Articles | Volume 13, issue 5
https://doi.org/10.5194/essd-13-2165-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-2165-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers
Pavol Zahorec
Earth Science Institute, Slovak Academy of Sciences, Dúbravská
cesta 9, 840 05 Bratislava, Slovakia
Juraj Papčo
Department of Theoretical Geodesy and Geoinformatics, Faculty of Civil
Engineering, Slovak University of Technology in Bratislava, Radlinského
11, 810 05 Bratislava, Slovakia
Roman Pašteka
Department of Engineering Geology, Hydrogeology and Applied Geophysics, Faculty of Natural
Sciences, Comenius University in Bratislava, Mlynska dolina,
Ilkoviéčova 6, 842 48 Bratislava, Slovakia
Miroslav Bielik
Earth Science Institute, Slovak Academy of Sciences, Dúbravská
cesta 9, 840 05 Bratislava, Slovakia
Department of Engineering Geology, Hydrogeology and Applied Geophysics, Faculty of Natural
Sciences, Comenius University in Bratislava, Mlynska dolina,
Ilkoviéčova 6, 842 48 Bratislava, Slovakia
Sylvain Bonvalot
Bureau Gravimétrique International, Toulouse, France,
GET, University of Toulouse, France
CNRS, IRD, UT3, CNES, Toulouse, France
Carla Braitenberg
Department of Mathematics and Geosciences, University of Trieste, Via
Edoardo Weiss 1, 34128 Trieste, Italy
Jörg Ebbing
Institute of Geosciences, Christian Albrechts University Kiel,
Otto-Hahn-Platz 1, 24118 Kiel, Germany
Gerald Gabriel
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover,
Germany
Institute of Geology, Leibniz University Hannover, Callinstraße 30,
30167 Hannover, Germany
Andrej Gosar
Slovenian Environmental Agency, Seismology and Geology Office, Vojkova 1b,
1000 Ljubljana, Slovenia
Faculty of Natural Sciences and Engineering, University
of Ljubljana, Aškerčeva
12, 1000 Ljubljana, Slovenia
Adam Grand
Department of Engineering Geology, Hydrogeology and Applied Geophysics, Faculty of Natural
Sciences, Comenius University in Bratislava, Mlynska dolina,
Ilkoviéčova 6, 842 48 Bratislava, Slovakia
Hans-Jürgen Götze
CORRESPONDING AUTHOR
Institute of Geosciences, Christian Albrechts University Kiel,
Otto-Hahn-Platz 1, 24118 Kiel, Germany
György Hetényi
Institute of Earth Sciences, University of Lausanne, UNIL-Mouline
Géopolis, 1015 Lausanne, Switzerland
Nils Holzrichter
Institute of Geosciences, Christian Albrechts University Kiel,
Otto-Hahn-Platz 1, 24118 Kiel, Germany
Edi Kissling
Department of Earth Sciences, Federal Institute of Technology (ETH),
Sonneggstrasse 5, 8092 Zürich, Switzerland
Urs Marti
Federal Office of Topography swisstopo, Wabern, Switzerland
Bruno Meurers
Department of Meteorology and Geophysics, University of Vienna, 1090
Vienna, Althanstraße 14, UZA 2, Austria
Jan Mrlina
Institute of Geophysics, Czech Academy of Sciences, Boční
II/1401, 141 31 Prague, Czech Republic
Ema Nogová
Earth Science Institute, Slovak Academy of Sciences, Dúbravská
cesta 9, 840 05 Bratislava, Slovakia
Department of Engineering Geology, Hydrogeology and Applied Geophysics, Faculty of Natural
Sciences, Comenius University in Bratislava, Mlynska dolina,
Ilkoviéčova 6, 842 48 Bratislava, Slovakia
Alberto Pastorutti
Department of Mathematics and Geosciences, University of Trieste, Via
Edoardo Weiss 1, 34128 Trieste, Italy
Corinne Salaun
Service Hydrographique et Océanographique de la Marine, 13 rue du
Chatellier 29200 Brest, France
Matteo Scarponi
Institute of Earth Sciences, University of Lausanne, UNIL-Mouline
Géopolis, 1015 Lausanne, Switzerland
Josef Sebera
Institute of Geosciences, Christian Albrechts University Kiel,
Otto-Hahn-Platz 1, 24118 Kiel, Germany
Lucia Seoane
Bureau Gravimétrique International, Toulouse, France,
GET, University of Toulouse, France
CNRS, IRD, UT3, CNES, Toulouse, France
Peter Skiba
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover,
Germany
Eszter Szűcs
Institute of Earth Physics and Space Science (ELKH EPSS),
Csatkai street 6-8, 9400 Sopron, Hungary
Matej Varga
Department of Civil, Environmental and Geomatic Engineering, Federal Institute
of Technology (ETH), Stefano-Franscini-Platz
5, 8093 Zürich, Switzerland
Related authors
Katarína Pukanská, Karol Bartoš, Juraj Gašinec, Roman Pašteka, Pavol Zahorec, Juraj Papčo, Ľubomír Kseňak, Pavel Bella, Erik Andrássy, Laura Dušeková, and Diana Bobíková
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-110, https://doi.org/10.5194/tc-2023-110, 2023
Manuscript not accepted for further review
Short summary
Short summary
The study reviews methodologies for surveying the ice filling and its dynamics in Dobšiná Ice Cave. We evaluated the suitability of using geodetic (tacheometry, laser scanning, digital photogrammetry) and geophysical (microgravimetry, georadar) technologies depending on the expected results. The cave ice is characterized by its dynamic inter-annual changes, dependent on the climate and anthropogenic factors. There is a constant need for regular monitoring to preserve this natural phenomenon.
Thomas Burschil, Daniel Köhn, Matthias Körbe, Gerald Gabriel, Johannes Großmann, Gustav Firla, and Markus Fiebig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2370, https://doi.org/10.5194/egusphere-2025-2370, 2025
Short summary
Short summary
The study investigates a glacially overdeepened basin near Schäftlarn, Germany, to develop a combined workflow for high-resolution seismic reflection (HRSR) and full-waveform inversion (FWI). Seismic data from various sources and receiver types reveal detailed basin structures, including previously unknown internal reflectors. HRSR with S-waves show more details than P-waves. First FWI delivers consistent velocity models.
Jonas Liebsch, Jörg Ebbing, and Kenichi Matsuoka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1905, https://doi.org/10.5194/egusphere-2025-1905, 2025
Short summary
Short summary
The evolution of the Antarctic ice sheets depends, in addition to factors representing the warming climate, on the earth structure beneath the ice. What’s beneath the ice is largely inaccessible for direct sampling, but can be interpreted with the use of satellite or airborne measurements. We apply an unsupervised machine learning method to such data in East Antarctica to test whether this can ease interpretation and hence our understanding of what rocks are beneath the ice.
Florent Cambier, José Darrozes, Muriel Llubes, Lucia Seoane, and Guillaume Ramillien
EGUsphere, https://doi.org/10.5194/egusphere-2025-558, https://doi.org/10.5194/egusphere-2025-558, 2025
Short summary
Short summary
The Greenland Ice Sheet has been losing mass since the 1990s, driven by atmospheric and ocean interactions. Analyzing 2002–2023 gravimetric satellite data, this study identifies five principal modes of ice mass variability. Correlations between them, climatic indices, and meteorological parameters such as the temperature and precipitations reveal the presence of interactions at annual to decadal scales. Understanding these drivers is key to predicting future changes and sea-level rise.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck
Solid Earth, 15, 1419–1443, https://doi.org/10.5194/se-15-1419-2024, https://doi.org/10.5194/se-15-1419-2024, 2024
Short summary
Short summary
Transform faults are conservative plate boundaries where no material is added or destroyed. Oceanic fracture zones are their inactive remnants and record tectonic processes that formed oceanic crust. In this study, we combine high-resolution data sets along fracture zones in the Gulf of Guinea to demonstrate that their formation is characterized by increased metamorphic conditions. This is in line with previous studies that describe the non-conservative character of transform faults.
Sarah Beraus, Thomas Burschil, Hermann Buness, Daniel Köhn, Thomas Bohlen, and Gerald Gabriel
Sci. Dril., 33, 237–248, https://doi.org/10.5194/sd-33-237-2024, https://doi.org/10.5194/sd-33-237-2024, 2024
Short summary
Short summary
We conducted seismic crosshole experiments with a sparker source in order to obtain a high-resolution subsurface velocity model in the glacially overdeepened Tannwald Basin (ICDP site 5068_1). The data show complex wave fields that contain a lot of information but also present challenges. Nevertheless, isotropic first-arrival travel-time tomography provides the first high-resolution subsurface models that correlate well with the sonic logs and the core recovered from one of the three boreholes.
Andrew Greenwood, György Hetényi, Ludovic Baron, Alberto Zanetti, Othmar Müntener, and the MOS field team
Sci. Dril., 33, 219–236, https://doi.org/10.5194/sd-33-219-2024, https://doi.org/10.5194/sd-33-219-2024, 2024
Short summary
Short summary
A set of seismic reflection surveys were conducted in May 2019 in the Ossola Valley, Western Italian Alps, to image the geologic structure below two proposed boreholes. The boreholes plan to penetrate the upper 2 km of the lower continental crust, a zone of much scientific interest. The seismic surveys have defined the valley structure to depths of 550 m, determined the dip of geological banding, and ruled out the possibility of major geologic drilling hazards that could be encountered.
Ján Feranec, Juraj Papčo, Šimon Opravil, Daniel Szatmári, Tomáš Goga, Róbert Fencík, Miloš Rusnák, Monika Kopecká, Róbert Pazúr, Jozef Nováček, Dominik Abrahám, and Michal Sviček
Abstr. Int. Cartogr. Assoc., 7, 38, https://doi.org/10.5194/ica-abs-7-38-2024, https://doi.org/10.5194/ica-abs-7-38-2024, 2024
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024, https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Short summary
Geothermal heat flow influences ice sheet dynamics, making its investigation important for ice-covered regions. Here we evaluate the sparse measurements for their agreement with regional solid Earth models, as well as with a statistical approach. This shows that some points should be excluded from regional studies. In particular, the NGRIP point, which strongly influences heat flow maps and the distribution of high basal melts, should be statistically considered an outlier.
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, and Andrej Gosar
Nat. Hazards Earth Syst. Sci., 24, 651–672, https://doi.org/10.5194/nhess-24-651-2024, https://doi.org/10.5194/nhess-24-651-2024, 2024
Short summary
Short summary
We considered two parameters that affect seismic hazard assessment in Slovenia. The first parameter we determined is the thickness of the lithosphere's section where earthquakes are generated. The second parameter is the activity of each fault, which is expressed by its average displacement per year (slip rate). Since the slip rate can be either seismic or aseismic, we estimated both components. This analysis was based on geological and seismological data and was validated through comparisons.
Z. Wang, M. Varga, T. Medić, and A. Wieser
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 597–604, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-597-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-597-2023, 2023
Angelika Graiff, Matthias Braun, Amelie Driemel, Jörg Ebbing, Hans-Peter Grossart, Tilmann Harder, Joseph I. Hoffman, Boris Koch, Florian Leese, Judith Piontek, Mirko Scheinert, Petra Quillfeldt, Jonas Zimmermann, and Ulf Karsten
Polarforschung, 91, 45–57, https://doi.org/10.5194/polf-91-45-2023, https://doi.org/10.5194/polf-91-45-2023, 2023
Short summary
Short summary
There are many approaches to better understanding Antarctic processes that generate very large data sets (
Antarctic big data). For these large data sets there is a pressing need for improved data acquisition, curation, integration, service, and application to support fundamental scientific research, and this article describes and evaluates the current status of big data in various Antarctic scientific disciplines, identifies current gaps, and provides solutions to fill these gaps.
Daniel Szatmári, Monika Kopecká, Ján Feranec, Tomáš Goga, Šimon Opravil, Michal Sviček, Róbert Fencík, and Juraj Papčo
Abstr. Int. Cartogr. Assoc., 6, 253, https://doi.org/10.5194/ica-abs-6-253-2023, https://doi.org/10.5194/ica-abs-6-253-2023, 2023
Katarína Pukanská, Karol Bartoš, Juraj Gašinec, Roman Pašteka, Pavol Zahorec, Juraj Papčo, Ľubomír Kseňak, Pavel Bella, Erik Andrássy, Laura Dušeková, and Diana Bobíková
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-110, https://doi.org/10.5194/tc-2023-110, 2023
Manuscript not accepted for further review
Short summary
Short summary
The study reviews methodologies for surveying the ice filling and its dynamics in Dobšiná Ice Cave. We evaluated the suitability of using geodetic (tacheometry, laser scanning, digital photogrammetry) and geophysical (microgravimetry, georadar) technologies depending on the expected results. The cave ice is characterized by its dynamic inter-annual changes, dependent on the climate and anthropogenic factors. There is a constant need for regular monitoring to preserve this natural phenomenon.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022, https://doi.org/10.5194/se-13-849-2022, 2022
Short summary
Short summary
Several alternative gravity modelling techniques and associated numerical codes with their own advantages and limitations are available for the solid Earth community. With upcoming state-of-the-art lithosphere density models and accurate global gravity field data sets, it is vital to understand the differences of the various approaches. In this paper, we discuss the four widely used techniques: spherical harmonics, tesseroid integration, triangle integration, and hexahedral integration.
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022, https://doi.org/10.5194/se-13-431-2022, 2022
Short summary
Short summary
We present a new 3D crustal model of Volgo–Uralia, an eastern segment of the East European craton. We built this model by processing the satellite gravity data and using prior crustal thickness estimation from regional seismic studies to constrain the results. The modelling revealed a high-density body on the top of the mantle and otherwise reflected the main known features of the Volgo–Uralian crustal architecture. We plan to use the obtained model for further geothermal analysis of the region.
Jaroslava Plomerová, Helena Žlebčíková, György Hetényi, Luděk Vecsey, Vladislav Babuška, and AlpArray-EASI and AlpArray working
groups
Solid Earth, 13, 251–270, https://doi.org/10.5194/se-13-251-2022, https://doi.org/10.5194/se-13-251-2022, 2022
Short summary
Short summary
We present high-resolution tomography images of upper mantle structure beneath the E Alps and the adjacent Bohemian Massif. The northward-dipping lithosphere, imaged down to ∼200 km beneath the E Alps without signs of delamination, is probably formed by a mixture of a fragment of detached European plate and the Adriatic plate subductions. A detached high-velocity anomaly, sub-parallel to and distinct from the E Alps heterogeneity, is imaged at ∼100–200 km beneath the southern part of the BM.
Gregor Rajh, Josip Stipčević, Mladen Živčić, Marijan Herak, Andrej Gosar, and the AlpArray Working Group
Solid Earth, 13, 177–203, https://doi.org/10.5194/se-13-177-2022, https://doi.org/10.5194/se-13-177-2022, 2022
Short summary
Short summary
We investigated the 1-D velocity structure of the Earth's crust in the NW Dinarides with inversion of arrival times from earthquakes. The obtained velocity models give a better insight into the crustal structure and show velocity variations among different parts of the study area. In addition to general structural implications and a potential for improving further work, the results of our study can also be used for routine earthquake location and for detecting errors in seismological bulletins.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021, https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
Short summary
PALEOSTRIP has been developed in the framework of past Antarctic ice sheet reconstructions for periods when bathymetry around Antarctica differed substantially from today. It has been designed for users with no knowledge of numerical modelling and allows users to switch on and off the processes involved in backtracking and backstripping. Applications are broad, and it can be used to restore any continental margin bathymetry or sediment thickness and to perform basin analysis.
Irene Bianchi, Elmer Ruigrok, Anne Obermann, and Edi Kissling
Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, https://doi.org/10.5194/se-12-1185-2021, 2021
Short summary
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
Jiří Kvapil, Jaroslava Plomerová, Hana Kampfová Exnerová, Vladislav Babuška, György Hetényi, and AlpArray Working Group
Solid Earth, 12, 1051–1074, https://doi.org/10.5194/se-12-1051-2021, https://doi.org/10.5194/se-12-1051-2021, 2021
Short summary
Short summary
This paper presents a high-resolution 3-D shear wave velocity (vS) model of the Bohemian Massif crust imaged from high-density data and enhanced depth sensitivity of tomographic inversion. The dominant features of the model are relatively higher vS in the upper crust than in its surrounding, a distinct intra-crustal interface, and a velocity decrease in the lower part of the crust. The low vS in the lower part of the crust is explained by the anisotropic fabric of the lower crust.
Maximilian Lowe, Jörg Ebbing, Amr El-Sharkawy, and Thomas Meier
Solid Earth, 12, 691–711, https://doi.org/10.5194/se-12-691-2021, https://doi.org/10.5194/se-12-691-2021, 2021
Short summary
Short summary
This study estimates the gravitational contribution from subcrustal density heterogeneities interpreted as subducting lithosphere beneath the Alps to the gravity field. We showed that those heterogeneities contribute up to 40 mGal of gravitational signal. Such density variations are often not accounted for in Alpine lithospheric models. We demonstrate that future studies should account for subcrustal density variations to provide a meaningful representation of the complex geodynamic Alpine area.
Eszter Szűcs, Sándor Gönczy, István Bozsó, László Bányai, Alexandru Szakacs, Csilla Szárnya, and Viktor Wesztergom
Nat. Hazards Earth Syst. Sci., 21, 977–993, https://doi.org/10.5194/nhess-21-977-2021, https://doi.org/10.5194/nhess-21-977-2021, 2021
Short summary
Short summary
Sinkhole formation and post-collapse deformation in the Solotvyno salt mining area was studied where the salt dissolution due to water intrusion poses a significant risk. Based on a Sentinel-1 data set, remarkable surface deformation with a maximum rate of 5 cm/yr was revealed, and it was demonstrated that the deformation process has a linear characteristic although the mining activity was ended more than 10 years ago.
Davide Tadiello and Carla Braitenberg
Solid Earth, 12, 539–561, https://doi.org/10.5194/se-12-539-2021, https://doi.org/10.5194/se-12-539-2021, 2021
Short summary
Short summary
We present an innovative approach to estimate a lithosphere density distribution model based on seismic tomography and gravity data. In the studied area, the model shows that magmatic events have increased density in the middle to lower crust, which explains the observed positive gravity anomaly. We interpret the densification through crustal intrusion and magmatic underplating. The proposed method has been tested in the Alps but can be applied to other geological contexts.
Bruno Meurers, Gábor Papp, Hannu Ruotsalainen, Judit Benedek, and Roman Leonhardt
Hydrol. Earth Syst. Sci., 25, 217–236, https://doi.org/10.5194/hess-25-217-2021, https://doi.org/10.5194/hess-25-217-2021, 2021
Short summary
Short summary
Gravity and tilt time series acquired at Conrad Observatory (Austria) reflect gravity and deformation associated with short- and long-term environmental processes, revealing a complex water transport process after heavy rain and rapid snowmelt. Gravity residuals are sensitive to the Newtonian effect of water mass transport. Tilt residual anomalies capture strain–tilt coupling effects due to surface or subsurface deformation from precipitation or pressure changes in the adjacent fracture system.
Shiba Subedi, György Hetényi, and Ross Shackleton
Geosci. Commun., 3, 279–290, https://doi.org/10.5194/gc-3-279-2020, https://doi.org/10.5194/gc-3-279-2020, 2020
Short summary
Short summary
We study the impact of an educational seismology program on earthquake awareness and preparedness in Nepal. We see that educational activities implemented in schools are effective at raising awareness levels and in improving adaptive capacities and preparedness for future earthquakes. Knowledge also reached the broader community though social learning, leading to broadscale awareness. The result observed in this study is encouraging for the continuation and expansion of the program.
Wolfgang Szwillus, Jörg Ebbing, and Bernhard Steinberger
Solid Earth, 11, 1551–1569, https://doi.org/10.5194/se-11-1551-2020, https://doi.org/10.5194/se-11-1551-2020, 2020
Short summary
Short summary
At the bottom of the mantle (2850 km depth) two large volumes of reduced seismic velocity exist underneath Africa and the Pacific. Their reduced velocity can be explained by an increased temperature or a different chemical composition. We use the gravity field to determine the density distribution inside the Earth's mantle and find that it favors a distinct chemical composition over a purely thermal cause.
Cited articles
Allan, T. D. and Morelli, C.: A geological study of the Mediterranean Sea, Boll. Geofis. teor. appl., 13, 99–142, 1971.
Altamimi, Z.: EUREF Technical Note 1: Relationship and Transformation
between the International and the European Terrestrial Reference Systems,
Version June 28, available at: http://etrs89.ensg.ign.fr/pub/EUREF-TN-1.pdf (last access: 9 January 2021), 2018.
APAT: Gravity Map of Italy and Surrounding seas. 1:1 250 000, Agenzia per la protezione dell’ambiente e per I servizi tecnici, Dipartimento Difesa del Suolo, Servizio Geologico d'Italia, available at: https://www.isprambiente.gov.it/it/progetti/cartella-progetti-in-corso/suolo-e-territorio-1/cartografia-gravimetrica-digitale (last access: 13 May 2021), 2005.
Barzaghi, R., Borghi, A., Carrion, D., and Sona, G.: Refining the estimate
of the Italian quasi-geoid, Bollettino di Geodesia e Scienze Affini, 66,
145–159, 2007.
Barzaghi, R., Carrion, D., Vergos, G. S., Tziavos, I. N., Grigoriadis, V.
N., Natsiopoulos, D. A., Bruinsma, S., Reinquin, F., Seoane, L., Bonvalot,
S., Lequentrec-Lalancette, M. F., Salaün, C., Andersen, O., Knudsen, P.,
Abulaitijiang, A., and Rio, M. H.: GEOMED2: High-Resolution Geoid of the
Mediterranean, in: International Symposium on Advancing Geodesy in a Changing World – Proceedings of the IAG Scientific Assembly 2017, edited by: Sánchez, L. and Freymueller, J. T., 43–49, https://doi.org/10.1007/1345_2018_33, 2018.
Bašić, T.: Jedinstveni transformacijski model i novi model geoida Republike
Hrvatske (Unique transformation model and new geoid model of the Republic of
Croatia), available at: https://www.researchgate.net/publication/228791071_Jedinstveni_transformacijski_model_i_novi_model_geoida_Republike_Hrvatske_Unique_transformation_model_and_new_geoid_model_of_the_Republic_of_Croatia (last access: 18 February 2021), 2009.
Bašić, T. and Bjelotomic, O.: HRG2009: New High Resolution Geoid Model for
Croatia, in: Gravity, Geoid and Height Systems, edited by: Martin, U., IAG
Symposia Series, Springer Verlag, 187–191, https://doi.org/10.1007/978-3-319-10837-7_24, 2014.
Bielik, M., Kloska, K., Meurers, B., Švancara, J., and Wybraniec, S.:
CELEBRATION 2000 Potential Field Working Group: Gravity anomaly map of the
CELEBRATION 2000 region, Geologica Carpathica, 145–156, available at: http://www.geologicacarpathica.com/GeolCarp_Vol57_No3_145_156.html (last access: 11 February 2021), 2006.
Bilibajkič, P., Mladenovič, M., Mujagič, S., and Rimac, I.: Explanation for the gravity map of SFR Yugoslavia – Bouguer anomalies – 1:500 000, Federal Geological Institute Belgrade, Belgrade, 1 sheet, 1979.
Bomfim, E. P., Braitenberg, C., and Molina, E. C.: Mutual evaluation of
global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon
Basin, Brazil, Geophys. J. Int., 195, 870–882, https://doi.org/10.1093/gji/ggt283, 2013.
Braitenberg, C., Ebbing, J., and Götze, H.-J.: Inverse modelling of
elastic thickness by convolution method – the eastern Alps as an example,
Earth Planet. Sc. Lett., 202, 387–404, https://doi.org/10.1016/S0012-821X(02)00793-8, 2002.
Braitenberg, C., Mariani, P., and De Min, A.: The European Alps and nearby
orogenic belts sensed by GOCE, B. Geofis. Teor. Appl., 54, 321–334,
https://doi.org/10.4430/bgta0105, 2013.
Bucha, B. and Janák, J.: A MATLAB-based graphical user interface program
for computing functionals of the geopotential up to ultra-high degrees and
orders, Comput. Geosci., 56, 186–196,
https://doi.org/10.1016/j.cageo.2013.03.012, 2013.
Car, M., Gosar, A., Rajver, D., Stopar, R., and Tomšič, B.: History,
state and perspectives of applied geophysics in Slovenia,
Slovenian Association of Geodesy and Geophysics, Ljubljana, Slovenia, 43–86, 1996.
Cattin, R., Mazzotti, S., and Baratin, L.-M.: GravProcess: An easy-to-use
MATLAB software to process campaign gravity data and evaluate the associated
uncertainties, Comput. Geosci., 81, 20–27, https://doi.org/10.1016/j.cageo.2015.04.005, 2015.
Chapman, M. E. and Bodine, J. H: Consideration of the indirect effect in
marine gravity modeling, J. Geophys. Res.-Sol. Ea., 84, 3889–3892, https://doi.org/10.1029/JB084iB08p03889, 1979.
Čibej, B.: Regional gravity map of Slovenia 1966–1967, Unpublished
report, Geological Survey of Slovenia, Ljubljana, Slovenia, 1967 (in Slovenian).
Closs, H.: Die geophysikalische Reichsaufnahme und ihre Vorgeschichte, in:
Zur Geschichte der Geophysik, Festschrift zur 50-jährigen Wiederkehr
der Gründung der Deutschen Geophysikalischen Gesellschaft, edited by:
Birett, H., Helbig, K., Kertz, W., and Schmucker, U.,
Springer, Berlin, Heidelberg, Germany, 115–130, https://doi.org/10.1007/978-3-642-65998-0_12, 2008.
C.N.R.-P.F.G.: Structural Model of Italy. Scale 1:500 000, Quaderni de “La Ricerca Scientifica”, CNR, 114, 1 map, 1992.
Cordell, L.: A scattered equivalent source method for interpretation and
gridding of potential field data in three dimensions, Geophysics, 57,
629–636, https://doi.org/10.1190/1.1443275, 1992.
Csapó, G.: The Adjustment of the Hungarian Gravity Network in 2013, Az országos gravimetriai hálózat (MGH) 2013, évi kiegyenlítése és a hálózat
megbízhatósági vizsgálata, Geodézia és
Kartográfia, 65,
https://www.mfttt.hu/mftttportal/index.php/geodezia-es-kartografia/tartalomjegyzek-2013/2013-11-12-65?jjj=1613062538677,
(last access: 11 February 2021), 2013 (in Hungarian).
Csapó, G. and Koppán, A.: The results and works of the latest
adjustment of Hungarian Gravimetric Network (MGH-2010), Acta Geod. Geophys.,
48, 9–16, https://doi.org/10.1007/s40328-012-0001-5, 2013.
Csapó, G. and Völgyesi, L: Hungary's new gravity base network
(MGH-2000) and its connection to the European Unified Gravity Net, in:
Vistas for Geodesy in the New Millenium IAG Symposia, edited by:
Ádám, J. and Schwarz, K. P., Springer, Berlin, Heidelberg, Germany, 72–77, https://doi.org/10.1007/978-3-662-04709-5_13, 2002.
Denker, H.: Regional gravity field modeling: Theory and practical results,
in: Sciences of Geodesy – II, edited by: Xu, G., Springer, Berlin, Heidelberg, Germany, 185–291, https://doi.org/10.1007/978-3-642-28000-9_5, 2013.
Ebbing, J.: 3-D Dichteverteilung und isostatisches Verhalten der
Lithosphäre in den Ostalpen, Dissertation, FB Geowissenschaften, FU
Berlin, Germany, https://refubium.fu-berlin.de/handle/fub188/1302 (last access: 9 January 2021), 2002.
Ebbing, J., Braitenberg, C., and Götze, H.-J.: The lithospheric density
structure of the Eastern Alps, Tectonophysics, 414, 145–155, https://doi.org/10.1016/j.tecto.2005.10.015, 2006.
Ehrismann, W., Rosenbach, O., and Steinhauser, P.: Untersuchungen zur
Korrelation zwischen Freiluftanomalie und Stationshöhe im Hochgebirge,
Österreichische Zeitschrift für Vermessung und Photogrammetrie, 57,
183–191, https://www.ovg.at/de/vgi/files/pdf/4108 (last access: 11 February 2021), 1969.
Ehrismann, W., Leppich, W., Lettau, O., Rosenbach, O., and Steinhauser, P.:
Gravimetrische Detail-Untersuchungen in den westlichen Hohen Tauern,
Z. Geophys., 39, 115–130, https://doi.org/10.23689/fidgeo-3180, 1973.
Ehrismann, W., Götze, H.-J., Leppich, W., Lettau, O., Rosenbach, O.,
Schöler, W., and Steinhauser, P.: Gravimetrische Feldmessungen und
Modellberechnungen im Gebiet des Krimmler Ache Tales und des
Obersulzbachtales (Groß Venedigergebiet/Österreich), Geol. Rundsch.,
65, 767–778, https://doi.org/10.1007/BF01808493, 1976.
EMODnet Bathymetry Consortium: EMODnet Digital Bathymetry (DTM), available at: https://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6, 2018.
EU-DEM: EU-DEM digital surface model v1.1, available at: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
(last access: 9 January 2021), 2017.
Ferri, F., Ventura, R., Coren, F., and Zanolla, C.: Gravity map of italy and
surrounding seas, Carta Gravimetrica d'Italia, 1:1 250 000, APAT Agenzia per la protezione dell'ambiente e per i servizi tecnici, Rome, Italy, 2005.
Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J.-M., Marty, J.
C., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R.: EIGEN-6C4 – The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse GFZ Data Services, available at: https://doi.org/10.5880/icgem.2015.1 (last access: 13 May 2021), 2014.
Francis, O., Baumann, H., Ullrich, C., Castelein, S., Van Camp, M., de Sousa, M. A., Lima Melhorato, R., Li, C., Xu, J., Su, D., Wu, S., Hu, H.,
Wu, K., Li, G., Li, Z., Hsieh, W.-C., Pálinkás, P. V.,
Kostelecký, J., Mäkinen, J., Näränen, J., Merlet, S.,
Pereira Dos Santos, F., Gillot, P., Hinderer, J., Bernard, J.-D., Le Moigne,
N., Fores, B., Gitlein, O., Schilling, M., Falk, R., Wilmes, H., Germak, A.,
Biolcati, E., Origlia, C., Iacovone, D., Baccaro, F., Mizushima, S., De Plaen, R., Klein, G., Seil, M., Radinovic, R., Sekowski, M., Dykowski, P.,
Choi, I.-M., Kim, M.-S., Borreguero, A., Sainz-Maza, S., Calvo, M.,
Engfeldt, A., Agren, J., Reudink, R., Eckl, M., van Westrum, D., Billson,
R., and Ellis, B.: CCM.G-K2 key comparison, Metrologia, 52, 07009,
https://doi.org/10.1088/0026-1394/52/1A/07009, 2015.
GEBCO Compilation Group: GEBCO_2020 Grid, National Oceanography Centre, British Oceanographic Data Centre, Liverpool, United Kingdom, https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (last access: 13 May 2021), 2020.
Gerke, K.: Die Karte der Bouguer-Isanomalen, 1V1 000 000 von Westdeutschland, Deutsche Geodätische Kommission der Bayerischen
Akademie der Wissenschaften/Reihe B: Angewandte Geodäsie, Frankfurt a. M., 1957.
Gosar, A.: Mohorovičić discontinuity depth, in: Geological atlas of
Slovenia, edited by: Novak, M. and Rman, N., Geological Survey of
Slovenia, Ljubljana, Slovenia, 18–19, 2016.
Götze, H.-J.: Ein numerisches Verfahren zur Berechnung der
gravimetrischen Feldgrößen dreidimensionaler Modellkörper,
Arch. Meteor. Geophy. A, 25, 195–215, 1978.
Götze, H.-J. and Lahmeyer, B.: Application of three-dimensional
interactive modelling in gravity and magnetics, Geophysics, 53,
1096–1108, https://doi.org/10.1190/1.1442546, 1988.
Götze, H.-J., Rosenbach, O., and Schöler, W.: Gravimetric
measurements on three N-S profiles through the Eastern Alps – Observational
results and preliminary modeling, in: Alps, Apennines, Hellenides, edited
by: Closs, H., Roeder, D., Schmidt, K., Inter-Union Comm. on Geodynamics,
Scient. Report 38, E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, Germany, 44–49, 1978.
Götze, H.-J., Rosenbach, O., and Schöler, W.: Gravimetrische
Untersuchungen in den östlichen Zentralalpen, Geol. Rundsch., 68,
61–82, https://doi.org/10.1007/BF01821122, 1979.
Götze, H.-J., Meurers, B., Schmidt, S., and Steinhauser, P.: On the
isostatic state of the Eastern Alps and the Central Andes – a statistical
comparison, in: Andean Magmatism and its Tectonic Setting, edited by: Harmon, R. S. and Rapela, C. W., Geol. S. Am. S., 265, 279–290, ISBN 0813722659, 9780813722658, 1991.
Grand, A.: Reconstruction of complete Bouguer anomalies maps from archive
records and their use in practice, Diploma thesis, Comenius University,
Bratislava, Slovakia, 2019.
Grand, T., Šefara, J., Pašteka, R., Bielik, M., and Daniel, S.: Atlas of
geophysical maps and profiles, Part D1: gravimetry, Final report, MS Geofond State Geological Institute, Bratislava, Slovakia, 2001 (in Slovak).
Grandjean, G., Mennechet, C., Debeglia, N., and Bonijoly, D.: Insuring the
quality of gravity data, Eos Transactions, 79, 217–221, 1998.
Guglielmetti, L., Comina, C., Abdelfettah, Y., Schill, E., and Mandrone, G.:
Integration of 3D geological modeling and gravity surveys for geothermal
prospection in an Alpine region, Tectonophysics, 608, 1025–1036,
https://doi.org/10.1016/j.tecto.2013.07.012, 2013.
Hackney, R. I. and Featherstone, W. E.: Geodetic versus Geophysical
Perspectives of the “Gravity Anomaly”, Geophys. J. Int., 154, 35–43, https://doi.org/10.1046/j.1365-246X.2003.01941.x, 2003.
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological-geophysical record of spreading and subduction in the Alps,
Earth-Sci. Rev., 102, 121–158, https://doi.org/10.1016/j.earscirev.2010.06.002, 2010.
Harpha Sea: Bathymetric data for Bohinj and Bled lakes, Unpublished report,
Aljoša Žerjal, Harpha Sea, d.o.o. Koper, 2017.
Heiskanen, W. A. and Moritz, H.: Physical geodesy, W. H. Freeman Co, https://doi.org/10.1017/S0016756800048834 (last access: 13 May 2021), 1967.
Hetényi, G., Cattin, R., Berthet, T., Le Moigne, N., Chophel, J.,
Lechmann, S., Hammer, P., Drukpa, D., Sapkota S. N., Gautier S., and
Thinley, K.: Segmentation of the Himalayas as revealed by arc-parallel
gravity anomalies, Sci. Rep.-UK, 6, 33866, https://doi.org/10.1038/srep33866, 2016.
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I., Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., Fuchs, F., Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling, E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul, A., Pesaresi, D., Piromallo, C., Plenefisch, T., Plomerová, J., Ritter, J., Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann, F., Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V., Živčić, M., AlpArray Seismic Network Team, AlpArray OBS Cruise Crew, and AlpArray Working Group: A Large-Scale European Experiment to
Image the Alpine Orogen, Surv. Geophys., 39, 1009–1033,
https://doi.org/10.1007/s10712-018-9472-4, 2018.
Hirt, C.: Artefact detection in global digital elevation models (DEMs): The
Maximum Slope Approach and its application for complete screening of the
SRTM v4.1 and MERIT DEMs, Remote Sens. Environ., 207, 27–41, https://doi.org/10.1016/j.rse.2017.12.037, 2018.
Holzrichter, N., Szwillus, W., and Götze, H.-J.: An adaptive topography
correction method of gravity field and gradient measurements by polyhedral
bodies, Geophys. J. Int., 218, 1057–1070, https://doi.org/10.1093/gji/ggz211, 2019.
IGN: Descriptifs quasi-geoides et grilles de conversion altimétrique sur
la France métropolitaine, Laboratoire de Recherche en Géodésie,
Service de Geodesie et Nivellement, available at: https://geodesie.ign.fr/contenu/fichiers/GrillesConversionAltimetrique.pdf
(last access: 11 February 2021), 2010.
Kahle, H. G. and Klingelé, E.: Recent activities in gravimetry and
physical geodesy, Schweiz. Miner. Petrog., 59, 207–217, 1979.
Karcol, R.: Gravitational attraction and potential of spherical shells with
radially dependent density, Stud. Geophys. Geod., 55, 21–34, https://doi.org/10.1007/s11200-011-0002-9, 2011.
Kissling, E.: Krustenaufbau und Isostasie in der Schweiz, Dissertation Nr.
6655, ETH Zurich, Zurich, Switzerland, 167 pp., available at: https://docplayer.org/78935193-Krustenaufbau-und-isostasie-in-der-schweiz.html
(last access: 9 January 2021), 1980.
Klingelé, E. and Olivier, R.: Die neue Schwerekarte der Schweiz (Bouguer
Anomalien), Géophysique, No. 20, Swiss Geophysical Commission, Bern, 93 pp., 1 map, 1980.
Kostelecky, J., Kostelecky Jr., J., Pesek, I., Simek, J., Svabensky, O.,
Weigel, J., and Zeman, A.: Quasi Geoid for the Territory of the Czech
Republic, Stud. Geophys. Geod., 48, 503–518, https://doi.org/10.1023/B:SGEG.0000037469.70838.39, 2004.
Kuhar, M., Berk, S., Koler, B., Medved, K., Omang, O., and Solheim, D.:
Vloga kakovostnega višinskega sistema in geoida za izvedbo
GNSS-višinomerstva, The quality role of height system and
geoid model in the realization of GNSS heighting, Geod. Vestn., 55, 226–234, https://doi.org/10.15292/geodetski-vestnik.2011.02.226-234, 2011 (in Slovenian).
Leibniz-Institut für Angewandte Geophysik: Schwerekarte der
Bundesrepublik Deutschland 1:1 000 000 Bouguer-Anomalien, Leibniz-Institut für Angewandte Geophysik, Hannover, Germany, 2010.
Lequentrec-Lalancette, M. F., Salaun, C., Bonvalot, S., Rouxel, D., and Bruinsma, S.: Exploitation of Marine Gravity Measurements of the Mediterranean in the Validation of Global Gravity Field Models, in: International Symposium on Earth and Environmental Sciences for Future Generations, International Association of Geodesy Symposia, Prague, Czech Republic, 22 June–2 July 2015, 63–67, https://doi.org/10.1007/1345_2016_258 (last access: 13 May 2021), 2016.
Li, X. and Götze, H.-J.: Ellipsoid, geoid, gravity, geodesy and
geophysics, Geophysics, 66, 1660–1668, https://doi.org/10.1190/1.1487109, 2001.
Marson, I. and Klingelé, E.: Advantages of using the vertical gradient
of gravity for 3-D interpretation, Geophysics, 58, 1588, https://doi.org/10.1190/1.1443374, 1993.
Martelet, G., Pajot, G., and Debeglia, N.: Nouvelle carte gravimétrique
de la France, RCGF09 – Réseau et Carte Gravimétrique de la France,
Rapport BRGM/RP-57908-FR, available at: http://infoterre.brgm.fr/rapports/RP-57908-FR.pdf (last access: 11 February 2021), 2009.
Marti, U.: Comparison of high precision geoid models in Switzerland, in:
Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic
and Oceanographic Tools, edited by: Tregonig, P. and Rizos, C., IAG Symposia
Series, Springer, Berlin, Heidelberg, Germany, 377–382, https://doi.org/10.1007/978-3-540-49350-1_55, 2007.
Meurers, B.: Bearbeitung der Schweredaten der OMV-AG, Unpublished report
OMV-AG, Vienna, Austria, 1992a.
Meurers, B.: Untersuchungen zur Bestimmung und Analyse des Schwerefeldes im
Hochgebirge am Beispiel der Ostalpen, Österreichische Beiträge zu
Meteorologie und Geophysik, ZAMG Publ. Nr. 343, Vienna, Austria, 146 pp., 1992b.
Meurers, B.: The Physical Meaning of Bouguer Anomalies – General Aspects
Revisited, in: Understanding the Bouguer Anomaly – A Gravimetry Puzzle,
edited by: Pašteka, R., Meurers, B., and Mikuška, J., Elsevier,
Amsterdam, The Netherlands, 13–30, https://doi.org/10.1016/B978-0-12-812913-5.00001-4, 2017.
Meurers, B. and Ruess, D.: Compilation of a new Bouguer gravity data base in
Austria, in: Austrian Contributions to IUGG 2007, Perugia, Italy, edited by:
Brunner, F., Kahmen, H., and Schuh, H., Österreichische Zeitschrift
für Vermessung und Geoinformation, 95, 90–94, https://www.ovg.at/de/vgi/files/pdf/4959 (last access: 11 February 2021), 2007.
Meurers, B. and Ruess, D.: A new Bouguer gravity map of Austria,
Austrian J. Earth Sc., 102, 62–70, https://www.univie.ac.at/ajes/archive/volume_102_1/meurers_ruess_ajes_v102_1.pdf (last access: 23 February 2021), 2009.
Meurers, B., Ruess, D., and Steinhauser, P.: The Gravimetric Alpine
Traverse, in: Geodynamics of the Eastern Alps, edited by: Flügel, H.
and Faupl, P., Deuticke, Vienna, Austria, 334–344, 1987.
Meurers, B., Ruess, D., and Graf, J.: A program system for high precise
Bouguer gravity determination, in: Proc. 8th International Meeting on
Alpine Gravimetry, Österreichische Beiträge
zu Meteorologie und Geophysik, edited by: Meurers, B., 217–226, 2001.
Mikuška, J., Pašteka, R., and Marušiak, I.: Estimation of
distant relief effect in gravimetry, Geophysics, 71, 59–69, https://doi.org/10.1190/1.2338333, 2006.
Mikuška, J., Marušiak, I., Pašteka, R., Karcol, R., and
Beňo, J.: The effect of topography in calculating the atmospheric
correction in gravimetry, in: 2008 SEG Annual Meeting, Las Vegas, Nevada, USA, 9–14 November 2008, 784–788, available at: https://onepetro.org/SEGAM/proceedings/SEG08/All-SEG08/SEG-2008-0784/94539
(last access: 13 May 2021), 2008.
Morelli, C.: Discussione e considerazioni sulla compensazione d'insieme
della rete internazionale delle stazioni di riferimento per le misure di
gravità relativa, Ann. Geophys.-Italy, 1, 425–454, https://doi.org/10.4401/ag-6076, 1948.
Morelli, C., Gantar, C., Honkasalo, T., McConnell, R. K., Tanner, I. G.,
Szabo, B., Uotila, U., and Whalen, C. T.: The International Gravity
Standardisation Net 1971 (IGSN71), IAG, Spec. Publ., 4, Paris, France, available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a006203.pdf (last access: 13 May 2021), 1972.
Moritz, H.: Geodetic reference system 1980, B. Geod., 54, 395–405,
https://doi.org/10.1007/BF02521480, 1984.
Moritz, H.: Geodetic Reference System 1980, J. Geodesy, 74, 128–133,
https://doi.org/10.1007/s001900050278, 2000.
NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second [Data
set], NASA EOSDIS Land Processes DAAC, available at: https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3S.003, 2013.
NASA/METI/AIST/Japan Space systems and U.S./Japan ASTER Science Team, ASTER Global Digital Elevation Model V003, NASA
EOSDIS Land Processes DAAC, available at: https://doi.org/10.5067/ASTER/ASTGTM.003, 2019.
Niethammer, T.: Schwerebestimmungen in den Jahren 1915–1918,
Astronomisch-geodätische Arbeiten in der Schweiz, Schweizerische geodätische Kommission, Bern, 16, 1–219, 1921.
Olivier, R., Dumont, B., and Klingelé, E.: L’Atlas Gravimétrique 85 de la Suisse, Swiss Geophysical Commission, Bern, 43, 62 pp., 22 maps, 2010.
Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V. A.,
Strecker, M. R., and Wigger, P.: The Andes: active subduction orogeny,
Springer, Berlin, Heidelberg, Germany, ISBN-13978-3-540-24320-8, https://doi.org/10.1007/978-3-540-48684-8, 2006.
Pail, R., Kühtreiber, N., Wiesenhofer, B., Hofmann-Wellenhof, B.,
Steinbach, O., Höggerl, N., Imrek, E., Ruess, D., and Ullrich, C.: The
Austrian Geoid 2007, Österreichische Zeitschrift für Vermessung und
Geoinformation, 96, 3–14, https://www.ovg.at/de/vgi/ausgabe/1249/#article4983 (last access: 13 May 2021), 2008.
Pašteka, R., Mikuska, J., and Meurers, B.: Understanding the Bouguer
Anomaly: A Gravimetry Puzzle, Elsevier, Amsterdam, The Netherlands, ISBN: 978-0-12-812913-5, 2017.
Pavlis, N. K., Factor, J. K., and Holmes, S. A.: Terrain-related gravimetric
quantities computed for the next EGM, in: Proceedings of the 1st
International Symposium of the International Gravity Field Service, Harita Dergisi, Istanbul, 318–323, 2007.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res.-Sol. Ea., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Pistone, M., Müntener, O., Ziberna, L., Hetényi, G., and Zanetti, A.: Report on the ICDP workshop DIVE (Drilling the Ivrea–Verbano zonE), Sci. Dril., 23, 47–56, https://doi.org/10.5194/sd-23-47-2017, 2017.
Pivetta, T. and Braitenberg, C.: Sensitivity of gravity and topography regressions to earth and planetary structures, Tectonophysics, Tectonophysics, 774, 228–299, https://doi.org/10.1016/j.tecto.2019.228299, 2020.
Plaumann, S.: Die Schwerekarte 1:500 000 der Bundesrepublik Deutschland (Bouguer Anomalien), Blatt Süd, Geologisches Jahrbuch, E 53, 1–13, Hannover,
1995.
Posch, E. and Walach, G.: Das Bouguer Schwerefeld in Vorarlberg und im
Bereich der Übergangszone zwischen West- und Ostalpen, in:
Tagungsbericht über das 5. Int. Alpengravimetrie Kolloquium, Graz, Austria, 1989, Österreichische Beiträge zu Meteorologie und Geophysik, edited by: Lichtenegger, H., Steinhauser, P., and Sünkel, H.,
ZAMG Publ. Nr. 332, Vienna, Austria, 147–151, 1990.
Ravnik, D., Stopar, R., Car, M., Živanović, M., Gosar, A., Rajver,
D., and Andjelov, M.: Results of applied geophysical investigations in
Slovenia, Slovenian Association of Geodesy and Geophysics, Ljubljana, Slovenia, 49–67, 1995.
Ruess, D.: Der Beitrag Österreichs an UNIGRACE – Unification of Gravity
Systems of Central and Eastern European Countries, Österreichische
Zeitschrift für Vermessung und Geoinformation, 90, 129–139, https://www.ovg.at/de/vgi/ausgabe/1230/#article4853 (last access: 11 February 2021), 2002.
Scarponi, M., Hetényi, G., Berthet, T., Baron, L., Manzotti, P., Petri,
B., Pistone, M., and Müntener, O.: New gravity data and 3D density model
constraints on the Ivrea Geophysical Body (Western Alps), Geophys. J. Int.,
222, 1977–1991, https://doi.org/10.1093/gji/ggaa263, 2020.
Schmidt, S.: Untersuchungen zum regionalen Verlauf des Vertikalgradienten
der Schwere im Hochgebirge, Ph.D. thesis, Technische Universität Clausthal, Clausthal, Germany, 1985.
Schwabe, J., Liebsch, G., and Schirmer, U.: Refined computation strategies
for the new German Combined Quasigeoid GCG2016, in: Symposium on Geoid, Gravity and Height Systems (GGHS2016), Thessaloniki, Greece, 19–23 September 2016.
Senftl, E.: Schwerekarte von Österreich, Bouguer-Isanomalen
1:1 000 000, Bundesamt für Eich- und Vermessungswesen, Vienna, Austria, 1965.
Shahrokh, P., Emery, X., and Madani, N.: Comparing sequential Gaussian and
turning bands algorithms for cosimulating grades in multi-element deposits,
C. R. Geosci., 347, 84–93, https://doi.org/10.1016/j.crte.2015.05.008, 2015.
Skiba, P.: Homogene Schwerekarte der Bundesrepublik Deutschland
(Bouguer-Anomalien), Technischer Bericht zur Fortführung der Datenbasis, deren Auswertung und Visualisierung, LIAG-Bericht, Hannover, Germany, 89 pp., available at: https://doi.leibniz-liag.de/doi.php?obj=rep-12346-1 (last access: 31 May 2021), 2011.
Somigliana, C.: Teoria generale del campo gravitazionale dell' ellipsoide di rotazione, Mem. Soc. Astron Ital., 4, 425, 1929.
Steinhauser, P., Meurers, B., and Ruess, D.: Gravity investigations in
mountainous areas, Explor. Geophys., 21, 161–168,
https://doi.org/10.1071/EG990161, 1990.
Stopar, R.: Map of the Bouguer anomalies, in: Geological atlas of Slovenia,
edited by: Novak, M. and Rman, N., Geological Survey of Slovenia, Ljubljana,
Slovenia, 20–21, 2016.
Surveying and mapping authority of Slovenia: Digital elevation models for
Slovenia in 12.5 and 25 m grid size, available at: https://www.e-prostor.gov.si/access-to-geodetic-data/ordering-data/ (last access: 9 January 2021), 2019.
Szabó, Z.: The history of the 125 year old Eötvös torsion
balance, Acta Geod. Geophys., 51, 273–293, https://doi.org/10.1007/s40328-015-0126-4, 2016.
Szwillus, W., Ebbing, J., and Holzrichter, N.: Importance of far-field
Topographic and Isostatic corrections for regional density modelling,
Geophys. J. Int., 207, 274–287, https://doi.org/10.1093/gji/ggw270, 2016.
Tadiello, D. and Braitenberg, C.: Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography, Solid Earth, 12, 539–561, https://doi.org/10.5194/se-12-539-2021, 2021.
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.:
Precise Global DEM Generation By ALOS PRISM, ISPRS-Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 71–76, https://doi.org/10.5194/isprsannals-II-4-71-2014, 2014.
Takaku, J., Tadono, T., Tsutsui, K., and Ichikawa, M.: Quality Improvements
of “AW3D” Global DSM Derived from ALOS PRISM, in: Proc. the 38th annual symposium of the IEEE Geoscience and Remote Sensing Society (IGARSS2018),
Valencia, Spain, 22–27 July 2018, 1612–1615, 2018.
Varga, M.: The Application of Crustal Models in Regional Modelling of the
Earth's Gravity Field (PhD thesis), Faculty of Geodesy, University of
Zagreb, Zagreb, Croatia, https://doi.org/10.13140/RG.2.2.11800.08963/2, 2018.
VITEL: http://geomentor.hu/VITEL_TRF (last access: 11 February 2021), 2020.
Walach, G.: The Gravity Field in Southern Austria, Mitteilungen des
Geodätischen Instituts der Technischen Universität Graz, Graz, Austria, 135–140, 1990.
Wenzel, H.: Hochauflösende Kugelfunktionsmodelle für das
Gravitationspotential der Erde, Wissenschaftliche Arbeiten der Fachrichtung
Vermessungswesen der Universität Hannover, Hannover, Germany, 1985.
Winter, P.: Die Karte der Bouguer-Isanomalen der Steiermark und benachbarter
Gebiete, in: Tagungsbericht über das 6. Int. Alpengravimetriekolloquium,
Österreichische Beiträge zu Meteorologie und Geophysik, edited by: Steinhauser, P. and Walach, G., ZAMG Publ. Nr. 353, Vienna, Austria, 55–68, 1993.
Wollard, G. P.: New Gravity System – Changes in International Gravity Base
Values and Anomaly Values, Geophysics, 44, 1352–1366, https://doi.org/10.1190/1.1441012, 1979.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F.,
Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high accuracy
map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.
Zahorec, P., Marušiak, I., Mikuška, J., Pašteka, R., and
Papčo, J.: Numerical calculation of terrain correction within the
Bouguer anomaly evaluation (program Toposk), in: Understanding the Bouguer
Anomaly – A Gravimetry Puzzle, edited by: Pašteka, R., Mikuška, J.,
and Meurers, B., Elsevier, Amsterdam, The Netherlands, 79–92, https://doi.org/10.1016/B978-0-12-812913-5.00004-X, 2017a.
Zahorec, P., Pašteka, R., Mikuška, J., Szalaiová, V., Papčo,
J., Kušnirák, D., Pánisová, J., Krajňák, M., Vajda,
P., Bielik, M., and Marušiak, I.: National Gravimetric Database of the
Slovak Republic, in: Understanding the Bouguer Anomaly – A Gravimetry
Puzzle, edited by: Pašteka, R., Mikuška, J., and Meurers, B.,
Elsevier, Amsterdam, The Netherlands, 113–125, https://doi.org/10.1016/B978-0-12-812913-5.00004-X, 2017b.
Zahorec, P., Papčo, J., Pašteka, R., Bielik, M., Bonvalot, S.,
Braitenberg, C., Ebbing, J., Gabriel, G., Gosar, A., Grand, A., Götze,
H.-J., Hetényi, G., Holzrichter, N., Kissling, E., Marti, U., Meurers,
B., Mrlina, J., Nogová, E., Pastorutti, A., Salaun, C., Scarponi, M.,
Sebera, J., Seoane, L., Skiba, P., Szűcs, E., and Varga, M.: The
Pan-Alpine gravity database 2020, GFZ Data Services, available at: https://doi.org/10.5880/fidgeo.2020.045, 2021.
ZBGIS: Geoportál, available at: https://www.geoportal.sk/sk/sluzby/aplikacie/mapovy-klient-zbgis/ (last access: 18 February 2021), 2020.
Zych, D.: 30 Jahre Gravimetermessungen der ÖMV Aktiengesellschaft in
Österreich und ihre geologisch-geophysikalische Interpretation, Archiv
für Lagerstättenforschung, Geologische Bundesanstalt, Vienna, Austria, 155–175, 1988.
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
The gravity field of the Earth expresses the overall effect of the distribution of different...
Altmetrics
Final-revised paper
Preprint