Articles | Volume 13, issue 6
Earth Syst. Sci. Data, 13, 2857–2874, 2021
https://doi.org/10.5194/essd-13-2857-2021
Earth Syst. Sci. Data, 13, 2857–2874, 2021
https://doi.org/10.5194/essd-13-2857-2021

Data description paper 16 Jun 2021

Data description paper | 16 Jun 2021

The RapeseedMap10 database: annual maps of rapeseed at a spatial resolution of 10 m based on multi-source data

Jichong Han et al.

Related authors

NESEA-Rice10: high-resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019
Jichong Han, Zhao Zhang, Yuchuan Luo, Juan Cao, Liangliang Zhang, Fei Cheng, Huimin Zhuang, Jing Zhang, and Fulu Tao
Earth Syst. Sci. Data, 13, 5969–5986, https://doi.org/10.5194/essd-13-5969-2021,https://doi.org/10.5194/essd-13-5969-2021, 2021
Short summary

Related subject area

Antroposphere – Land Cover and Land Use
Harmonized in situ datasets for agricultural land use mapping and monitoring in tropical countries
Audrey Jolivot, Valentine Lebourgeois, Louise Leroux, Mael Ameline, Valérie Andriamanga, Beatriz Bellón, Mathieu Castets, Arthur Crespin-Boucaud, Pierre Defourny, Santiana Diaz, Mohamadou Dieye, Stéphane Dupuy, Rodrigo Ferraz, Raffaele Gaetano, Marie Gely, Camille Jahel, Bertin Kabore, Camille Lelong, Guerric le Maire​​​​​​​, Danny Lo Seen, Martha Muthoni, Babacar Ndao, Terry Newby, Cecília Lira Melo de Oliveira Santos, Eloise Rasoamalala, Margareth Simoes, Ibrahima Thiaw, Alice Timmermans, Annelise Tran, and Agnès Bégué
Earth Syst. Sci. Data, 13, 5951–5967, https://doi.org/10.5194/essd-13-5951-2021,https://doi.org/10.5194/essd-13-5951-2021, 2021
Short summary
NESEA-Rice10: high-resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019
Jichong Han, Zhao Zhang, Yuchuan Luo, Juan Cao, Liangliang Zhang, Fei Cheng, Huimin Zhuang, Jing Zhang, and Fulu Tao
Earth Syst. Sci. Data, 13, 5969–5986, https://doi.org/10.5194/essd-13-5969-2021,https://doi.org/10.5194/essd-13-5969-2021, 2021
Short summary
Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning
David L. A. Gaveau, Adrià Descals, Mohammad A. Salim, Douglas Sheil, and Sean Sloan
Earth Syst. Sci. Data, 13, 5353–5368, https://doi.org/10.5194/essd-13-5353-2021,https://doi.org/10.5194/essd-13-5353-2021, 2021
Short summary
The dataset of walled cities and urban extent in late imperial China in the 15th–19th centuries
Qiaofeng Xue, Xiaobin Jin, Yinong Cheng, Xuhong Yang, and Yinkang Zhou
Earth Syst. Sci. Data, 13, 5071–5085, https://doi.org/10.5194/essd-13-5071-2021,https://doi.org/10.5194/essd-13-5071-2021, 2021
Short summary
GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery
Miao Zhang, Bingfang Wu, Hongwei Zeng, Guojin He, Chong Liu, Shiqi Tao, Qi Zhang, Mohsen Nabil, Fuyou Tian, José Bofana, Awetahegn Niguse Beyene, Abdelrazek Elnashar, Nana Yan, Zhengdong Wang, and Yiliang Liu
Earth Syst. Sci. Data, 13, 4799–4817, https://doi.org/10.5194/essd-13-4799-2021,https://doi.org/10.5194/essd-13-4799-2021, 2021
Short summary

Cited articles

Arata, L., Fabrizi, E., and Sckokai, P.: A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data, Econ. Model., 90, 190–208, https://doi.org/10.1016/j.econmod.2020.05.006, 2020. 
Ashourloo, D., Shahrabi, H. S., Azadbakht, M., Aghighi, H., Nematollahi, H., Alimohammadi, A., and Matkan, A. A.: Automatic canola mapping using time series of sentinel 2 images, ISPRS J. Photogramm., 156, 63–76, https://doi.org/10.1016/j.isprsjprs.2019.08.007, 2019. 
Bargiel, D.: A new method for crop classification combining time series of radar images and crop phenology information, Remote Sens. Environ., 198, 369–383, https://doi.org/10.1016/j.rse.2017.06.022, 2017. 
Bartholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005. 
Bernard, E., Larkin, R. P., Tavantzis, S., Erich, M. S., Alyokhin, A., Sewell, G., Lannan, A., and Gross, S. D.: Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems, Appl. Soil Ecol., 52, 29–41, https://doi.org/10.1016/j.apsoil.2011.10.002, 2012. 
Download
Short summary
Large-scale and high-resolution maps of rapeseed are important for ensuring global energy security. We generated a new database for the rapeseed planting area (2017–2019) at 10 m spatial resolution based on multiple data. Also, we analyzed the rapeseed rotation patterns in 25 representative areas from different countries. The derived rapeseed maps are useful for many purposes including crop growth monitoring and production and optimizing planting structure.