Articles | Volume 13, issue 4
https://doi.org/10.5194/essd-13-1531-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1531-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HydroGFD3.0 (Hydrological Global Forcing Data): a 25 km global precipitation and temperature data set updated in near-real time
Swedish Meteorological and
Hydrological Institute, Folkborgsvägen 17, 60176
Norrköping, Sweden
Fredrik Almén
Swedish Meteorological and
Hydrological Institute, Folkborgsvägen 17, 60176
Norrköping, Sweden
Denica Bozhinova
Swedish Meteorological and
Hydrological Institute, Folkborgsvägen 17, 60176
Norrköping, Sweden
Related authors
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Peter Berg, Thomas Bosshard, Wei Yang, and Klaus Zimmermann
Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022, https://doi.org/10.5194/gmd-15-6165-2022, 2022
Short summary
Short summary
When performing impact analyses with climate models, one is often confronted with the issue that the models have significant bias. Commonly, the modelled climatological temperature deviates from the observed climate by a few degrees or it rains excessively in the model. MIdAS employs a novel statistical model to translate the model climatology toward that observed using novel methodologies and modern tools. The coding platform allows opportunities to develop methods for high-resolution models.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç Lledó, Christian Wilhelm Mohr, Aytaç Paçal, Núria Pérez-Zanón, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyring
Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, https://doi.org/10.5194/gmd-14-3159-2021, 2021
Short summary
Short summary
This work presents new diagnostics for the Earth System Model Evaluation Tool (ESMValTool) v2.0 on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The ESMValTool v2.0 diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) with a focus on the ESMs participating in the Coupled Model Intercomparison Project (CMIP).
Jonas Olsson, Peter Berg, and Remco van de Beek
Adv. Sci. Res., 18, 59–64, https://doi.org/10.5194/asr-18-59-2021, https://doi.org/10.5194/asr-18-59-2021, 2021
Short summary
Short summary
We have developed a tool to visualize rainfall observations, based on a combination of meteorological stations and weather radars, over Sweden in near real-time. By accumulating the rainfall in time (1–12 h) and space (hydrological basins), the tool is designed mainly for hydrological applications, e.g. to support flood forecasters and to facilitate post-event analyses. Despite evident uncertainties, different users have confirmed an added value of the tool in case studies.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Peter Berg, Thomas Bosshard, Wei Yang, and Klaus Zimmermann
Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022, https://doi.org/10.5194/gmd-15-6165-2022, 2022
Short summary
Short summary
When performing impact analyses with climate models, one is often confronted with the issue that the models have significant bias. Commonly, the modelled climatological temperature deviates from the observed climate by a few degrees or it rains excessively in the model. MIdAS employs a novel statistical model to translate the model climatology toward that observed using novel methodologies and modern tools. The coding platform allows opportunities to develop methods for high-resolution models.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç Lledó, Christian Wilhelm Mohr, Aytaç Paçal, Núria Pérez-Zanón, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyring
Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, https://doi.org/10.5194/gmd-14-3159-2021, 2021
Short summary
Short summary
This work presents new diagnostics for the Earth System Model Evaluation Tool (ESMValTool) v2.0 on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The ESMValTool v2.0 diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) with a focus on the ESMs participating in the Coupled Model Intercomparison Project (CMIP).
Jonas Olsson, Peter Berg, and Remco van de Beek
Adv. Sci. Res., 18, 59–64, https://doi.org/10.5194/asr-18-59-2021, https://doi.org/10.5194/asr-18-59-2021, 2021
Short summary
Short summary
We have developed a tool to visualize rainfall observations, based on a combination of meteorological stations and weather radars, over Sweden in near real-time. By accumulating the rainfall in time (1–12 h) and space (hydrological basins), the tool is designed mainly for hydrological applications, e.g. to support flood forecasters and to facilitate post-event analyses. Despite evident uncertainties, different users have confirmed an added value of the tool in case studies.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Cited articles
Andersson, J. C., Ali, A., Arheimer, B., Gustafsson, D., and Minoungou, B.:
Providing peak river flow statistics and forecasting in the Niger River
basin, Phys. Chem. Earth, 100, 3–12, https://doi.org/10.1016/j.pce.2017.02.010,
2017. a
Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C. M., Hasan, A., and Pineda, L.: Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation, Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, 2020. a
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily
Precipitation Climate Data Record from Multisatellite Observations for
Hydrological and Climate Studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/bams-d-13-00068.1, 2015. a
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017. a, b, c
Berg, P., Donnelly, C., and Gustafsson, D.: Near-real-time adjusted reanalysis forcing data for hydrology, Hydrol. Earth Syst. Sci., 22, 989–1000, https://doi.org/10.5194/hess-22-989-2018, 2018. a, b, c
Berg, P., Almén, F., and Bozhinova, D.: HydroGFD3.0, Zenodo,
https://doi.org/10.5281/ZENODO.3871707, 2020. a
C3S (Copernicus Climate Change Service):
Near surface meteorological variables from 1979 to 2018 derived from bias-corrected
reanalysis,
https://doi.org/10.24381/cds.20d54e34,
2020. a, b
C3S (Copernicus Climate Change Service):
ERA5 hourly data on single levels from 1979 to present,
https://doi.org/10.24381/cds.adbb2d47,
2020. a, b
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Wayne Higgins, R.,
and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses
of global daily precipitation, J. Geophys. Res.-Atmos., 113, D04110,
https://doi.org/10.1029/2007JD009132, 2008. a
CHP (Climate Hazards Group):
Monthly quasi-global satellite and observation based precipitation climatology, available at:
https://data.chc.ucsb.edu/products/CHPclim/netcdf/ (last access: 18 September 2020),
2015.
Climate Hazards Group (CHP): Monthly quasi-global satellite and observation based precipitation climatology, available at: https://data.chc.ucsb.edu/products/CHPclim/netcdf/ (18 September 2020), 2015.
Climate Prediction Center (CPC): CPC Unified gauge-based analysis of global daily precipitation, available at: https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/ (18 September 2020), 2021.
Copernicus Climate Change Service (C3S): Near surface meteorological variables from 1979 to 2018 derived from bias-corrected reanalysis,
https://doi.org/10.24381/cds.20d54e34, 2020a. a
Copernicus Climate Change Service (C3S): ERA5 hourly data on single levels from 1979 to present [dataset], https://doi.org/10.24381/cds.adbb2d47, 2020b.
CPC (Climate Prediction Center):
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html (last access: 18 September 2020),
2017. a
CPC (Climate Prediction Center):
CPC Unified gauge-based analysis of global daily precipitation, available at:
https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/ (last access: 18 September 2020),
2020. a
CPCtemp:
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html (last access: 18 September 2020),
2017. a
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020. a, b
Fallah, A., Rakhshandehroo, G. R., Berg, P. O. S., and Orth, R.: Evaluation of
precipitation datasets against local observations in southwestern Iran, Int.
J. Climatol., 40, 4102–4116, https://doi.org/10.1002/joc.6445, 2020. a, b
Fan, Y. and Van den Dool, H.: A global monthly land surface air temperature
analysis for 1948–present, J. Geophys. Res.-Atmos., 113, D01103,
https://doi.org/10.1029/2007JD008470, 2008. a
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – a new
environmental record for monitoring extremes, Sci. Data, 2, 150066,
https://doi.org/10.1038/sdata.2015.66, 2015a. a
Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., and Husak, G.: A global satellite-assisted precipitation climatology, Earth Syst. Sci. Data, 7, 275–287, https://doi.org/10.5194/essd-7-275-2015, 2015b. a, b
Giorgi, F. and Bi, X.: Updated regional precipitation and temperature changes
for the 21st century from ensembles of recent AOGCM simulations, Geophys.
Res. Lett., 32, L21715, https://doi.org/10.1029/2005gl024288, 2005. a, b
Harris, I. C. and Jones, P. D.: CRU TS4.03: Climatic Research Unit (CRU)
Time-Series (TS) version 4.03 of high-resolution gridded data of
month-by-month variation in climate (Jan. 1901–Dec. 2018), CEDA Archive,
https://doi.org/10.5285/10D3E3640F004C578403419AAC167D82, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a
Huebener, H. and Körper, J.: Changes in Regional Potential Vegetation in
Response to an Ambitious Mitigation Scenario, J. Environ. Prot., 4, 16–26,
https://doi.org/10.4236/jep.2013.48a2003, 2013.
a
Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivanidis, I.: A regional
parameter estimation scheme for a pan-European multi-basin model, J.
Hydrol. Regional Studies, 6, 90–111, https://doi.org/10.1016/j.ejrh.2016.04.002,
2016. a
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A Method
that Produces Global Precipitation Estimates from Passive Microwave and
Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeorol., 5,
487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:camtpg>2.0.co;2, 2004. a
Lindström, G., Pers, C., Rosberg, R., Strömqvist, J., and Arheimer, B.:
Development and test of the HYPE (Hydrological Predictions for the
Environment) model – A water quality model for different spatial scales,
Hydrol. Res., 41, 295–319, https://doi.org/10.2166/nh.2010.007, 2010. a
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., and Ziese, M.:
GPCC Full Data Monthly Version 2018.0 at 0.25: Monthly Land-Surface
Precipitation from Rain-Gauges built on GTS-based and Historic Data, Global Precipitation Climatology Centre,
https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_025, 2018a. a
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., and Ziese, M.:
GPCC Monitoring Product Version 6.0 at 1.0: Near Real-Time Monthly
Land-Surface Precipitation from Rain-Gauges based on SYNOP and CLIMAT Data, Global Precipitation Climatology Centre,
https://doi.org/10.5676/DWD_GPCC/MP_M_V6_100, 2018b. a, b, c
Stillman, S. and Zeng, X.: Development of a 0.5∘ global monthly
raining day product from 1901 to 2010, Geophys. Res. Lett., 43, 9704–9711,
https://doi.org/10.1002/2016gl070244, 2016. a, b, c
Weedon, G., Gomes, S., Viterbo, P., Shuttleworth, W., Blyth, E., Österle,
H., Adam, C., Bellouin, N., Boucher, O., and Best, M.: Creation of the watch
forcing data and its use to assess global and regional reference crop
evaporation over land during the twentieth century, J. Hydrometeor., 12,
823–848, https://doi.org/10.1175/2011JHM1369.1, 2011. a, b, c
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo,
P.: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology
applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514,
2014. a
Short summary
HydroGFD3.0 (Hydrological Global Forcing Data) is a data set of daily precipitation and temperature intended for use in hydrological modelling. The method uses different observational data sources to correct the variables from a model estimation of precipitation and temperature. An openly available data set covers the years 1979–2019, and times after this are available by request.
HydroGFD3.0 (Hydrological Global Forcing Data) is a data set of daily precipitation and...
Altmetrics
Final-revised paper
Preprint