
collect 52 cities’ building rooftops for the year 2019 from
Tiandi Map, which is sponsored by the National Platform for
Common Geospatial Information Service of China (Zhang et
al., 2021). We use 47 cities for training (1.22 million build-
ings) and 5 cities for testing (250 000 buildings), as shown
in Fig. 4. To verify the accuracy in the rural area, we col-
lect additional building rooftops of several rural regions from
the volunteered geographic information platform, i.e., the
Open Street Map (OSM) (Haklay and Weber, 2008). How-
ever, there are uneven omissions and errors in the OSM data.
To address these issues, we manually correct the data on the
ArcGIS software in conjunction with high-resolution images
provided by ArcGIS online (Arcgis online, 2022). Despite
our efforts, the accuracy of our interpretation is subject to
some omissions due to the uncertainty in the acquisition time
of the images used. Finally, building rooftops of 14 villages
are obtained (30 000 buildings), as shown in Fig. 4.

To improve the geospatial generalization of the deep-
learning method (i.e., scaling to all regions of China), we
also collect the land cover data over China from 2016 to 2021
from the Dynamic World product (Brown et al., 2022). Dy-
namic World, as a result of the partnership between Google
and the World Resources Institute, is a near-real-time (2–
5 d) and 10 m global land cover dataset. It includes 10 land
cover types and provides the probability estimates for each
type. This paper only focuses on the “built” land cover type
for weakly supervised learning. Though the resolution can-
not meet the demand of our CBRA (2.5 m), Dynamic World
could provide vital information such as “where there might
be a building rooftop”. The strategy of sampling Dynamic
World as the training reference will be illustrated in Sect. 4.1,
and how to use it as reference information for updating the
parameter in our model will be clarified in Sect. 4.3.

4 Methodology

Figure 5 shows an overview of the methodology workflow,
including (a) the training sample generation, i.e., arranging
the high-resolution reference, low-resolution reference, and
Sentinel-2 imagery; (b) the proposed STSR-Seg framework
for detecting the building rooftop area, which is the core of

our workflow; (c) the workflow used for BRA data genera-
tion based on the trained STSR-Seg framework; and (d) the
strategy for dataset evaluation.

4.1 Training sample generation

The deep-learning-based method is data-driven, and the
training samples are crucial for its generalization perfor-
mance. As described in Sect. 3, the reference data for train-
ing consist of both the high-resolution building rooftop in
47 cities from Tiandi Map and the low-resolution land cover
data from the Dynamic World product. For the rooftop data,
we can easily pair them with the Sentinel-2 imagery ob-
tained at the same location and time. However, for two rea-
sons, we think it is not a wise choice to use all the available
land cover data for 2016–2021 in China or to just uniformly
sample a part of the land cover database for training. First
and foremost, utilizing all the data or uniform sampling will
lead to a large amount of redundancy in supervised infor-
mation. For example, 13 % of land in China is desert and
23 % is forested. The redundancy of these non-human areas
will bring unbalanced categories, thus leading to ineffective
model training. Secondly, China covers an area of approxi-
mately 9.6×106 km2, and utilizing all of the land cover for
training will place a great burden on our computational re-
sources. To work around this, we assume that people mainly
live in the vicinity of basic administrative units. We utilize
the third level of Chinese administrative divisions, i.e., the
county level, for a total of 2844, as the basic units. Hence,
the heuristic sampling strategy is as follows.

1. Sample 200 coordinates using the Gaussian distribution
spanning a standard deviation of 150 km around each
basic unit.

2. For each coordinate, randomly assign 3 reference years
over 2016–2021.

3. Check whether the coordinate exists within valid
Sentinel-2 tiles for the reference year and with less than
10 % cloud, and then process and download the image
patch and the corresponding land cover type. Otherwise,
go to step 1.

The number of sampling coordinates and standard deviations
employed in the heuristic sampling strategy is based on of-
fline experiments, which thoroughly cover the potential ur-
ban areas of China (Fig. S2). It is important to note that only
3 years are randomly sampled from 2016 to 2021 to avoid in-
creasing the dataset and imposing an unmanageable compu-
tational burden. Through this approach, the land cover train-
ing samples, covering both urban and rural scenes and rang-
ing over various years, are easily and automatically gathered.

Finally, the generated samples may still exhibit redun-
dant information, necessitating their further filtration. Specif-
ically, those samples containing fewer built-up area pixels
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Figure 3. Distribution of the Sentinel-2 images (cloud cover under 20 %). Base map © OpenStreetMap contributors 2023. Distributed under
the Open Data Commons Open Database License (ODbL) v1.0.

(i.e., below 10 %) are discarded. In total, we obtain two sets
for model training. One is the high-resolution reference set
paired with the Sentinel-2 imagery (10 m) and the building
rooftop reference (2.5 m). The other is the low-resolution ref-
erence set paired with the Sentinel-2 imagery and the cor-
responding land cover type (10 m). We also assign a corre-
sponding “built” land cover type for each building rooftop
reference, as high-resolution references and low-resolution
references can be learned collaboratively in our learning
strategy.

4.2 Super-resolution and semantic segmentation
pipeline

To achieve super-resolution and robust building rooftop pre-
diction, we design the STSR-Seg framework as shown in
Fig. 6. STSR-Seg includes two major components: the super-
resolution and semantic segmentation pipeline (i.e., the blue
forward arrow in Fig. 6) and the spatiotemporally aware
learning (i.e., the red arrow in Fig. 6). In this subsection, we
will describe the forward pipeline in detail.

We utilize a state-of-the-art method, the Enhanced Deep
Super-Resolution network (EDSR) (Lim et al., 2017), to
serve as the front component of the framework (i.e., the
super-resolution component). Let I ∈ RC×H×W denote the
input imagery, where C, H , and W are the channel, height,
and width, respectively. The EDSR first utilizes successive
convolutional layers embedded with residual connections to
increase the dimension of C. For example, assuming the up-
sampling factor is r , the implemented CNN will output the
feature with a dimension of Cr2

×H ×W . Then, the EDSR
enlarges the H and W dimensions by applying the pixel
shuffle function and outputs the fine-grained middle feature
F ∈ RC×rH×rW . In this paper, the up-sampling factor r is 4.

Next, we apply a modified Unet architecture (Ronneberger
et al., 2015) to serve as the rear component (i.e., the se-
mantic segmentation component) to obtain high-resolution
and pixel-wise rooftop prediction. To enlarge the capacity
of the naive Unet, we replace the encoder of the naive Unet
with Resnet-50 (He et al., 2016), which is a powerful and
widely used residual network. We also replace the final up-
sampling layer in the decoder with a deconvolution layer and
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Figure 4. Illustration of the collected high-resolution reference. Panel (a) is the high-resolution reference distribution map (base map © Open-
StreetMap contributors 2023, distributed under ODbL v1.0). Panels (b) and (c) are real-world examples of the collected survey data (survey
data © Tiandi Map) and the volunteered data (volunteered data © OpenStreetMap contributors 2023, distributed under ODbL v1.0), respec-
tively. Panel (d) is the statistic of building rooftops.

add a batch normalization layer in each convolutional block
of the naive Unet. With the F output by the SR, the modi-
fied Unet will predict high-resolution sigmoid confidence of
the building rooftop area P̂high ∈ R

1×rH×rW . To achieve a
robust learning strategy, we add an additional global average
pooling layer and a fully connected layer in the encoder of
Unet (i.e., Resnet-50) and output the temporal representation
z ∈ Rd of the input imagery, where d is the representation di-
mension. We also add an additional average pooling layer to
the high-resolution prediction map Phigh and obtain the low-
resolution sigmoid confidence P̂low ∈ R

1×H×W . The overall
output of this SR–SS forward pipeline is three-fold, i.e., the
P̂high, the P̂low, and the z. The P̂high is what we need to gen-

erate the dataset, while the P̂low and the z serve to produce
auxiliary loss for tuning the model parameter (see Sect. 4.3).

4.3 Spatiotemporally aware learning

In this paper, we regard the large-scale and multi-annual
building rooftop mapping as a weakly supervised learning
problem, since the survey rooftop reference could only be
gathered in a part of urban areas of a certain year as de-
scribed in Sect. 3.2. To generalize both the temporal (e.g.,
2016–2021) and the spatial (e.g., all over China), we design
a robust model-learning strategy, i.e., spatiotemporally aware
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Figure 5. The flowchart for CBRA mapping and evaluation. Base map © OpenStreetMap contributors 2023. Distributed under ODbL v1.0.
Imagery © ESA. Binary map © Tiandi Map. The possibility map is from the Dynamic World product (Brown et al., 2022).

learning. Our spatiotemporally aware learning contains three
learning algorithms.

1. The high-resolution loss (HR loss) is a fully supervised
loss used to better learn the supervised information from
the collected high-resolution survey rooftop reference.

2. The temporal contrast loss (TC loss) is a weakly super-
vised loss used to allow the model to be invariant to
subtle variations over time (e.g., due to image acquisi-
tion times).

3. The spatial generalization loss (SG loss) is another
weakly supervised loss used to inform the model to gen-
eralize the spatial extent where the high-resolution sur-
vey rooftop data are not available.

4.3.1 High-resolution learning

STSR-Seg gives a sigmoid confidence map of the build-
ing rooftop P̂high ∼ [0, 1], and we have the high-resolution
rooftop reference Phigh ∼ {0, 1}. In our HR loss, we firstly
calculate the cross-entropy as follows:

Lce

(
Phigh, P̂high

)
=−

∑
Phigh log P̂high

+
(
1−Phigh

)
log

(
1− P̂high

)
. (1)

Previous work on semantic segmentation has shown that the
mixed cross-entropy loss is effective (Iglovikov et al., 2018).
Here, we utilize focal Tversky loss (Abraham and Khan,
2019), which is a tunable loss function:

Lftl

(
Phigh, P̂high

)
=

(
1−

∑
PhighP̂high+ ε∑

(1−β)Phigh+
∑
βP̂high+ ε

)γ
, (2)
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Figure 6. The schematic diagram of the STSR-Seg framework. Imagery (left) © ESA.

where ε is a constant providing numerical stability and γ is
the focal parameter to balance the loss weight between the
easy sample (P̂high ≈ Phigh) and the hard sample. β is the
parameter to control the tradeoff between the importance of
false positives (FPs) and false negatives (FNs). In this paper,
we set ε = 10−6, γ = 0.5, and β = 0.6. The γ < 1 will im-
prove the model convergence by shifting the focus onto the
easy sample. Because, in the informal experiment, we find
that some hard samples are actually mislabeled in our train-
ing set, such a focal parameter will make the model robust
to the label noise. In addition, β > 0.5 will shift the conver-
gence more onto minimizing FN predictions to improve the
recall score of the model. The overall HR loss is given by a
weighted sum:

Lhr = Lce+ 0.5 ·Lftl. (3)

4.3.2 Temporal contrast

Sentinel-2 images at the same location but at different times
have very different hues, and the model may fail to predict
for images with “unseen” image styles in training samples.
To tackle this, we utilize the location a priori and encourage
the temporal representation corresponding to pairs of images
with the same location but different times to be semantically
more similar than typical unrelated pairs (i.e., from other lo-
cations), thus making the model remain time-invariant ac-
cording to the image style. This similarity can be measured
by calculating matrix similarity (e.g., the dot product) among
the two similar representations z and ẑ ∈ Rd and the un-
related representation k ∈ Rd . Here, following the previous
contrastive learning framework MoCo (He et al., 2020), we

implement InfoNCE as the similarity measure:

Ltc
(
z, ẑ,kj

)
=− log

exp
(
z · ẑ/τ

)
exp

(
z · ẑ/τ

)
+

N∑
j=1

exp
(
z · kj/τ

) , (4)

where τ is a temperature hyperparameter scaling the distri-
bution of the similarity measurement. For each training step,
we assign the anchor image with a random selection of im-
ages from other years and obtain the pairing temporal repre-
sentation z and ẑ from Resnet-50. As for the unrelated rep-
resentation k, we maintain a memory bank to store the rep-
resentation from N previous steps. The memory bank is a
queue structure with a size of N ·d . The memory bank is first
zero-initialized. For each training step, we adopt the first-in–
first-out (FIFO) strategy to update the queue by adding the
anchor representation z from the previous step and removing
the oldest representation. In this paper, the hyperparameter is
τ = 0.75, N = 16, and d = 128.

4.3.3 Spatial generalization

Though the HR loss can provide precise pixel-to-pixel su-
pervision, this information is only available in urban regions
(i.e., 47 cities) and is sorely inadequate in other regions of
China, e.g., rural regions. This situation inspires us to use
additional low-resolution references (e.g., LUCC data) from
outside the spatial extent of our collected high-resolution sur-
vey data to better inform the model. Given the low-resolution
output P̂low and the land cover reference Plow, it is intuitive to
calculate the cross-entropy loss (Eq. 1), i.e., Lce(PlowP̂low).
Obviously, the P̂low is an average aggregation of P̂high; i.e.,
each pixel in P̂low denotes an average 4× 4 block in P̂high

Earth Syst. Sci. Data, 15, 3547–3572, 2023 https://doi.org/10.5194/essd-15-3547-2023



Z. Liu et al.: CBRA 3557

Figure 7. Schematic diagram of our dataset-generation workflow. Imagery (left) © ESA.

in our experimental setting. The cross-entropy can suppress
the prediction score of the background pixel of P̂low, i.e.,
the non-building pixel, and also suppress the corresponding
4×4 pixels in P̂high. However, for the foreground pixels, the
cross-entropy homogeneously boosts the prediction score for
all pixels related to the built area in P̂low, introducing errors
into P̂high like false predictions of roads and city squares. To
tackle this, the loss must be interpreted in a softer manner,
which means the prediction score should not be uniformly
improved.

In the case of BRA mapping, the descriptions of the “built”
class in the Dynamic World product (10 m) suggest that it
is a mixture of building and other impervious surfaces (Ta-
ble S2). Therefore, we assume that each low-resolution built
land cover determines a known distribution over frequencies
of the high-resolution building rooftop (Fig. S3). Inspired by
the success of super-resolution loss (Malkin et al., 2018),
we utilize a variant of it, which encourages our model to
match its P̂high to the fixed distributions obtained by the low-
resolution reference. Specifically, we assume that the high-
resolution building rooftop chr follows the Gaussian distribu-
tion in the low-resolution built-up area clr, i.e.,

Plow (chr|clr)=N
(
µ,σ 2

)
, (5)

where µ and σ are the mean and standard deviation, respec-
tively, of the reference Gaussian distribution. They can be
statistically obtained from our training set where both the
high-resolution and low-resolution references are available,
or they can be set manually. Also, due to P̂low being de-
rived from P̂high by averaging, P̂low also follows an estimated
Gaussian distribution N (µ̂, σ̂ 2). Therefore, the loss can be
interpreted by the Kullback–Leibler (KL) divergence of these
two distributions. This optimization criterion is softer due
to the statistical matching rather than the distribution fitting
(e.g., the cross-entropy). Finally, we incorporate this metric
into the cross-entropy loss function, and our SG loss is for-
mulated by

Lsg

(
Plow, P̂low,µ,σ,µ̂, σ̂

)
= Lce

(
Plow, P̂low

)
+D_KL

(
µ,σ,µ̂, σ̂

)
, (6)

where µ= 0.44 and σ = 0.01 are based on the statistic of the
high-resolution and low-resolution reference pairs (Fig. S3).
The SG loss only utilizes low-resolution references and can
be implemented on collected land cover samples covering
multiple geographies and years, thus improving the capacity
to generalize the vast geospatial mapping.

To sum up, the spatiotemporally aware learning includes
three objective functions: (1) the HR loss, providing pixel-to-
pixel high-resolution supervision; (2) the TC loss, learning
invariance in image differences due to different times; and
(3) the SG loss, learning weak information from land cover
samples. In the training phase, these losses are weighted to
update the model parameters simultaneously:

L= αLhr+ϕLtc+ωLsg. (7)

In our offline experiment, we found that a ratio of α : ϕ : ω =
200 : 1 : 5 balances the three losses effectively in our exper-
iment. The backpropagation pipeline is illustrated in Fig. 6
(red arrow).

4.4 CBRA dataset generation

We first download Sentinel-2 imagery covering China from
2016 to 2021 (Fig. 3) with a fixed grid of 0.10◦× 0.10◦. To
avoid the uneven transition or stitched problem between the
splicing gap of the prediction result of cropped smaller im-
ages, the rooftop is predicted by the trained model in an ex-
pansion style, which consists of five steps as shown in Fig. 7.
(1) The size of the downloaded image is expanded to con-
tain an integral number of sliding windows that overlap each
other by zero padding. (2) An H ×W sliding window is cre-
ated to extract image patches. During the movement, the win-
dow will ensure that the next move overlaps the previous one
by 10 % pixels. Then, the image is cropped into smaller im-
age patches with a size of H ×W . (3) The cropped images
are input into the model, and the sigmoid confidences of the
building rooftop are obtained. (4) The maximum value of the
overlapping area is calculated at each pixel, and then the con-
fidence map is stitched into one and the zero padding is re-
moved. (5) A threshold value of 0.5 is used to differentiate
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Figure 8. The temporal homogeneity check.

between candidate foreground pixels (i.e., building rooftop)
and background pixels, following common practice (Liu and
Tang, 2023).

For the binary mask obtained from the expanding predic-
tion, the intersection is then taken between our prediction and
the built area provided by Dynamic World to remove any can-
didate pixels that do not intersect with the built area. This
process will reduce the false positives because our model po-
tentially incorrectly identifies the bare land as the building
rooftop. The built area provided by Dynamic World is a pos-
sibility estimation ranging from 0 to 1. A low threshold of
0.2 is utilized to distinguish between built and unbuilt areas,
as this threshold does not filter out correct prediction results
(further discussions in Fig. S4).

Due to the possible random bias of our method in locating
the boundary of building rooftops (outlined in Sect. 6.2), in-
consistencies in identification results over time for the same
building may occur. To address this issue, a temporal homo-
geneity check approach has been implemented. Specifically,
it is assumed that a building’s state does not undergo con-
tinuous change over 3 successive years. Building upon the
method proposed by Li et al. (2015), a 3×3 sliding window is
employed to determine the final pixel value by majority vot-
ing as illustrated in Fig. 8. This ensures that the results are
comparable in the adjacent years. However, for edge years
like 2016 and 2021, they are not checked due to the lack of
temporal information.

The implementation is conducted on our local server
with a 2× NVIDIA Tesla P40 GPU. The overall dataset-
generation pipeline costs about 3 months using Python.

4.5 Accuracy assessment

To comprehensively assess the performance of our 2.5 m
multi-annual CBRA dataset, the sampled-based approaches
and temporal-based approaches are adopted. Firstly, the

sample-based approaches utilize five cities (250 000 build-
ings) with precise building rooftops for testing (Fig. 4). The
metrics are listed in Table 2. Accuracy, intersection over
union (IoU), recall, and F1 score all range from 0 to 1, and
1 indicates the best classifier. In rural areas, however, there
is a lack of reliable high-resolution references. As described
in Sect. 3.2, we utilize our manually calibrated OSM data as
the reference. There are 14 villages in all (Fig. 4), accounting
for 30 000 buildings. Since there are still a few omissions, we
only examine the recall in rural areas. Buildings are dynamic
and may change each year (van Etten et al., 2021). To ensure
the reliability of the evaluation accuracy, we only use the pre-
diction results of the corresponding year for accuracy evalu-
ation; e.g., five cities correspond to 2019 and 14 villages cor-
respond to 2020. As for the dataset comparison, we use two
products for comparison: (1) the China 90 cities 1 m building
rooftop area dataset (90-cities-BRA) (Z. Zhang et al., 2022)
and (2) the 10 m GHSL (Corbane et al., 2021). To the best
of our knowledge, 90-cities-BRA is currently the only large-
scale and freely accessible building rooftop dataset in China,
and it covers 90 cities for 2020, which is also the dataset we
can compare in the urban scene at a fair. The GHSL provides
the human settlement layer of the globe for 2018, and we
mainly use it for the comparison of rural scenes.

Secondly, in the temporal-based approaches, we design
two experiments to estimate our performance consistency
in a time span. For the first experiment, we assume that
the buildings in the old town area of Beijing, Hong Kong
SAR, and Macao SAR remain unchanged in the last 6 years;
therefore, we test the consistency of the results in terms of
evaluation metrics in these regions. For the second experi-
ment, we calculate the correlation coefficient (e.g.,R2) of our
data with the existing well-known annual impervious surface
products. To achieve this, we utilize the 30 m China Land
Cover Dataset (CLCD) (Yang and Huang, 2021) and 30 m
GAIA (Gong et al., 2020b), ranging from 1990 to 2019 and
from 1985 to 2018, respectively.

In addition to evaluating our data, we examine several ex-
amples of our poor rooftop extraction result to understand the
limitation of our dataset.

5 Results

The implementation configurations of the overall genera-
tion pipeline are listed in Table S3. Based on all available
Sentinel-2 data in China, we generate the annual 2.5 m res-
olution CBRA dataset of 2016–2021. To evaluate it, we first
use independent testing samples to assess the performance
of CBRA in urban and rural areas and compare it with other
datasets both qualitatively and quantitatively (Sect. 5.1).
Then, we test the time consistency of CBRA by using sta-
ble samples and other ISA datasets (Sect. 5.2). Finally, we
analyze the BRA in China in 2016–2021 in terms of spatial
distribution and temporal change (Sect. 5.3).
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Table 2. Classification performance metrics calculated in this study.

Metric Definition

True positive (TP) Pixels correctly classified as positive (i.e., building rooftop)
False positive (FP) Pixels incorrectly classified as positive
True negative (TN) Pixels correctly classified as negative (i.e., background)
False negative (FN) Pixels incorrectly classified as negative
Intersection over union (IoU) TP / (TP+FP+FN)
Recall TP / (TP+FN)
F1 score 2×TP / (2×TP+FP+FN)
Overall accuracy (OA) (TP+TN) / (TP+FP+TN+FN)

5.1 Accuracy assessment using testing samples

5.1.1 Quantitative analysis

The accuracy of CBRA is first assessed via the collected
samples from urban scenes and rural scenes. The confusion
matrix for building rooftop identification in urban scenes is
given in Table 3, and the performance statistics in both urban
and rural areas are given in Table 4.

In urban scenes, although CBRA is derived from Sentinel-
2 imagery (10 m), it achieves a balanced result in TPs and
TNs, with a higher F1-score value of 62.55 % (+10.61 %)
compared to the previous 90-cities-BRA, which is derived
from high-resolution GES imagery (1 m). In terms of IoU,
CBRA obtains a score of 45.51 %, indicating that CBRA has
a high classification accuracy for building rooftop pixels. In
addition, the overall accuracy (OA) is slightly lower than 90-
cities-BRA (−0.54 %): this is due to the several blob-like
predictions of CBRA because of relatively low resolution
(2.5 m) compared with 90-cities-BRA (1 m), which will be
covered in more detail in Sect. 6.2. For recall, CBRA obtains
74.66 %, which is a great improvement (+27.29 %) com-
pared with 90-cities-BRA, mainly because of our robust des-
ignation of the STSR-Seg framework. It is noteworthy that
solely relying on OA to evaluate the performance of CBRA
is inadequate due to the category-unbalanced nature of build-
ing rooftop extraction. The OA score may introduce a poten-
tial bias into this scenario (Shao et al., 2019; Uhl and Leyk,
2022), and therefore multiple metrics must be utilized when
assessing the performance of CBRA.

In rural scenes, there is no publicly available building
rooftop dataset in rural areas of China before our CBRA,
and hence we compare CBRA with GHSL, which is hu-
man settlement layer data (resolution of 10 m), and we only
evaluate them in terms of recall. The GHSL is a result of
a coarser level compared with the building rooftop (e.g., in-
cluding impervious surfaces like roads and city squares), thus
achieving the highest recall value (80.89 %) in rural scenes.
However, CBRA is very close to it (78.94 %), with a gap of
only 1.95 %, indicating its reliability in predicting building
rooftops in rural areas. Considering the varieties of urban and
rural test samples, it should be mentioned that the presented

Table 3. Statistics of the confusion matrix for building rooftop ex-
traction in urban scenes.

Dataset TP (%) FP (%) TN (%) FN (%)

CBRA (ours) 14.32 12.29 68.52 4.86
90-cities-BRA 8.98 6.65 74.42 9.96
(Z. Zhang et al., 2022)

results in Table 4 intend to compare product to product rather
than to demonstrate performance differences between urban
and rural areas.

5.1.2 Qualitative analysis

To further test the performance of CBRA, we select several
examples from our testing set to analyze and compare our
results in both urban and rural areas. As shown in Fig. 9,
in urban areas, our CBRA and 90-cities-BRA are generally
similar in the region where buildings are well separated, e.g.,
Fig. 9a2 and b2. The difference is mainly in the rooftop de-
tails: CBRA ignores several vertices on the boundary, thus
achieving blob-like results, which is mainly due to the res-
olution gap as shown in Fig. 9c1 and d1. In the dense ur-
ban areas, especially in the old town where the distance be-
tween buildings may be less than 2.5 m, CBRA treats build-
ings as blocks (e.g., Fig. 9a1). However, CBRA has more
complete building rooftops and fewer false predictions of the
background (e.g., the road) compared with 90-cities-BRA, as
shown in Fig. 9c2 and d2, which explains the smaller value of
the FP of CBRA in Table 3. In addition, 90-cities-BRA uti-
lizes the GES images as the data source. Although GES im-
ages have a high spatial resolution (e.g., 1 m), GES images
are provided by different satellites simultaneously and do
not have consistent geographic offsets and acquisition times.
CBRA utilizes a super-resolution technique to extract 2.5 m
results only from the Sentinel-2 satellite, ensuring the relia-
bility of the geography and the acquisition time as shown in
Figs. 10 and 11.

In rural areas, as shown in Fig. 12, CBRA also provides
building rooftop areas, while 90-cities-BRA does not include
them. Although it is difficult to identify individual buildings
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Table 4. Performance metrics for building rooftop extraction. Only recall with respect to OSM data is reported in rural areas due to the
challenges of accurately calculating other metrics caused by omissions in the OSM data.

Dataset Description Urban scenes Rural scenes

IoU (%) OA (%) Recall (%) F1 score (%) Recall∗ (%)

90-cities-BRA (Z. Zhang et al.,
2022)

90-city building rooftop in
China with a resolution of 1 m
(2020)

35.08 83.39 47.39 51.94 –

GHSL (Corbane et al., 2021) Global human settlement layer
with a resolution of 10 m (2018)

25.85 53.84 84.94 41.07 80.89

CBRA (ours) China building rooftop data
with a resolution of 2.5 m
(2016–2021)

45.51 82.85 74.66 62.55 78.94

* 90-cities-BRA does not include the rural area in China.

from the Sentinel-2 images, CBRA still extracts them, as
shown in Fig. 12e and f. Compared to other datasets that pro-
vide information related to buildings in rural areas, CBRA
is at a significant fine-grained scale, albeit with a greater
presence of block areas in rural versus urban environments
(Fig. 13).

In summary, CBRA achieves higher performance in
extracting building rooftops (TPs) and suppressing the
false prediction in the background (FPs), with 62.55 %
(+10.61 %) in terms of F1 score compared with 90-cities-
BRA. In addition, CBRA has a full coverage of China, in-
cluding the rural areas at a finer scale rather than other ex-
isting full-coverage and thematically related products. How-
ever, a decline in accuracy in rural areas, consistent with prior
studies (Leyk et al., 2018; Kaim et al., 2022), has been ob-
served. In addition, the temporal coverage of CBRA spans
6 years (2016–2021), which is the first available building
rooftop data with a span of time. The temporal information
in CBRA will be analyzed in Sect. 5.2.

5.2 Temporal consistency analysis

To evaluate the temporal characteristics of CBRA, we first
test the performance of CBRA in three regions, i.e., the
old town of Beijing, Hong Kong SAR, and Macao SAR,
where the distribution of the building is almost stable without
change based on our a priori knowledge. We utilize the sur-
vey rooftop data collected in 2019 to quantitatively demon-
strate the accuracy as shown in Fig. 14. Overall, CBRA
shows good performance consistency with little variation
over 2016–2021. One may observe that the accuracy fluctu-
ates between 2016 and 2017, and there are two potential rea-
sons for this. The first is the relatively long interval between
the sampling time of survey data (2019) and the year 2016.
The second is that the results for 2016 are not checked by
temporal homogeneity due to the lack of temporal informa-

tion; thus, its reliability is slightly lower compared to other
years.

The well-known annual ISA products can provide time
span information for the evaluation. Thereby, we compare
CBRA with the ISA of CLCD (CLCD-ISA) (Yang and
Huang, 2021) and GAIA (Gong et al., 2020b). We calculate
fractions of foreground pixels within the 0.10◦× 0.10◦ spa-
tial grid for each year and then estimate the correlation coeffi-
cients (R2) between CLCD-ISA and GAIA to quantitatively
demonstrate their agreement. Overall, CBRA shows good
consistency with the ISA products over the time span (0.63<
R2 < 0.71), indicating the reliability of CBRA (Fig. 15).

Although good agreement has been found between 2016
and 2019, 2020 and 2021 are not checked because the an-
nual ISA products with close resolution are not available
for these years. However, the training material for producing
CBRA contains Dynamic World (Brown et al., 2022), which
is a timely updated product providing built land cover, and
CBRA is therefore in very good agreement with it from 2016
to 2021 (0.83<R2 < 0.89), also indicating the reliability of
CBRA.

5.3 The spatial and temporal characteristics of the
China BRA from 2016 to 2021

The statistical result of the average area of building rooftops
in China from 2016 to 2021 is shown in Fig. 16. From the
perspective of spatial distribution, there are three main city
clusters in China: (a) the North China Plain (NCP), (b) the
Yangtze River Delta (YRD); and (c) the Greater Bay Area
(GBA). The NCP is the largest alluvial plain in China: 19.8 %
of the population lives here (280 million out of 1.4 billion)
and occupies 30.4 % of the building rooftop areas (27 277 out
of 89 826 km2), which indicates more developed primary and
secondary industries in the region (more industrial buildings
and farm buildings). The YRD is dominated by Shanghai and
is one of the regions with the most active economic develop-
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Figure 9. Comparison of CBRA and 90-cities-BRA (Z. Zhang et al., 2022) over the sampled urban regions in Shanghai and Qingdao. Panels
(a) and (c) are the results of our CBRA. Panels (b) and (d) are results of 90-cities-BRA.

ment, providing 24.1 % of the GDP of China; 16.4 % of the
population (236 million) lives here and occupies 16.0 % of
the building rooftop area (14 342 km2). The ratios of popu-
lation and building areas are almost equal, indicating a more
developed tertiary industry in the region. The GBA is a city
cluster consisting of 11 cities including Guangzhou, Shen-
zhen, Hong Kong SAR, and Macao SAR and is the largest
and most populated urban area in the world; 6.0 % of the
population lives here (86 million) but occupies only 3.9 %
of the building rooftop areas (3472 km2), indicating that the
region has a developed tertiary industry along with a high
population density and a tighter housing supply.

Figure 17 quantitatively summarizes BRA and its changes
on the three city clusters from 2016 to 2021. Overall,
the China BRA has increased over the past 6 years, with
more than 110 000 km2 in 2021, which is an increase of
34 000 km2 compared with 2016 (Fig. 17a). In addition,
Fig. 17b indicates that the proportion of BRA on the NCP
and YRD has obviously increased, while the proportion of
the GBA and other regions except these three city clusters
slowly declined from 2016 to 2021. Specifically, the propor-
tion of the NCP increased the most, from 27 % to 31 %, while
the proportion of other regions clearly decreased, from 53 %
to 49 %. The change in the proportion reveals that the ur-
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Figure 10. Example of the inconsistent geographical offset of the previous dataset (121.531467◦ E, 31.299903◦ N). (a) The Sentinel-2 image
with survey rooftop data (imagery © ESA). (b) Result of CBRA. (c) Result of 90-cities-BRA (Z. Zhang et al., 2022). One can observe that
the result from 90-cities-BRA has a geographical offset, as the red circle indicates. CBRA uses the imagery only from the Sentinel-2 satellite,
ensuring the reliability of the geographical positions.

Figure 11. Example of the inconsistent acquisition time of the previous dataset (121.341982◦ E, 30.762489◦ N). (a) The Sentinel-2 image
in 2019 (imagery © ESA). (b) Result of CBRA in 2019. (c) The Sentinel-2 image in 2020 (imagery © ESA). (d) Result of CBRA in 2020.
(e) Result of 90-cities-BRA (Z. Zhang et al., 2022) in 2020. CBRA uses the image with a specific acquisition time, ensuring the reliability
of the results in terms of temporal consistency.
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Figure 12. Example of the rural area (118.328041◦ E, 28.817881◦ N). (a–c) Sentinel-2 images (imagery © ESA). (d–f) Results of CBRA.

Figure 13. Comparison of CBRA and the other datasets over the sampled rural region (106.352257◦ E, 38.533718◦ N). (a) CBRA. (b) GHSL
(Corbane et al., 2021). (c) WSF (Marconcini et al., 2020).

banization in China is characterized by the concentration of
large city clusters. Lastly, Fig. 17c illustrates the statistic of
BRA change from 2016 to 2021 and the expansion area on
each city cluster, respectively. Specifically, the NCP has the
largest increase, with a total of 13 081 km2 (from 20 884 km2

in 2016 to 33 966 km2 in 2021).
The spatial distribution of the temporal changes in build-

ing rooftop area in China is shown in Fig. 18. It can be ob-
served that the BRA in developed regions, such as coastal
regions, is increasing, while the BRA in less developed re-

gions, such as the northeastern, northwestern, and southwest-
ern regions of China, is decreasing. Figure 18b and c are two
examples of building demolition and construction, showing
the removal of dense buildings (e.g., shack houses) in the ru-
ral area and the establishment of buildings (e.g., apartments)
in the urban area, respectively. More comprehensible refer-
ences about the building change can be found in Figs. S5,
S6, and S7. For simplicity, we only show building dynamics
in a one-way conversion pattern.
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Figure 14. Accuracy of CBRA in the building-stable regions over 2016–2021. (a) IoU. (b) OA. (c) Recall. (d) F1 score.

Figure 15. The correlation coefficients of the fraction of the fore-
ground pixels between CBRA and two thematically related datasets
for each year. The fraction is aggregated within the 0.10◦× 0.10◦

spatial grid.

Overall, we establish the relationship between the BRA
of China with the natural and economic spatial difference,
which also validates the accuracy of CBRA. The analysis of
its temporal change reveals the spatiotemporal trends of the
BRA in China. Further analysis will be left for exploration in
the future.

6 Discussion

6.1 Importance of the spatiotemporally aware learning

In this paper, we develop a deep-learning framework (STSR-
Seg) for robust building rooftop extraction. The overall
framework contains a super-resolution pipeline for up-
sampling the input resolution, a semantic segmentation
pipeline for obtaining pixel-wise building rooftop classifi-
cations, and the designed spatiotemporally aware learning
with three dedicated learning algorithms (i.e., loss functions).
Here, we mainly ablate the three dedicated designed learning
algorithms to reveal their importance.

The baseline is the naive structure of super-resolution and
semantic segmentation pipelines, i.e., EDSR as the super-
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Figure 16. The spatial distribution of the average area of building rooftops in China over the period of 2016–2021. The area fraction is
aggregated within the 0.10◦× 0.10◦ spatial grid. Base map © OpenStreetMap contributors 2023. Distributed under ODbL v1.0.

resolution module, our modified Unet as the semantic seg-
mentation head, and the loss function as only the binary
cross-entropy loss (Eq. 1). The results of our ablation ex-
periments are shown in Fig. S8. By disabling each learning
strategy in turn from the baseline, we observe the impact on
F1 testing performance: SG has the most significant effect,
followed by the TC.

The SG loss (Eq. 6) is designed to leverage the informa-
tion from full-coverage but low-resolution land cover data
to achieve larger-scale weak supervision for the model train-
ing. Essentially, to achieve the SG loss, one needs to increase
the number of training resources and therefore greatly im-
prove the accuracy of our data-driven method (+2.38 % in
terms of F1 score). Even when high-resolution references are
available, incorporating low-resolution land cover informa-
tion into the training process through collaboration as super-
vised information is found to be beneficial (Table S4). In ad-
dition, we qualitatively find that using SG loss will prevent
the model from falling into unexplained repeated predictions,
as shown in Fig. S9. Without utilizing SG loss as supervi-
sion, the model can only converge to a limited number of

training resources, i.e., the collected data. When applied to a
large scale (e.g., national scale), the complexity of the back-
ground in remote-sensing images will significantly increase,
which causes serious false alarms due to larger intra-class
variance, therefore resulting in the unexpected false predic-
tions in Fig. S9. Utilizing SG loss can suppress such false
alarms by providing accurate non-building supervision.

The TC loss (Eq. 4) is proposed to keep the model time-
invariant, which is essential for generating the multi-annual
dataset. As shown in Figs. S10–S12, utilizing TC loss will
increase the model capacity to handle time information, es-
pecially for suppressing the accuracy gap between the years
2016 and 2017. Among these evaluation metrics, utilizing
TC loss brings a greater improvement in recall (Figs. S10c,
S11c, and S12c), which indicates that the TC loss will de-
crease the omissions of the rooftop prediction due to the
different image styles of different years, thus improving the
robustness of the model. Meanwhile, utilizing TC loss in-
creases the overall performance of our method compared
with the baseline (+1.46 % in F1 score).
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Figure 17. The change in the building rooftop area of China and the three biggest city clusters in China (NCP, YRD, and GBA) over the
period of 2016–2021. (a) The annual statistic of building rooftop area in China. (b) The proportion of the building rooftop of the biggest city
clusters in China and other regions from 2016 to 2021. (c) The increased building rooftop area on each city cluster and other regions.

The HR loss (Eq. 3) is composed of two losses, i.e., the
cross-entropy loss (Eq. 1) and the focal Tversky loss (Eq. 2).
Here we only ablate the focal Tversky loss in our “+HR loss”
setting. Utilizing the focal Tversky loss will bring 0.45 % im-
provement in terms of F1 score by shifting the model con-
vergence more onto minimizing FN predictions and further
suppressing the false predictions of the background.

As a conclusion of the ablation study, the designed learn-
ing strategy in the STSR-Seg framework leads to three sig-
nificant benefits. (1) The SG loss provides enough supervi-
sion all over China, thus increasing the geographical robust-
ness of the model. (2) The TC loss keeps the model invari-
ant to time span, increasing the temporal robustness of the
model. (3) The HR loss is an optimized loss of the naive
cross-entropy loss by introducing the focal Tversky loss. It
can slightly improve the overall performance of the model.
These advantages are also complementary to each other with-
out conflict when used together.

6.2 Limitations and prospects

Although our STSR-Seg framework is scalable, allowing
larger areas to be monitored (e.g., national scale), there re-
main some limitations to our approach. Specifically, the seg-
mentation results for densely populated residential areas may
present certain rooftops as a single block rather than as indi-
vidual buildings. Our analysis suggests that this occurrence is
primarily due to the resolution of the results, which is 2.5 m.
Furthermore, the semantic segmentation technique utilized
in the approach may introduce some uncertainty at the edges
of buildings, resulting in additional pixels (up to 3 px) at the
boundary. Consequently, up to 7.5 m of buffering may occur,
exacerbating the problem of building adhesion. Examples of
this issue are presented in Fig. 19.

In addition, there is a need for further improvement in
the delineation of the building boundaries within CBRA.
Buildings differ from other objects of interest in that they
have regularized boundaries (e.g., polygons made of lines
and vertices). However, our dense pixel-to-pixel classifica-
tion method disregards the morphology of the building, re-
sulting in a blob-like shape. For example, in Table 5, we add
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Figure 18. (a) The spatial distribution of the annual change in building rooftop area over the period of 2016–2021. The area fraction is
aggregated within the 0.10◦× 0.10◦ spatial grid (base map © OpenStreetMap contributors 2023, distributed under ODbL v1.0). (b) An
example of the demolition of the building (116.275761◦ E, 39.844715◦ N) from 2016 to 2021. (c) An example of the construction of the
building (113.130952◦ E, 22.948144◦ N) from 2016 to 2021.

a buffer with 1–2 px to the collected reference rooftop data
and then use this as a benchmark to calculate the accuracy. It
is noted that there is a significant increase in the TP percent-
age (+4.35 % for 1 px and+6.18 % for 2 px) and by a greater
percentage than the increase in the FN (the increase in the FN
is due to the excessive number of background pixels consid-
ered to be the ground truth). This indicates that the CBRA
results suffer from ambiguous localization on the building
boundaries.

We have noticed that there have been many studies on the
morphology extraction of buildings in recent years, such as
instance segmentation methods (Liu et al., 2022; Zhu et al.,
2021; W. Huang et al., 2021). We also try to replace our se-
mantic segmentation branch with current instance segmen-
tation methods, e.g., recurrent neural network methods (Liu
et al., 2022). However, the results are not good and even fail
in our offline experiment, mainly because these methods are

Table 5. Statistics of the confusion matrix for building rooftop ex-
traction in an urban scene. The collected reference is added by the
buffer zone on the boundary with 1 and 2 px, respectively.

Buffer size TP (%) FP (%) TN (%) FN (%)

+0 px 14.32 12.29 68.52 4.86
+1 px 18.67 (+4.35) 7.95 64.95 8.43 (+3.57)
+2 px 20.50 (+6.18) 6.12 62.42 10.96 (+6.10)

designed for very-high-resolution aerial images (submetric
level). In addition, the efficiency of these methods is too low
to support national-level building mapping.

Many endeavors utilize a postprocessing strategy, e.g., the
Douglas–Peucker algorithm, to achieve regularization (Wei
et al., 2019; Chen et al., 2020; Zorzi et al., 2021), and such
strategies have shown success in building mapping at a rel-
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Figure 19. Two examples of blob-like areas and the measured distances between adjacent buildings. (a) Densely residential area
(101.302089◦ E, 21.298532◦ N). (b) Relatively discrete residential area (121.634662◦ E, 31.746674◦ N). Imagery © 2023 Maxar Technolo-
gies.

atively small scale (Wei et al., 2019). However, in CBRA,
the use of postprocessing will introduce errors due to several
block estimations in the densely residential area, as men-
tioned before. Considering the potential errors by vectoriz-
ing, it is hard to provide vector results of CBRA.

CBRA provides full-coverage and multi-annual informa-
tion on building rooftops for China at 2.5 m spatial reso-
lution, and the proposed STSR-Seg offers an opportunity
to obtain high-resolution output by using relatively low-
resolution remote-sensing images. However, our findings are
constrained by the adhesion of closely located buildings and
the blob-like shapes of rooftops. In the near future, we aim
to enhance our methodology by designing more powerful
model architecture and utilizing multisource data, including
synthetic aperture radar (SAR) and other BRA datasets, with
the goal of achieving vector outputs.

7 Data availability

The source code of STSR-Seg and the
dataset-generation pipeline can be found at
https://doi.org/10.5281/zenodo.8138988 (Liu et al., 2023b).
The 2.5 m multi-annual CBRA dataset from 2016 to 2021
is free to access at https://doi.org/10.5281/zenodo.7500612
(Liu et al., 2023a). CBRA is organized in GeoTIFF (.tif)
raster file format with a single band and a GCS_WGS_1984
coordinate system. The pixel values are 0 and 255, with
0 representing the background and 255 representing the
building rooftop area. Furthermore, to facilitate the use of

the data, CBRA is split into 215 tiles of a 2.5◦× 2.5◦ spatial
grid named “CBRA_year_E/W**N/S**.tif”, where “year” is
the sampling year and “E/W**N/S**” indicates the latitude
and longitude coordinates found in the upper-left corner of
the tile data.

8 Conclusion

In this study, we propose the robust Spatio-Temporal aware
Super-Resolution Segmentation (STSR-Seg) framework for
fine-grained spatial-information extraction of BRA from the
abundant availability of low-resolution imagery. Specifically,
the STSR-Seg framework is built on the super-resolution
and semantic segmentation pipeline. Given the input low-
resolution image, STSR-Seg first extracts the corresponding
high-resolution feature and then achieves pixel-to-pixel clas-
sification by the semantic segmentation branch. Consider-
ing the lack of reliable building rooftop references in China,
we designed spatiotemporally aware learning to enable the
model to generalize in both large geographical regions and
long time periods. Ablation experiments on the designed
learning strategy show the complementary advantage of han-
dling false positives of the complex background and a tem-
poral consistency over a time span as well as an improvement
of 4.29 % in terms of the F1 score compared to our baseline
method.

The resulting China Building Rooftop Area (CBRA)
dataset is the first multi-annual (2016–2021) and full-
coverage BRA dataset in China, with 2.5 m spatial resolution.
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The OA and F1 scores of CBRA exceed 82 % and 62 %, re-
spectively, based on the independent testing samples in urban
areas. The intercomparison between CBRA and the previous
90-cities-BRA (Z. Zhang et al., 2022) confirms the superior-
ity of the results obtained in this study. In particular, for the
first time, the BRA in rural areas of China is further identified
at a fine-grained scale compared with other building-related
products. Based on CBRA and other annual ISA datasets, the
building rooftop dynamics over a time span are also evalu-
ated and discussed. CBRA completes the BRA in China and
will allow for a more comprehensive characterization of cli-
mate change, urban planning, and policy decisions combined
with other data, such as BRA provided by Google and Mi-
crosoft. The proposed STSR-Seg framework can also be ap-
plied for large-scale and dynamic high-resolution BRA mon-
itoring without any data expenditure. In the future, we plan
to investigate improvements in the BRA accuracy and to ex-
tend the spatial coverage to reveal the global BRA dynamics
at 2.5 m resolution.
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