Articles | Volume 11, issue 4
Earth Syst. Sci. Data, 11, 1931–1946, 2019
https://doi.org/10.5194/essd-11-1931-2019
Earth Syst. Sci. Data, 11, 1931–1946, 2019
https://doi.org/10.5194/essd-11-1931-2019

Data description paper 13 Dec 2019

Data description paper | 13 Dec 2019

1 km monthly temperature and precipitation dataset for China from 1901 to 2017

Shouzhang Peng et al.

Related authors

High-spatial-resolution monthly temperature and precipitation dataset for China for 1901–2017
Shouzhang Peng, Yongxia Ding, and Zhi Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-83,https://doi.org/10.5194/essd-2019-83, 2019
Preprint withdrawn
Short summary

Related subject area

Atmosphere – Meteorology
Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea)
Marta Wenta, David Brus, Konstantinos Doulgeris, Ville Vakkari, and Agnieszka Herman
Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021,https://doi.org/10.5194/essd-13-33-2021, 2021
Short summary
Meteorological observations in tall masts for the mapping of atmospheric flow in Norwegian fjords
Birgitte Rugaard Furevik, Hálfdán Ágústsson, Anette Lauen Borg, Zakari Midjiyawa, Finn Nyhammer, and Magne Gausen
Earth Syst. Sci. Data, 12, 3621–3640, https://doi.org/10.5194/essd-12-3621-2020,https://doi.org/10.5194/essd-12-3621-2020, 2020
Short summary
Data generated during the 2018 LAPSE-RATE campaign: an introduction and overview
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020,https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
High-resolution global atmospheric moisture connections from evaporation to precipitation
Obbe A. Tuinenburg, Jolanda J. E. Theeuwen, and Arie Staal
Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020,https://doi.org/10.5194/essd-12-3177-2020, 2020
Short summary
BAYWRF: a high-resolution present-day climatological atmospheric dataset for Bavaria
Emily Collier and Thomas Mölg
Earth Syst. Sci. Data, 12, 3097–3112, https://doi.org/10.5194/essd-12-3097-2020,https://doi.org/10.5194/essd-12-3097-2020, 2020
Short summary

Cited articles

Atta-ur-Rahman and Dawood, M.: Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen's slope approach, Clim. Dynam., 48, 783–797, https://doi.org/10.1007/s00382-016-3110-y, 2017. 
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013. 
Bellprat, O., Guemas, V., Doblas-Reyes, F., and Donat, M. G.: Towards reliable extreme weather and climate event attribution, Nat. Commun., 10, 1732, https://doi.org/10.1038/s41467-019-09729-2, 2019. 
Brekke, L., Thrasher, B., Maurer, E., and Pruitt, T.: Downscaled CMIP3 and CMIP5 climate and hydrology projections: Release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs, US Dept. of the Interior, Bureau of Reclamation, Technical Services Center, Denver, CO, 2013. 
Caillouet, L., Vidal, J. P., Sauquet, E., Graff, B., and Soubeyroux, J. M.: SCOPE Climate: a 142-year daily high-resolution ensemble meteorological reconstruction dataset over France, Earth Syst. Sci. Data, 11, 241–260, https://doi.org/10.5194/essd-11-241-2019, 2019. 
Download
Short summary
This study describes a 1 km monthly minimum, maximum, and mean temperatures and precipitation dataset for the mainland area of China during 1901–2017. It is the first dataset developed with such a high spatiotemporal resolution over such a long time period for China. The dataset is well evaluated by the observations using 496 national weather stations, and the evaluation indicated the dataset is sufficiently reliable for use in investigation of climate change across China.