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Abstract. Large-scale, high-resolution maps of rapeseed (Brassica napus L.), a major oilseed crop, are critical
for predicting annual production and ensuring global energy security, but such maps are still not freely available
for many areas. In this study, we developed a new pixel- and phenology-based algorithm and produced a new
data product for rapeseed planting areas (2017–2019) in 33 countries at 10 m spatial resolution based on multiple
data. Our product is strongly consistent at the national level with official statistics of the Food and Agricultural
Organization of the United Nations. Our rapeseed maps achieved F1 spatial consistency scores of at least 0.81
when compared with the Cropland Data Layer in the United States, the Annual Crop Inventory in Canada,
the Crop Map of England, and the Land Cover Map of France. Moreover, F1 scores based on independent
validation samples ranged from 0.84 to 0.91, implying a good consistency with ground truth. In almost all
countries covered in this study, the rapeseed crop rotation interval was at least 2 years. Our derived maps suggest,
with reasonable accuracy, the robustness of the algorithm in identifying rapeseed over large regions with various
climates and landscapes. Scientists and local growers can use the freely downloadable derived rapeseed planting
areas to help predict rapeseed production and optimize planting structures. The product is publicly available at
https://doi.org/10.17632/ydf3m7pd4j.3 (Han et al., 2021).

1 Introduction

Although fossil fuels are currently the main source of en-
ergy (Fang et al., 2016; Shafiee and Topal, 2009), their over-
exploitation is increasing various threats to human survival,
such as greenhouse gas emission and environmental pollu-
tion (Fang et al., 2016; Höök and Tang, 2013). Biofuel energy
seems to be a promising alternative energy source (Hassan
and Kalam, 2013). Rapeseed (Brassica napus L.) is an im-
portant source of biofuels, edible oil, animal feed, and plant
protein powder (Firrisa et al., 2014; Malça and Freire, 2009;
Sulik and Long, 2016). Data products on rapeseed planting
densities, growth conditions, and productivity are dependent
on precise and accurate planting area maps (Zhang et al.,
2019), but such maps are still unavailable.

Global agricultural statistics on rapeseed in many regions
are derived from field surveys, field sampling, and producer

reports (Arata et al., 2020; Fuglie, 2010). Ground-based
methods, which are time-consuming and labor-intensive, fail
to provide detailed spatial information on rapeseed fields
(J. Wang et al., 2020). In contrast, remote sensing technol-
ogy plays an important role in agricultural monitoring and
yields accurate, objective spatial–temporal crop information
(Dong et al., 2016; Salmon et al., 2015).

Many current land cover products obtained by remote
sensing have a publicly available cropland layer. Exam-
ples include the Fine Resolution Observation and Moni-
toring of Global Land Cover project (Gong et al., 2013),
the Global Land Cover 2000 (GLC2000) map (Bartholomé
and Belward, 2005), ChinaCropPhen1km (Luo et al., 2020),
and Global Food Security-support data at 30 m (GFSAD30)
(Phalke et al., 2020; Xiong et al., 2017). Nevertheless, crop-
land identified by these products is either undifferentiated as
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to crop type, has a coarse spatiotemporal resolution (Telu-
guntla et al., 2018), or does not include rapeseed. Few large-
scale rapeseed maps, especially at 10 m resolution, are cur-
rently available. A decision tree classification method based
on a large number of training samples has been used to clas-
sify various crops for the 30 m resolution Cropland Data
Layer (Boryan et al., 2011) in the USA and the Annual Crop
Inventory in Canada (Fisette et al., 2013), but this method
is hard to apply to other developing regions because ground
training samples are lacking (Xiong et al., 2017). A new
method to map large-scale annual maps with a high spatial
resolution that would be widely applicable to regions with
few ground training samples is thus strongly needed.

Five remote-sensing-based methods for rapeseed mapping
have been developed in recent decades: (1) machine learn-
ing methods (Griffiths et al., 2019; Preidl et al., 2020; She et
al., 2015; Tao et al., 2020), (2) classification based on time
series data (Ashourloo et al., 2019), (3) threshold segmenta-
tion based on phenology (Tian et al., 2019), (4) multi-range
spectral feature fitting (Pan et al., 2013), and (5) mapping
based on HSV (hue, saturation, and value) transformation
and spectral features (Wang et al., 2018). Most of these meth-
ods, however, only produce rapeseed maps for a small area
using very limited imageries taken on rapeseed peak flower-
ing dates (Ashourloo et al., 2019; She et al., 2015). Rapeseed
peak flowering dates vary by area and cultivar because of
differences in natural conditions and cultivation habits, espe-
cially over large regions (d’Andrimont et al., 2020; Ashour-
loo et al., 2019; McNairn et al., 2018). Using the above meth-
ods to automatically map rapeseed areas with a finer resolu-
tion over a large region is thus still a huge challenge.

Taking into consideration the unique phenological charac-
teristics of different crops, various researchers have devel-
oped potentially useful phenology-based methods for crop
identification over large areas (Ashourloo et al., 2019; Dong
et al., 2016; J. Liu et al., 2018; Zhang et al., 2020). These
algorithms, which generate classification rules by analyzing
the unique characteristics of the studied crop, have been suc-
cessfully applied for mapping rice (Dong et al., 2016), soy-
bean (Zhong et al., 2014), corn (Zhong et al., 2016), and sug-
arcane (J. Wang et al., 2020) but have rarely been applied
to rapeseed. Rapeseed has unique reflectance and scattering
characteristics (Ashourloo et al., 2019; McNairn et al., 2018;
Sulik and Long, 2015, 2016) and has three canopy mor-
phologies based on leaves, yellow petals, and pods/branches
(Ashourloo et al., 2019; Rondanini et al., 2014). Each canopy
shape strongly influences how solar radiation is intercepted
(Sulik and Long, 2016). The specific features of reflectance
values and scattering coefficients of rapeseed from S-1/2 data
can thus provide information for the automatic mapping of
rapeseed over larger areas and with a finer resolution.

Another relevant aspect of rapeseed imaging concerns
crop rotation, which is beneficial for pest and disease man-
agement in crop production (Harker et al., 2015; J. Liu et
al., 2018) and a major factor in rapeseed yield (Harker et al.,

2015; Ren et al., 2015). The physical and chemical properties
of soil are altered during crop rotation, and these changes af-
fect rapeseed growth (Ren et al., 2015). Most current studies
have been limited to field observations (Peng et al., 2015).
The spatial distribution of rapeseed rotation in different re-
gions is still unclear because high-resolution rapeseed maps
are lacking. To aid cultivation and management, the charac-
teristics of rapeseed rotation need to be explored.

Taking into account the above-mentioned issues, we inte-
grated multi-source data to develop a new method for identi-
fying rapeseed. We then applied our new method to generate
rapeseed maps with a spatial resolution of 10 m across the
main planting areas of 33 countries from 2017 to 2019 and
analyzed the geographical characteristics of rapeseed culti-
vation and crop rotation.

2 Materials and methods

2.1 Study area

We identified rapeseed planting areas in 33 countries, the
world’s main rapeseed producers, on three continents: North
America, South America, and Europe (Fig. 1). The largest
areas of rapeseed cultivation are located in Canada and the
European Union (Carré and Pouzet, 2014; van Duren et al.,
2015; Rondanini et al., 2012). In 2008, 79 % of biodiesel
feedstock crops in Europe, which produces a large amount
of biodiesel for export every year, were rapeseed (van Duren
et al., 2015). In Chile, the main rapeseed producer in South
America, the yield of rapeseed in 2018 was 3887.7 kg ha−1.
Rapeseed cultivation in these countries is important for food
and energy security (Carré and Pouzet, 2014). The climates
of the three continents are different because of factors such
as latitude and topography (Peel et al., 2007). The rapeseed
planting season varies among countries because of these dif-
ferences in climate and other natural conditions (Singha et
al., 2019; Wang et al., 2018), thus posing great challenges to
the mapping of rapeseed.

2.2 Data

2.2.1 Remote sensing data

We collected imagery from Sentinel-2 (S2) and Sentinel-1
(S1) satellites (Table 1) launched by the European Space
Agency (ESA) (Drusch et al., 2012; Torres et al., 2012).
We used red (b4), green (b3), and blue (b2) spectral bands
with 10 m spatial resolution top-of-atmosphere (TOA) re-
flectance observations. The S2 TOA product includes the
quality assessment (QA) band, which was used to remove
most of the poor-quality images (e.g., cloud-obscured in-
formation) in this study. Removal of all such information
was difficult, however, because of the quality of the QA
band (J. Wang et al., 2020; Zhu et al., 2015). We used
the interferometric wide-swath mode of S1, which provides
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Figure 1. Locations of 10 km radius sample blocks for phenological monitoring in the 33 countries in this study. The 33 countries include
Canada (CAN), United States of America (USA), Chile (CHL), Ireland (IRL), United Kingdom of Great Britain and Northern Ireland (GBR),
France (FRA), Spain (ESP), Netherlands (NLD), Belgium (BEL), Luxembourg (LUX), Germany (DEU), Switzerland (CHE), Denmark
(DNK), Sweden (SWE), Poland (POL), Czechia (CZE), Austria (AUT), Slovenia (SVN), Croatia (HRV), Slovakia (SVK), Hungary (HUN),
Estonia (EST), Latvia (LVA), Lithuania (LTU), Belarus (BLR), Ukraine (UKR), Republic of Moldova (MDA), Romania (ROU), Bulgaria
(BGR), Serbia (SRB), North Macedonia (MKD), Greece (GRC), and Turkey (TUR). Country names and codes are the same as those used
by the Statistics Division of the United Nations Secretariat. The three-digit alphabetical codes assigned by the International Organization for
Standardization can be found at https://unstats.un.org/unsd/methodology/m49/ (last access: 8 June 2021).

dual-band cross-polarization (VV) and vertical transmit–
horizontal receive (VH) with a 12 or 6 d repeat cycle and
10 m spatial resolution (Torres et al., 2012). The S-1/2 im-
ages were obtained using the Google Earth Engine (GEE)
(Gorelick et al., 2017). In addition, we used QA bands to
remove most of the poor-quality images on GEE. (Sample
code can be found at https://code.earthengine.google.com/
?scriptPath=Examples:Datasets/COPERNICUS_S2, last ac-
cess: 8 June 2021) Further details are provided in Table 1.

2.2.2 Digital elevation model

We used a spatial resolution of 1 arcsec (approximately
30 m) elevation data from the Space Shuttle Radar Terrain
Mission (Table 1) (Farr et al., 2007). We then calculated
the spatial distribution of slope using GEE (sample code at
https://code.earthengine.google.com/?scriptPath=Examples:
Datasets/USGS_SRTMGL1_003, last access: 8 June 2021).
Finally, we extracted areas with a slope of less than 10◦ to
mask hilly terrain (Jarasiunas, 2016).

2.2.3 Cropland and agricultural statistical data

In this study, cropland data from the GFSAD30 were used
to identify major farming areas in different countries (Phalke
et al., 2020; Xiong et al., 2017). Existing crop data products
containing rapeseed information comprise four datasets: (1)
the 30 m Annual Crop Inventory (ACI) in Canada (Fisette et
al., 2013) and (2) the 30 m Cropland Data Layer (CDL) in the
USA (Boryan et al., 2011), both of which were downloaded
from GEE; (3) the Crop Map of England (CROME) gener-
ated in GBR; and (4) the 10 m Land Cover Map of France
(LCMF) in France (Inglada et al., 2017). These four crop
layer products were generated from satellite images and a
large number of training sample collections. In this study,
rapeseed maps in ACI, CDL, CROME, and LCMF were used
for accuracy verification at the pixel level. For accuracy ver-
ification, we selected statistics on major crop areas in differ-
ent countries and regions released annually by the Food and
Agricultural Organization of the United Nations (FAO). De-
tails are provided in Table 1.
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2.2.4 Crop calendars

We used two crop phenological datasets to assist in the ex-
traction of rapeseed phenological parameters: crop calendars
in different countries (https://ipad.fas.usda.gov/ogamaps/
cropcalendar.aspx, last access: 8 June 2021) and field records
of crop phenology in Germany. The crop calendars originated
from the United States Department of Agriculture, which
only records rapeseed planting and harvest times for selected
countries. The crop phenology field records in Germany were
in situ observations from crop phenological records shared
by the Deutscher Wetterdienst (DWD) in Germany (Kas-
par et al., 2014). The DWD provides field observations of
crop phenological periods throughout Germany following
the Biologische Bundesanstalt, Bundessortenamt, and Chem-
ical Industry (BBCH) scale (Table 1). DWD records include
the start and end dates of rapeseed flowering (d’Andrimont
et al., 2020; Kaspar et al., 2014). Neither the two crop cal-
endars nor the DWD records contain information on rape-
seed peak flowering dates. To extract rapeseed phenological
parameters, we used all stations that fully recorded start and
end dates of the flowering period from 2017 to 2019, namely,
281, 269, and 253 stations in 2017, 2018, and 2019, respec-
tively.

2.3 Methods

2.3.1 Optical and SAR characteristics during the
rapeseed growing period

We selected available rapeseed parcels and in situ observa-
tions of the DWD from different climate regions and differ-
ent years to analyze the optical (reflectance and vegetation
index) and SAR (VV and VH) characteristics of rapeseed
over time. As an example, Fig. 2 shows the time series of one
rapeseed parcel around a DWD station (station ID: 13126) in
2018. This rapeseed parcel exhibited unique visual charac-
teristics during the flowering period (Fig. 2e). When rape-
seed approached peak flowering, the flowers became yellow
(d’Andrimont et al., 2020; Pan et al., 2013; Tao et al., 2020;
Wang et al., 2018). Rapeseed was yellow-green on the true-
color images of S2 and Google Earth during the flowering
period (Fig. S1). The reflectance of the green and red bands
separately increased – from 0.09 and 0.06, respectively, be-
fore flowering (17 April 2018) to 0.16 and 0.14 at peak flow-
ering (7 May 2018) – and then decreased (Fig. 2a). The re-
flectance of the blue band was lower than that of the red and
green bands during flowering. This outcome is similar to the
results of previous research (Ashourloo et al., 2019; Sulik
and Long, 2015). We also calculated the normalized differ-
ence yellow index (NDYI), which can capture increasing yel-
lowness in a time series (d’Andrimont et al., 2020; Sulik and
Long, 2016), as follows:

NDYI=
green− blue
green+ blue

, (1)

where green is the TOA reflectance of the green band (b3)
of the S2 imagery, and blue is the blue band (b2) reflectance.
NDYI increased from −0.03 on 17 April to 0.21 on 7 May
(Fig. 2b) and reached a peak during rapeseed flowering. This
unique spectral feature of rapeseed during the flowering pe-
riod was due to the yellow petals.

S1 backscattering changes with rapeseed growth. We used
VV and VH time series smoothed by the Savitzky–Golay
(SG) filter (window size 3) (Chen et al., 2004) as inputs to
identify the phenological parameters of rapeseed parcels. We
used the SG filter algorithm in MATLAB 2020b, which un-
covered local minima in both the VV (−11.20, 8 May) and
VH (−15.60, 5 May) time series during rapeseed flowering
(Fig. 2c, d). Furthermore, VH reached a maximum (−9.64,
1 June) during the pod period. Unlike other crops, rape-
seed has two distinct green-up phases: the flowering period
and the pod period (Ashourloo et al., 2019; Bargiel, 2017;
Mercier et al., 2020; Veloso et al., 2017). The petals of rape-
seed decrease the scattering of VV and VH, while the pods
increase the scattering intensity of VH (d’Andrimont et al.,
2020; Bargiel, 2017; McNairn et al., 2009; Mercier et al.,
2020). The NDYI and backscattering (VV and VH) time se-
ries of rapeseed in different climate regions (Fig. S1) exhib-
ited the same characteristics. Therefore, we used both optical
and SAR features to identify rapeseed flowering and pod pe-
riods in this study. Because of differences in the revisit times
of the S1/2 satellites, rapeseed peak flowering dates were de-
fined as the median dates extracted using optical and SAR
indicators.

2.3.2 Sample blocks collected for phenological
monitoring

As a prerequisite to large-scale mapping, the phenology of
rapeseed in different countries must be identified and delin-
eated (Dong et al., 2016; Zhang et al., 2020), but not enough
observational records of rapeseed phenology are available on
a large scale. In accordance with the DWD method of phe-
nological observation (Kaspar et al., 2014), we created sam-
ple blocks with a radius of 10 km over rapeseed-producing
areas of different countries and randomly sampled 10 rape-
seed parcels per block. The rapeseed plots were identified by
their phenological characteristics, which were obtained by
visual interpretation and analysis of reference data, including
high-resolution images available in S2 and Google Earth as
well as spectral reflectance (red and green bands), spectral
index (NDYI), and scattering coefficient profiles (VV and
VH) from the S1/2 time series. Google Earth images taken
during rapeseed flowering were used to assist with the visual
interpretation of rapeseed parcels. Rapeseed parcels with no
available high-quality time-series imagery were omitted. Fi-
nally, 75 sample blocks in 2017, 84 sample blocks in 2018,
and 84 sample blocks in 2019 were uniformly and randomly
collected (Fig. 1).
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Figure 2. Time-series profiles of four features of rapeseed pixels around one DWD station (ID= 13126; longitude: 11.333268424◦ E,
latitude: 52.200000463◦ N) in Germany in 2018. (a) Mean reflectance values (red, green, and blue). (b) Mean NDYI. (c) Mean VH. (d)
Mean VV. The light-shaded areas indicate the standard deviation. The BBCH scale was used for in situ observations of rapeseed phenology,
with BBCH61 and BBCH69 respectively corresponding to the start and end of flowering. (e) The rapeseed parcel around the DWD station is
bounded in red (image source: Copernicus Sentinel-2 data 2018).

2.3.3 Detection of flowering and pod phases in different
countries

To determine the flowering dates of rapeseed in different
countries, we evaluated each phenological sample block
from 2017 to 2019 (Fig. 3). First, we calculated the average
values of all pixels in the 10 previously selected rapeseed
parcels in each block during the rapeseed growth period in
conjunction with the crop calendar. VV and VH time series
for each sampled rapeseed parcel were smoothed using the
SG filter. Second, S1/2 peak flowering dates and pod dates
were derived for all sample blocks according to the method
in Sect. 2.3.1. We found that the peak flowering dates of rape-
seed, especially in Europe, followed an obvious latitudinal
gradient (Fig. 3j).

We also observed that the signal with the maximum VH
occurred within 45 d of the peak flowering date (Fig. S2). We
then calculated the difference in the peak flowering date of
each sample block between different years, which revealed
that the flowering peak dates of most sample parcels were
advanced or delayed by only 10 d (Fig. 4d). Using the same
period for different years in a given area was thus consid-
ered to be reasonable for rapeseed identification in this study.

Previous studies and field observation records have indicated
that the flowering period of rapeseed is approximately 30 d
(d’Andrimont et al., 2020; Chen et al., 2019; Kaspar et al.,
2014; She et al., 2015). Therefore, we divided each month
into two time periods, with the 15th day serving as the di-
viding line. Two consecutive half-months were defined as a
suitable period for classifying flowering dates (Fig. 4a–c).
Finally, we designated the flowering period for each admin-
istrative unit based on the sample blocks.

2.3.4 Development of a phenology- and pixel-based
algorithm for mapping rapeseed

Our temporal profiling of rapeseed parcels along with the re-
sults of many previous studies indicated that the spectrum at
the flowering stage and the scattering signal at the pod stage
are key features for identifying rapeseed (Ashourloo et al.,
2019; Bargiel, 2017; Han et al., 2020; Mercier et al., 2020;
Sulik and Long, 2015; Veloso et al., 2017). We developed
a single phenology- and pixel-based rapeseed mapping al-
gorithm that relies on four features: spectral bands (red and
green), spectral indices (NDYI), polarization bands (VH),
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Figure 3. The spatial distribution of rapeseed flowering dates. (a)–(i) Flowering dates (Julian day) in different sample blocks in 2017, 2018,
and 2019. (j) Characteristics of the latitudinal gradient in Europe. The peak flowering date for each latitudinal interval is the mean of the
flowering dates of all sample blocks within that interval.

Figure 4. Flowering phenology of rapeseed. (a)–(c) The spatial distribution of rapeseed flowering periods among sample blocks. (d) Boxplot
showing changes in peak flowering dates of sample blocks over 3 years.
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Figure 5. “Rainbow” cloud effect origins, examples, and solutions. (a) Staggered detector configuration of S2 (ESA, 2015a). (b)–(f) Exam-
ples of spectral misregistration effects and the performance of cloud-masking methods. Each image was masked with the quality assurance
band (QA60) for the Sentinel-2 TOA image. The red arrows indicate the “rainbow” appearing around clouds at high altitudes in the S2
image (image source: Copernicus Sentinel-2 data). (g) Sentinel-2 TOA image of rapeseed at the flowering stage. The yellow arrow indicates
rapeseed fields. (h) Scatter plot of NDYI vs. NRGBI of rapeseed field samples and samples with a “rainbow” around clouds in the S2 images.
Relative pixel density is indicated by the color scale on the right.

and terrain (slope). Four primary steps were used to map an-
nual planting areas (Fig. 6).

In the first step, we determined the threshold of the fea-
ture indicators. We analyzed the histograms of random sam-
ples selected from different countries as suggested by pre-
vious study (Zou et al., 2018). Green and blue bands and
NDYI (Fig. S3) were similar during the flowering stage in
all samples from the different regions. Most rapeseed pix-
els (98 %) had the following values: red > 0.07, green > 0.11,
and NDYI > 0.05. We observed some pixels, however, with
a relatively high NDYI due to contamination by a cloud with
a “rainbow” appearance, which would cause them to be mis-
classified as rapeseed (Fig. 5). Because of the limited qual-
ity of the QA band and the simple cloud score algorithm,
such misclassifications arising from poor-quality observa-
tions from the S2 image cannot be removed (X. Wang et al.,
2020b; Zhu et al., 2015). The rainbow in the cloud is the re-
sult of the push-broom design of S2 (Fig. 5a) and spectral
misregistration (for more details, see ESA, 2015a, and b).
Taking into account the relative displacement of each spec-
tral channel sensor in the S2 push-broom design (Frantz et
al., 2018; X. Liu et al., 2020; Zhao et al., 2018), we devel-
oped a new spectral index (NRGBI) to reduce the influence

of the rainbow (Eq. 2):

NRGBI=
red− blue
red+ blue

−
green− blue
green+ blue

, (2)

where red, green, and blue are the TOA reflectance val-
ues of the red (b4), green (b3), and blue (b2) bands of
the S2 imagery, respectively. A scatter plot of NDYI vs.
NRGBI of rapeseed parcel samples and “rainbow” samples
around clouds (visual interpretation) demonstrated that the
NRGBI (threshold=−0.05) can effectively distinguish rape-
seed from the rainbow (Fig. 5h). The GEE code for NRGBI
index calculations can be found at https://code.earthengine.
google.com/a39fc699a276d018778d59c5b085d960 (last ac-
cess: 8 June 2021). In addition, NRGBI can be calculated us-
ing Eq. (2) in other GIS software programs (e.g., QGIS and
ArcGIS) on a local computer.

The second step was the identification of all rapeseed pix-
els from different images during the flowering period and
their subsequent aggregation into annual rapeseed planting
areas (Fig. 6). Because peak flowering dates and the number
of available images of rapeseed fields vary within a region
(Fig. S4), rapeseed classifications based on a single image
may fail to capture rapeseed flowering dynamics (Ashourloo
et al., 2019). To avoid misclassification due to poor-quality
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Figure 6. Workflow for mapping rapeseed areas using the proposed phenology- and pixel-based algorithm. GFSAD30, Global Food Security-
Support Analysis Data at 30 m; NDYI, normalized difference yellowness index; NRGBI, the new spectral index; DWD, Deutscher Wetter-
dienst; FAO, Food and Agriculture Organization of the United Nations; RMSE, root-mean-square error; MAE, mean absolute error; R2,
R-squared; CDL, Cropland Data Layer; ACI, Annual Crop Inventory; CROME, Crop Map of England; LCMF, Land Cover Map of France;
UA, user’s accuracy; PA, producer’s accuracy; F1, F1 score.

observations during the rapeseed flowering stage, we aggre-
gated all results classified from available S2 images during
this period. The use of a larger number of images resulted in
better performance (Fig. S4).

In the third step, we combined optical data with SAR im-
ages to ensure the accuracy of the rapeseed maps. High VH
values during the pod stage are another distinct feature that
can distinguish rapeseed from other crops (Mercier et al.,
2020; Tian et al., 2019; Van Tricht et al., 2018; Veloso et
al., 2017). Taking into consideration the variability of flow-
ering in different fields and the duration of the pod stage
(Sect. 2.3.2), we calculated the maximum VH between the
second half of the flowering stage and the next 30 d (ca. 45 d;
Fig. 6). Within this 45 d interval, at least three S1 satellite im-
ages were available in the study area. In addition, areas with
a slope ≥ 10◦ were removed (Jarasiunas, 2016). All pixels
meeting these requirements were defined as rapeseed.

In the fourth step, we removed “salt and pepper” noise by
applying a threshold based on the number of connected com-
ponents (objects), that is, the size of the neighborhood in pix-
els, and then filling the gaps inside the parcels (Hirayama et
al., 2019). We used an eight-connected rule, which means
that the edges or corners of the pixels were connected. If
two adjacent pixels were connected, they were considered
part of the same object (https://www.mathworks.com/help/
images/ref/bwareaopen.html, last access: 8 June 2021). The
bwareaopen function in MATLAB (version 2020b) was used

to remove objects not meeting a given threshold. The thresh-
olds of different indicators in different regions are given in
Table S1.

2.4 Accuracy assessment

To test the accuracy of our proposed algorithm, we first com-
pared rapeseed areas retrieved using the new method with
FAO statistics. Our rapeseed data constituted a binary (0 or
1) map with a spatial resolution of 10 m. We calculated the
total area of rapeseed maps in each country and compared
these numbers with FAO national rapeseed statistics. To ver-
ify the accuracy of rapeseed mapping, we used the RMSE
(Eq. 3), MAE (Eq. 4), and coefficient of determination (R2,
Eq. 5), which were calculated as follows:

RMSE=

√∑n

i=1

(yi − fi)2

n
, (3)

MAE=
1
n

∑n

i=1
|yi − fi | , (4)

R2
=

(∑n
i=1(yi − yi)(fi − fi)

)2∑n
i=1(yi − yi)2∑n

i=1
(
fi − fi

)2 , (5)

where n is the total number of countries, yi is the mapped
rapeseed planting area for country i, yi is the corresponding
mean value, fi is the rapeseed planting area recorded by the
FAO for country i, and fi is the corresponding mean value.
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We also compared our rapeseed maps with four open-
access datasets that include rapeseed layers at the pixel level:
ACI, CDL, CROME, and LCMF in Canada, the USA, GBR,
and France, respectively. We used the data from 2018 and
2019 in these datasets as a reference (Boryan et al., 2011;
Fisette et al., 2013). To unify the spatial resolution of our
rapeseed maps, we resampled CDL, ACI, and CROME to
10 m resolution to allow comparison. To check the accuracy
of our classification, we calculated UA (Eq. 6), PA (Eq. 7),
and F1 (Eq. 8) based on confusion matrices (Table S2).

We also randomly selected verification samples based on
previous studies (Pekel et al., 2016; X. Wang et al., 2020a) to
validate our rapeseed maps. A 0.2◦× 0.2◦ latitude–longitude
grid was superimposed on our 2018 rapeseed map (Fig. S5).
Two points – one rapeseed and the other non-rapeseed – were
randomly generated in each grid by visually interpreting im-
ages available from S2 and Google Earth along with spectral
reflectance (red and green bands), spectral index (NDYI), and
scattering coefficient (VV and VH) profiles from the S1/2
time series. Confusion matrices were similarly used to assess
accuracy according to Eqs. (6)–(8):

UA=
xij

xj

, (6)

PA=
xij

xi

, (7)

F1= 2×
UA×PA
UA+PA

. (8)

In the above equations, xij is the value of the ith row and j th
column, xi is the sum of the ith row, and xj is the sum of the
j th column. Although the statistical data and existing prod-
ucts did not completely reflect the actual areas and locations
of cultivated rapeseed, these datasets were still beneficial for
validating the accuracy of our rapeseed maps at national and
pixel scales.

3 Results

3.1 Accuracy assessment

We compared our derived rapeseed areas with those from
FAO statistics. The total planting areas of rapeseed exhib-
ited good consistency with the agricultural statistics at the
national level, with a RMSE of 1459.64 km2, a MAE of
785.25 km2, and an R2 of 0.88 (Fig. 7). We found that the de-
rived areas in 2018 were larger than those in 2017 and 2019,
especially in countries with relatively small rapeseed areas.
The greater availability of S2 images and higher-quality data
in 2018 may have contributed to the derivation of the larger
areas by our new method (X. Liu et al., 2020).

As indicated by their accuracy based on confusion matrix
values, our rapeseed maps were consistent at the pixel level
with maps of the American CDL in 2018 and 2019 and the
Canadian ACI, British CROME, and French LCMF in 2018

Figure 7. Comparison of rapeseed areas with FAO statistics at the
national level.

Figure 8. Classification validation results. (a) Percentage of rape-
seed areas based on FAO statistics classified as such in existing
products and our rapeseed map database. (b) Accuracy of our clas-
sifications in four countries (Canada, USA, GBR, and France) us-
ing existing products as a reference. UA, user’s accuracy; PA, pro-
ducer’s accuracy; F1, F1 score.

(Table S3). As shown in Fig. 8a, the rapeseed areas calcu-
lated from our maps were consistently more comparable to
FAO statistics than those from existing products. UA, PA,
and F1, which varied by country, ranged from 0.93–0.97,
0.70–0.80, and 0.81–0.86, respectively (Fig. 8b). The rape-
seed areas determined using our algorithm accounted for ap-
proximately 71 % of the 2018 CDL, 71 % of the 2018 ACI,
80 % of the 2018 CROME, 70 % of the 2018 LCMF, and
79 % of the 2019 CDL. In addition, the distributions on our
rapeseed maps were consistent with those of existing prod-
ucts at the pixel level (Figs. S7 and S8). The differences in
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Figure 9. Spatially explicit details of rapeseed maps in eight countries with diverse crop structures in different years. The names of climate
zones are given in yellow. RGB composite images comprise red (b4), green (b3), and blue (b2) bands from Sentinel-2 good-quality obser-
vations during the rapeseed flowering period (image source: Copernicus Sentinel-2 data). Climate zone data are from the Food Insecurity,
Poverty and Environment Global GIS Database.

accuracy may have been due to the varied number of high-
quality images available in different regions (Dong et al.,
2016). Despite the different ground conditions, methods, im-
ages, and spatial resolutions among products, the results of
our comparison further verify the accuracy of our rapeseed
maps (Gong et al., 2020; Singha et al., 2019).

According to confusion matrix values (Table S4) based on
random sampling points, the accuracy of our rapeseed maps
varied in different regions. We obtained the highest accuracy
(F1, 0.91) in zone II, followed by zone III (F1, 0.9), and zone
I (F1, 0.84). These disparities may be due to differences in
the availability of S1/2 images among the studied areas.

3.2 Additional features of rapeseed maps derived using
our new method

To further characterize the rapeseed maps generated in this
study, we selected various images in several areas of each
country. The rapeseed maps showed good spatial consistency
with the actual areas of rapeseed cultivation on the ground
(Figs. 9 and S6). Fields with various planting densities, rang-
ing from densely planted areas in Canada (Fig. 9a) to rela-
tively sparse ones, such as in Chile (Fig. 9b) and European
countries (e.g., Fig. 9c, d) (Lowder et al., 2016); various
shapes, ranging from regular rectangles (e.g., Fig. 9a, h) to
irregular parcels (Fig. 9c, d); and different climatic condi-

tions, ranging from a temperate oceanic climate (Fig. 9c–e)
to temperate sub-continental (Fig. 9a, f) or even subtropical
(Fig. 9b) ones, were clearly and comprehensively indicated
on our maps. The fragmented pattern of land in some Euro-
pean countries, especially that in eastern and central Europe
due to land reform in 1989 (Hartvigsen, 2013, 2014), was
clearly evident; Fig. 9f shows land in Estonia as an example
(Jürgenson and Rasva, 2020; Looga et al., 2018). Although
the algorithm was applied to different climates, terrains, and
landscapes over a very large region, its classification accu-
racy across 33 countries was satisfactory. Our rapeseed maps
can thus effectively identify fields in detail with high spatial
resolution and clear field boundaries. More rapeseed classifi-
cation details can be found in Fig. S6.

3.3 Spatial patterns of rapeseed planting areas

In our maps, the largest total area of rapeseed cultivation
worldwide was in Canada. Along with GBR, Poland, and
Ukraine, the two leading rapeseed growing countries in Eu-
rope – France and Germany – accounted for approximately
66.3 % of European rapeseed areas. The 3-year (2017–2019)
spatial patterns were consistent at the national level (Fig. S9).
We also plotted the geographic distribution of rapeseed ar-
eas along latitudinal and longitudinal gradients in the study
areas (Fig. 10). With the exception of steep mountainous re-
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Figure 10. Spatial distribution of rapeseed areas at 10 m resolution along latitudinal and longitudinal gradients in 2018. (a) Europe and
Turkey. (b) Canada and the USA.

gions and cold northern areas, rapeseed is widely planted in
European countries at latitudes of 46–53◦ N and longitudes
of 2◦W–4◦ E, 9–19◦ E, and 22–27◦ E (Fig. 10a). In Canada
and the USA, areas with latitudes of 49–54 and 56–57◦ N
and longitudes of 117 to 118◦W and 98 to 114◦W have high
densities of planted rapeseed (Fig. 10b).

4 Discussion

4.1 Investigation of rapeseed rotation systems

We obtained 3-year rapeseed maps at a spatial resolution of
10 m whose high accuracy was validated by annual national
statistics books, open-access public products, and random
sampling points. These rapeseed maps provided a new op-
portunity to investigate rapeseed rotation systems (X. Liu et
al., 2018). Crop rotation information is an important factor

in crop yield management (Harker et al., 2015; X. Liu et al.,
2018; Ren et al., 2015; Rudiyanto et al., 2019; Zhou et al.,
2015). To analyze rapeseed rotation patterns, we selected 25
representative areas (Fig. S10) that met the following three
criteria: high image quality, high rapeseed classification ac-
curacy, and large extent of planted rapeseed. Rapeseed rota-
tion in these areas was calculated based on the frequency of
each rapeseed pixel (Fig. 11).

Because only 3 years (2017–2019) of rapeseed maps were
available, the longest observable rapeseed rotation break was
2 years. To more accurately discern the pattern of rapeseed
rotation, we thus classified rapeseed rotation breaks in this
study into three types: ≥ 2 years, 1 year, and 0 years. Most
countries, especially European ones, were characterized by
rotation breaks that were ≥ 2 years (mostly green areas in
Fig. 12). In Canada, 70 % of fields were subjected to rota-
tion breaks of ≥ 2 years, with the remainder (30 %) follow-
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Figure 11. Spatial distribution of three rotation schedules in different areas from 2017–2019.

ing a 1-year break pattern (Fig. 12a). As shown in the his-
togram in Fig. 12d, we identified 20 locations with ≥ 2-year
rotation breaks, which corresponds to 90 % of planting areas.
Many previous studies have found that a 2- or 3-year rotation
break significantly reduces the number of fungal spores, es-
pecially those of Rhizoctonia solani and Leptosphaeria mac-
ulans, thus suggesting that a rotation system is an important
component of disease control in rapeseed (Gill, 2018; Harker
et al., 2015; Ren et al., 2015; Zhou et al., 2015). Rapeseed
rotation also improves yield, moisture, and fertility and re-
duces weeds and pest insects (Bernard et al., 2012; Harker
et al., 2015; Pardo et al., 2015; Peng et al., 2015; Ren et al.,
2015). Additional efforts to produce longer time-series rape-
seed maps and acquire detailed rotation information are thus
needed.

4.2 Uncertainty

The generation of annual high-resolution maps for a spe-
cific crop over a large region is a major challenge (Dong et
al., 2016; Luo et al., 2020; Zhang et al., 2020). Pixel-and
phenological-based algorithms, multisource remote sensing
data, and the GEE are useful for mapping rapeseed at high
resolution and over large areas. In addition to these advan-
tages, our proposed algorithm does not require large amounts
of training sample data and reduces disturbance due to agro-
nomic differences by combining images from multiple dates.
Nevertheless, uncertainty still exists due to several issues.
The first of these factors is the cropland layer. We used
GFSAD30 datasets to identify cropland; however, the GF-
SAD30 has limitations, such as classification errors (Phalke
et al., 2020). A second contributory aspect is the number
of satellite images available. Although our annual rapeseed
maps are consistent with FAO statistics and show higher ac-
curacy compared with existing products, they are limited by
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Figure 12. Rapeseed crop rotation. (a)–(c) Proportions of rapeseed planting areas subjected to rotation breaks of 0, 1, or ≥ 2 years. (d) The
number of areas in (a)–(c) subjected to breaks of at least 2 years.

Figure 13. Example showing the effect of low-quality observations on classification accuracy. (a) Rapeseed map of an area of France
in 2017 that contains an error (longitude: 2.059824◦ E, latitude: 46.734987◦ N). (b) Availability of time-series Sentinel-2 images during
rapeseed flowering phases. (c) Comparison of the time series of different sites showing how the peak NDYI has been missed.

the quality of the observations during critical growth stages.
For example, Fig. 13a shows an error in an area of France
in 2017 that can be attributed to the lack of clear S2 images
during the rapeseed flowering period (Fig. 13b). Because the
rapeseed flowering period is generally characterized by high
NDYI and high red and green band reflectance, rapeseed pix-
els are likely to be misclassified if images are missing dur-
ing the flowering stage (Fig. 13c). A third issue concerns the
threshold for different indicators, which is a key factor for
mapping crops (Ashourloo et al., 2019; Dong et al., 2016; X.
Liu et al., 2020; J. Wang et al., 2020; Zhang et al., 2015).
Although reference thresholds for the three continents in this
study are provided, they should be applied with caution to
other regions. Finally, the complexity of the ground environ-

ment can contribute to uncertainty. For example, landscape
types might impact the accuracy of rapeseed maps (J. Wang
et al., 2020).

5 Data availability

The rapeseed maps produced with 10 m resolution in this
study are accessible at Mendeley Data (http://dx.doi.org/10.
17632/ydf3m7pd4j.3) (Han et al., 2021). The dataset in-
cludes a set of GeoTIFF images in the ESPG: 4326 spatial
reference system. The values 1 and 0 represent rapeseed and
non-rapeseed, respectively. We encourage users to indepen-
dently verify the rapeseed maps. In addition, Sentinel 1/2 im-
ages, CDL, ACI, and SRTM are available on GEE (https://
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developers.google.com/earth-engine/datasets/, Google Earth
Engine Data Catalog, 2021). For more detailed information
about the data collected in this work, see Table 1.

6 Conclusions

Large-scale, high-resolution rapeseed maps are the basis for
crop growth monitoring and yield prediction. We developed a
new method for mapping rapeseed based on spectral and po-
larization features and multi-source data. We used the new al-
gorithm to produce three annual rapeseed maps (2017–2019)
at 10 m spatial resolution in 33 countries. According to the
results of three different verification methods, our rapeseed
maps are reasonably accurate. Compared with existing prod-
ucts at the pixel level in Canada, USA, GBR, and France, PA,
UA, and F1 were 0.70–0.80, 0.93–0.97, and 0.81–0.86, re-
spectively. In addition, F1 ranged from 0.84 to 0.91 based on
independent validation samples. Our approach reduces mis-
classifications due to different planting times and low-quality
observations to some degree. The 10 m rapeseed maps pro-
vide more spatial details of rapeseed. Finally, we observed
that the rapeseed crop rotation interval is at least 2 years
in almost all countries in this study. Our proposed rapeseed
mapping method can be applied to other regions. The derived
rapeseed data product is useful for many purposes, including
crop growth monitoring and production and rotation system
planning.

Supplement. The supplement related to this article is available
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