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Abstract. High-spatial-resolution and long-term climate data are highly desirable for understanding climate-
related natural processes. China covers a large area with a low density of weather stations in some (e.g., moun-
tainous) regions. This study describes a 0.5" (~ 1 km) dataset of monthly air temperatures at 2 m (minimum,
maximum, and mean proxy monthly temperatures, TMPs) and precipitation (PRE) for China in the period of
1901-2017. The dataset was spatially downscaled from the 30’ Climatic Research Unit (CRU) time series dataset
with the climatology dataset of WorldClim using delta spatial downscaling and evaluated using observations col-
lected in 1951-2016 by 496 weather stations across China. Prior to downscaling, we evaluated the performances
of the WorldClim data with different spatial resolutions and the 30" original CRU dataset using the observations,
revealing that their qualities were overall satisfactory. Specifically, WorldClim data exhibited better performance
at higher spatial resolution, while the 30" original CRU dataset had low biases and high performances. Bicu-
bic, bilinear, and nearest-neighbor interpolation methods employed in downscaling processes were compared,
and bilinear interpolation was found to exhibit the best performance to generate the downscaled dataset. Com-
pared with the evaluations of the 30’ original CRU dataset, the mean absolute error of the new dataset (i.e., of
the 0.5 dataset downscaled by bilinear interpolation) decreased by 35.4 %—48.7 % for TMPs and by 25.7 % for
PRE. The root-mean-square error decreased by 32.4 %-44.9 % for TMPs and by 25.8 % for PRE. The Nash—
Sutcliffe efficiency coefficients increased by 9.6 %—13.8 % for TMPs and by 31.6 % for PRE, and correlation
coefficients increased by 0.2 %—0.4 % for TMPs and by 5.0 % for PRE. The new dataset could provide detailed
climatology data and annual trends of all climatic variables across China, and the results could be evaluated
well using observations at the station. Although the new dataset was not evaluated before 1950 owing to data
unavailability, the quality of the new dataset in the period of 1901-2017 depended on the quality of the original
CRU and WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further
improved the quality and spatial resolution of the CRU dataset and was concluded to be useful for investigations
related to climate change across China. The dataset presented in this article has been published in the Network
Common Data Form (NetCDF) at https://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and
https://doi.org/10.5281/zenodo.3185722 for air temperatures at 2m (Peng, 2019b) and includes 156 NetCDF
files compressed in zip format and one user guidance text file.
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1 Introduction

High-spatial-resolution and long-term climate data are re-
quired for accurate investigations of changes in climate and
climate-related phenomena that affect hydrology, vegetation
cover, and crop production (Gao et al., 2018; Caillouet et
al., 2019; Peng et al., 2018; Peng and Li, 2018). Although
meteorological observation networks are increasingly incor-
porating data from a greater number of weather stations and
contributions from an increasing number of governments and
researchers around the world, observation networks still suf-
fer from low station density and spatial resolution (Caillouet
et al., 2019; Peng et al., 2014), especially in mountainous
areas (Gao et al., 2018), where the installation and mainte-
nance of weather stations are challenging (Rolland, 2003).
Accordingly, several interpolation methods such as inverse
distance weighting, kriging methods, and regression analy-
sis are usually used to generate meteorological data for such
ungauged areas (Li et al., 2010, 2012; Zhao et al., 2004; Atta-
ur-Rahman and Dawood, 2017; Peng et al., 2014). However,
as the accuracy of the corresponding results depends on sta-
tion density (Gao et al., 2018; Peng et al., 2014), one needs
to use climatic proxy data to generate long-term and high-
spatial-resolution climate data.

Proxy monthly temperature (TMP) and precipitation
(PRE) data products are released by several climate re-
search organizations such as the general circulation models
(GCMs) of the Intergovernmental Panel on Climate Change
(Brekke et al., 2013), the Climatic Research Unit (CRU)
of the University of East Anglia (Harris et al., 2014), the
Global Precipitation Climatology Centre (GPCC) (Becker
et al., 2013), and Willmott & Matsuura (W&M) (Matsuura
and Willmott, 2015). These products have a long time series
(> 100 years) and moderate spatial resolution (> 30"). Com-
pared with GCM products, CRU, GPCC, and W&M prod-
ucts are generated from data obtained from observational
stations, and thus are more reliable. Furthermore, compared
with GPCC and W&M products, CRU products include sev-
eral TMP and PRE variables such as monthly mean TMP,
maximum TMP, minimum TMP, and PRE, and they have
therefore been widely employed to investigate climate ef-
fects globally (Kannenberg et al., 2019; Lewkowicz and Way,
2019; Bellprat et al., 2019). Although CRU products offer
the advantage of reflecting long-term climate effects, their
low spatial resolution (30', approximately 55 km) limits their
ability to reflect the effects of complex topographies, land
surface characteristics, and other processes on climate sys-
tems (Xu et al., 2017; Peng et al., 2018). This drawback also
prevents CRU data from providing realistic and reliable cli-
mate change information on fine scales, which is imperative
when developing adaptation and mitigation strategies suit-
able for use on local scales (Giorgi et al., 2009; Peng et al.,
2019). Therefore, it is necessary to spatially downscale and
correct CRU climate data.
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Previous studies have shown that the delta downscaling
framework, using low-spatial-resolution monthly time series
data and high-spatial-resolution reference climatology data
as inputs, is well suited for climate data downscaling (Mosier
et al., 2014; Peng et al., 2018, 2017; Wang and Chen, 2014;
Brekke et al., 2013). The high-spatial-resolution climatology
data must be physically representative and have a fine-scale
distribution of meteorological variables over the landscape
of interest (Mosier et al., 2014; Peng et al., 2017). As a re-
sult of incorporating high-spatial-resolution reference clima-
tology data, downscaled results often have higher accuracy
than original data with respect to weather station data, espe-
cially monthly mean TMP and PRE (Peng et al., 2018). Thus,
the delta downscaling framework can downscale and correct
low-resolution climate data.

China has a large area with abundant mountainous regions.
As a result, even the establishment of additional weather sta-
tions has not fully satisfied the requirements for long-term,
high-spatial-resolution climate data, especially at finer ge-
ographical scales and for mountainous areas. Furthermore,
most weather stations in China were established after 1950,
and thus long-term observational climate data are lacking
(Peng et al., 2018). The above shortcomings limit the types
of studies that can be conducted on long-term climate change
and the effects of climate change at fine geographical scales
across China.

The objective of this study was to generate a long-term cli-
mate dataset with high spatial resolution for China by down-
scaling CRU time series data using a high-spatial-resolution
reference climatology dataset. The specific generated climate
data types included monthly air TMPs at 2 m (mean, maxi-
mum, and minimum TMPs) and PRE variables with a spatial
resolution of 0.5" (approximately 1km) from January 1901
to December 2017. First, reference climatology data with dif-
ferent spatial resolutions and the 30’ original CRU time series
data were evaluated through observations. Second, the 30
original CRU time series data were spatially downscaled to
four spatial resolutions (10’, 5/, 2.5’, and 0.5") corresponding
to the spatial resolutions of the reference climatology data us-
ing the delta downscaling framework. The downscaled data
were validated through observations. In addition, the accu-
racy of the 0.5" downscaled data was compared with that
of data downscaled with other spatial resolutions to demon-
strate the performance of the downscaling framework and
0.5" downscaled data. Finally, the climatology data and an-
nual trends in TMPs and PRE were investigated using the 30/
original CRU, 0.5 downscaled, and observed data to demon-
strate the performance of the 0.5” downscaled data.

2 Data

2.1 CRU time series data

The monthly mean, maximum, and minimum air TMPs at
2m as well as PRE were obtained for January 1901 to

www.earth-syst-sci-data.net/11/1931/2019/



S. Peng et al.: Temperature and precipitation dataset for China

DEM (m)

8844
| 0 500

Mse

4 Stations for producting the CRU TS and WorldClim data (323 )

« Stations for validating the downscaled results in this study (496)

Figure 1. Spatial distribution of national weather stations across China.

December 2017 with a spatial resolution of 30’ from the
CRU TS v4.02 dataset (http://www.cru.uea.ac.uk, last ac-
cess: 25 April 2019) (Harris et al., 2014). Methodologies
used by the CRU group to construct the 30’ time series
dataset are similar to the delta downscaling framework em-
ployed herein (see Sect. 3.1). First, more than 5000 weather
stations were employed, and each station series was con-
verted to anomalies by subtracting (for temperatures) or di-
viding (for precipitation) the 1961-1990 normal from the sta-
tion’s data. Then, the station anomaly time series data were
linearly interpolated into 30" grids covering the global land
surface. Finally, the grid anomaly time series data were trans-
formed back to absolute monthly values using the 30 ref-
erence climatology dataset during 1961-1990. Specifically,
the 30’ reference climatology dataset used by the CRU group
contained the climatology data for each month and was ob-
tained from New et al. (1999). These climatology data were
generated by a function considering the latitude, longitude,
and elevation, based on 3615-19 800 weather stations lo-
cated globally. Elevation data used in this climatology dataset
had a spatial resolution of 30, which was a mean result of
the global 5’ digital elevation model. Specifically, elevation
at each 30’ grid was the mean of 36 grids of the 5’ digital ele-
vation model (New et al., 1999). Therefore, the CRU dataset
could represent the orographic effects on climate variation at
30’ spatial resolution. Compared with similar gridded prod-
ucts, the CRU dataset exhibited better performance. In addi-
tion, 323 weather stations across China were employed by
the CRU group to generate CRU time series data (Harris et
al., 2014) (Fig. 1).
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2.2 WorldClim data

To downscale CRU TMPs and PRE time series data to
higher spatial resolutions, we obtained four high-resolution
reference datasets at spatial resolutions of 10/, 5, 2.5’, and
0.5’ from WorldClim v2.0 (http://worldclim.org, last access:
25 April 2019) (Fick and Hijmans, 2017). The reference
datasets comprised monthly averages of climatic variables
(mean, maximum, and minimum air TMPs at 2m as well
as PRE) for 1970-2000, generated based on 9000-60 000
weather stations located globally using the thin-plate spline
interpolation method. Thus, each climatic variable was asso-
ciated with 12 climatology layers representing climatology
data ranging from January to December. Remarkably, the in-
terpolation considered co-variation with latitude, longitude,
elevation, distance to the nearest coast, and three satellite-
derived covariates: the maximum and minimum land sur-
face temperature and cloud cover, obtained from the MODIS
satellite platform. Thus, these reference data reflected oro-
graphic effects and observed climate information for each
month. Moreover, cross-validation correlations indicated that
these reference data exhibited good performance globally be-
cause of the introduction of satellite-derived covariates and
distance to the nearest coast covariates. In addition, weather
stations over China used in WorldClim were the same as
those used in the CRU group (Fick and Hijmans, 2017)
(Fig. 1). Herein, for an independent evaluation of the down-
scaled dataset, these weather stations were excluded.
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Figure 2. Orographic statistical information at different gradients for China and weather stations used in this study.

2.3 Observations

To evaluate the performance of the downscaling procedure,
the observed long-term monthly TMPs (i.e., mean, maxi-
mum, minimum air TMPs at 2 m) and PRE variables across
China were obtained from the National Meteorological Infor-
mation Center of China (http://data.cma.cn/en). This dataset
included observations from 496 national weather stations
(Fig. 1) during 1951-2016. These stations were not consid-
ered in the generation of CRU time series and WorldClim
data. Figure 2 shows the orographic statistical information
(e.g., elevation, slope, and aspect) of China and the 496
independent weather stations. The results indicate that the
proportion of independent weather stations in different oro-
graphic gradients almost corresponded to that in China, ex-
cept for areas with elevations exceeding 4500 m, which indi-
cated that these weather stations could represent climate vari-
ation over China and be used for validating the downscaled
dataset. This exception is inevitable because of the observ-
ability, installation, and maintenance of weather stations over
those areas. In addition, although China had few weather sta-
tions during 1901-1950, all of these stations were used to
generate CRU time series data before 1950. Therefore, this
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study aimed to evaluate the downscaled dataset during 1951—
2016 using 496 independent and representative stations.

3 Methods

3.1 Spatial downscaling

Delta downscaling was employed to generate monthly TMPs
and PRE for the period of 1901-2017 at spatial resolutions
of 10/, 5’, 2.5, and 0.5'. The employed delta downscaling
framework includes the following four steps (Peng et al.,
2018).

First, a climatology dataset was constructed for each
month and each climatic variable based on 30’ CRU time se-
ries. In this step, the annual averages at each month for TMPs
(i.e., mean, maximum, and minimum TMPs) and PRE vari-
ables were constructed based on CRU TMPs and PRE time
series data. Specifically, the constructed climatology dataset
had a spatial resolution of 30’, which is the same as that
of the CRU dataset. Moreover, to match the period of high-
resolution reference datasets from WorldClim, the 30’ clima-
tology dataset was constructed for the period of 1970-2000.

www.earth-syst-sci-data.net/11/1931/2019/
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Thus, for each climatic variable, the dataset featured 12 cli-
matology layers during 1970-2000 with a spatial resolution
of 30'.

Second, the 30’ anomaly time series data were derived
for each climatic variable based on the 30’ CRU time series
data and the constructed climatology dataset. In this step,
the TMP anomaly time series data were calculated as the
difference between the TMP time series and the TMP cli-
matology data in the corresponding month, while the PRE
anomaly time series data were calculated as the ratio of the
PRE time series to the PRE climatology data in the corre-
sponding month. The specific calculation equations are as
follows:

An_TMP (yr, m) = TMP (yr, m) — CRUClim_TMP(m), (1)
An_PRE(yr, m) = PRE(yr, m) /CRUClim_PRE(m),  (2)

where An_TMP(yr, m) and An_PRE(yr, m) are the anoma-
lies for temperatures and precipitation, respectively; TMP(yr,
m) and PRE(yr, m) are the absolute temperatures and
precipitation values, respectively; CRUClim_TMP(m) and
CRUCIlim_PRE(m) are the 30’ climatology for temperatures
and precipitation, respectively; and m and yr correspond to
month (January—December) and year, respectively.

Third, the 30’ anomaly time series dataset was spatially
interpolated to a higher spatial resolution. In this step, the
30’ anomaly grids at each time step are interpolated to four
spatial resolutions (i.e., 10, 5/, 2.5’, and 0.5’) to match the
spatial resolutions of the reference datasets from WorldClim.
Specifically, three interpolation methods are employed in this
step, including bicubic, bilinear, and nearest-neighbor inter-
polation methods. This study compares the performances of
these methods to select a reasonable interpolation approach.

Finally, the high-spatial-resolution anomaly time series
dataset was transformed to an absolute climatic time se-
ries dataset based on the reference datasets from World-
Clim at the corresponding spatial resolutions. In this step, the
anomaly is undone at each time. Therefore, addition is used
for TMPs, while multiplication is used for PRE. The specific
calculation equations are as follows:

TMP (yr, m, res) =

An_TMP (yr, m, res) + WorldClim_TMP (m, res), 3)
PRE (yr,m,res) =
An_PRE (yr, m, res) x WorldClim_PRE (m, res), @

where m and yr are defined as above; res represents spa-
tial resolution, i.e., 10, 5/, 2.5, and 0.5'; TMP(yr, m, res)
and PRE(yr, m, res) are the absolute temperatures and pre-
cipitation values with a spatial resolution of res, respec-
tively; An_TMP(yr, m, res) and An_PRE(yr, m, res) represent
anomalies with a spatial resolution of res for temperatures
and precipitation, respectively; and WorldClim_TMP(m, res)
and WorldClim_PRE(m, res) represent climatology datasets
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from WorldClim at a spatial resolution of res for tempera-
tures and precipitation, respectively.

To visually present the downscaling processes, Fig. 3 il-
lustrates the components and steps of the delta downscal-
ing framework for obtaining the mean TMP by using the
CRU 30 time series and WorldClim 0.5’ climatology dataset.
Specifically, to effectively interpolate the 30" anomaly time
series dataset in China and conveniently implement the
downscaling processes in the program code, downscaling
was carried out in a rectangular region covering China
(Fig. 3).

3.2 Evaluation metrics

Four statistic indices were used to evaluate the original
CRU and downscaled datasets, namely the Pearson’s corre-
lation coefficient (Cor), the mean absolute error (MAE), the
root-mean-square error (RMSE), and the Nash—Sutcliffe ef-
ficiency coefficient (NSE). Cor was used to evaluate the cor-
relation between original-downscaled and observed values,
while MAE and RMSE assessed the bias between original—
downscaled and observed values based on Egs. (5) and (6).
NSE was used to evaluate the performance of original and
downscaled datasets based on Eq. (7), ranging from unity
(best fit) to negative infinity (worst fit) (Nash and Sutcliffe,
1970).

1 n

MAE:;;|PZ-—O,-| (5)
1 n 2

RMSE= [~ (P, —0; 6
n;( ; — 0)) (6)
“ 2
> (Pi—0)

NSE=1- =1 (7)

M=l
S
s

Here P; is the original or downscaled value in the time se-
ries, O; is the observed value in the time series, and n is
the number of months. Evaluations of the original CRU and
downscaled datasets were carried out at each independent
station to be mapped in geographic space, and the obtained
results were averaged over all independent stations to com-
pare the overall performances of original CRU and down-
scaled datasets.

In addition, WorldClim data at different spatial resolutions
were evaluated using MAE and Cor indices, which were
calculated according to the paired climatology values from
WorldClim and observed data for the same geographic po-
sition. The sample size was the number of independent sta-
tions.
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Figure 3. Schematic illustration of the delta spatial downscaling process using the mean TMP (TMP_m) in July 2017 obtained from the

CRU data as an example.

3.3 Evaluations of climatology and trends for the
downscaled dataset

We also evaluated the climatology and trends for the 0.5’
downscaled dataset by comparison with the 30" original CRU
and observed datasets. The mean annual value of each cli-
matic variable was used to represent climatology, and the
annual trend was employed to indicate temporal variation.
Specifically, the annual minimum TMP was the minimum
value of monthly minimum TMPs in a year, the annual max-
imum TMP was the maximum value of the monthly maxi-
mum TMPs in a year, the annual mean TMP was the mean
of the monthly mean TMPs in a year, and the annual PRE
was the sum of the monthly precipitations in a year. For an-
nual trend analysis, linear regression relationships between
climatic variables and year were established to calculate the
trend magnitude.
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4 Results

4.1 Evaluation of WorldClim data at different spatial
resolutions

We evaluated the reliability of the WorldClim dataset based
on observations from independent weather stations. Overall,
the monthly climatology data with respect to temperature and
precipitation exhibited a high performance for representing
the monthly climatology data over China during 1970-2000,
and the climatology dataset exhibited good performance at a
higher spatial resolution. Specifically, the absolute errors of
the WorldClim datasets decreased with increasing spatial res-
olution (Table 1), and correlations to observations increased
with increasing spatial resolution (Table 2), especially for
the 0.5 WorldClim dataset. Thus, the employed WorldClim
datasets could be used as an input for the chosen downscaling
processes.
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Table 1. Mean absolute errors between the observed and WorldClim climatology datasets at different spatial resolutions over independent

weather stations for 1970-2000.

Jan Feb Mar Apr  May Jun Jul Aug Sep Oct Nov Dec
Minimum TMP (°C) 100 0726 0.675 0615 0533 0515 0.533 0.789 0.759 0.719 0.639 0.643 0.656
5 0653 0596 0521 0467 0450 0429 0.660 0633 0607 0523 0514 0550
25 0632 0563 0484 0433 0411 0372 0602 0574 0543 0459 0449 0.503
05 0622 0549 0474 0430 0408 0354 0567 0541 0513 0428 0420 0.484
Mean TMP (°C) 100 0450 0481 0470 0482 0487 0478 0455 0445 0427 0425 0425 0427
5 0401 0426 0385 0390 0400 0.391 0379 0387 0.380 0367 0362 0.377
25" 0365 0378 0.338 0332 0351 0342 0338 0356 0348 0.333  0.331 0.349
0.5 0355 0366 0.328 0.322 0337 0330 0334 0351 0343 0331 0324 0342
Maximum TMP (°C) 10’ 0.832 0.821 0.809 0909 0827 0678 0718 0734 0644 0658 0.630 0.687
5 0727 0711 0666 0760 0.687 0560 0.645 0658 0568 0561 0511 0576
25 0664 0637 0591 0670 0597 0485 0589 0.600 0531 0509 0447 0517
05 0631 059 0544 0611 0544 0445 0574 0578 0516 0484 0405 0479
PRE (mm) 100 2.165 1.869 3476 4.662 5651 8416 9716 7.993 5825 3.968 2202 1.378
5 2077 1834 3407 4641 5637 8291 9702 7.841 5805 3.908 2.183 1348
25 2074 1813 3404 4603 5594 8268 9.664 7705 5742 3904 2182 1334
05 2072 1797 3360 4495 5564 8.190 9.630 7.651 5699 3895 2170 1.300
4.2 Evaluation of original CRU temperatures and 4.3 Validation of downscaled CRU temperature and

precipitation data

Prior to downscaling, we evaluated the performance of the
original CRU time series dataset employed herein. Table 3
presents the averaged evaluation over independent weather
stations, according to the evaluation result at each station for
the original monthly TMP and PRE variables in the time se-
ries (1951-2016). The results show that (1) the dataset exhib-
ited good performance for determining the original monthly
TMPs and PRE values and (2) the performance of NSE and
Cor indices for evaluating TMPs was better than that for
evaluating PRE. Specifically, the MAEs of the minimum,
mean, and maximum TMPs, as well as of PRE equaled 1.766,
1.598, 2.034 °C, and 17.85 mm, respectively. The RMSEs of
the minimum, mean, and maximum TMPs as well as of PRE
equaled 1.947, 1.759, 2.206 °C, and 29.559 mm, respectively.
The NSEs of the minimum, mean, and maximum TMPs as
well as of PRE equaled 0.887, 0.888, 0.8, and 0.614 re-
spectively. The Cor’s of the minimum, mean, and maximum
TMPs as well as of PRE equaled 0.994, 0.996, 0.995, and
0.885, respectively.

Figure 4 maps the MAEs of the original TMP and PRE
variables at each independent weather station, showing that
(1) the original TMPs had larger biases in the northwest of
China, especially at high-elevation regions and the Qinghai—
Tibet Plateau, and (2) the original PRE had greater biases in
the southern part of the Qinghai—Tibet Plateau and China.

www.earth-syst-sci-data.net/11/1931/2019/

precipitation data

Table 3 presents the averaged evaluation over independent
weather stations, based on the evaluation result at each sta-
tion for the downscaled monthly TMPs and PRE in the time
series (1951-2016) at different spatial resolutions. The re-
sults show that (1) compared with the original dataset, the
downscaled dataset had lower MAEs and RMSEs and higher
NSEs; (2) the increase in the spatial resolution of the World-
Clim reference dataset from 10’ to 0.5’ resulted in a decrease
in MAE and RMSE and an increase in NSE; (3) among the
three interpolation methods employed in the delta downscal-
ing framework, the bilinear interpolation method afforded
downscaled data with the lowest MAEs and RMSEs as well
as the highest NSEs at each spatial resolution; and (4) the
performance of the delta downscaling framework was bet-
ter for TMPs than for PRE. Specifically, compared with the
original dataset, the MAE of the downscaled minimum TMP
at 0.5" under the bilinear interpolation method decreased to
1.05°C (by 35.4 %), the RMSE decreased to 1.248 °C (by
35.9 %), the NSE increased to 0.972 (by 9.6 %), and the
Cor increased to 0.998 (by 0.4 %). For the mean TMP, the
MAE of the downscaled data at 0.5" under the bilinear in-
terpolation method decreased to 0.820 °C (by 48.7 %), the
RMSE decreased to 0.969 °C (by 44.9 %), the NSE increased
to 0.981 (by 10.5%), and the Cor increased to 0.998 (by
0.2 %). For the maximum TMP, the MAE of the downscaled
data at 0.5" under the bilinear interpolation method decreased
to 1.282°C (by 37.0 %), the RMSE decreased to 1.491°C
(by 32.4 %), the NSE increased to 0.91 (by 13.8%), and
the Cor increased to 0.997 (by 0.2 %). For PRE, the MAE
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Table 2. Correlation coefficients between the observed and WorldClim climatology datasets at different spatial resolutions over independent
weather stations for 1970-2000.

Jan Feb Mar Apr  May Jun Jul Aug Sep Oct Nov Dec

Minimum TMP (°C) 100 0987 0.984 0977 0969 0963 0.962 00955 0.957 0956 0.971 0.984 0.987
5 0989 00987 0983 0.977 0973 0973 0964 0966 0.968 0.980 0.990 0.991

2.5 0989 0.988 0985 0.981 0978 0.977 0968 0.971 0974 0.985 0.992 0.992

0.5 0989 0989 0.986 0.983 0.981 0.980 0.972 0974 0977 0.988 0.993 0.993

Mean TMP (°C) 100 0986 0.979 0968 0.955 0949 0.949 0956 0.958 0966 0.974 0.982 0.987
5 0991 0986 0980 0.969 0.962 0.959 0963 0965 0.973 0.983 0.989 0.991

2.5 0993 0.990 098 0.977 0970 0.965 0968 0.970 0.978 0.986 0.992 0.993

0.5 0994 0992 0989 0981 0.973 0968 0.970 0.972 0980 0.988 0.993 0.995

Maximum TMP (°C)  10° 0.958 0.946 0.920 0.892 0.889 0.899 0.893 0.890 0.935 00957 0968 0.974
5 0969 0961 0946 0921 0912 0912 0898 0.896 0939 0.965 0.978 0.982

25 0976 0971 0960 0.941 0930 0.925 0910 0.909 0945 0.971 0.984 0.986

0.5 0979 0976 0968 0951 0.940 0932 0913 0912 0946 0973 0.988 0.989

PRE (mm) 100 0976 0.980 0978 0.979 0974 0961 0903 0.920 0941 0.908 0.939 0.965
5 0976 0980 0979 0979 0974 0961 0905 0.924 0943 0911 0.940 0.966

25 0976 0981 0980 0.979 0974 0.962 0908 0.930 0.943 0.913 0.941 0.967

0.5/ 0977 0981 0981 0.980 0975 0962 0909 0.930 0.944 0914 0.941 0.968
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Figure 4. Spatial distribution of MAEs between the 30’ original and observed TMPs—PRE from 1951 to 2016 at each independent weather
station. Panels (a)—(d) show MAEs for the monthly minimum, mean, and maximum temperatures as well as the monthly precipitation,
respectively.
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Table 3. Statistical characterization of original-downscaled and observed monthly TMPs and PRE in the time series (1951-2016). The
values shown here are the averaged evaluation results at all independent weather stations, with standard errors listed in Table S1.

Res MAE. MAE; MAE, RMSE. RMSE; RMSE, NSE. NSE; NSE, Cor. Cor; Cory

Minimum 30 1.766 1.947 0.887 0.994

TMP (°C) 100 1.673 1515 1558 1.802  1.726 1.793  0.896 0.902 0.899 0.995 0.995 0.995
s 1338 1292 1.325 1.666 1503 1.582 0904 0937 0923 0995 0.995 0.995
25 1233 1142 1211 1401 1349 1384 0946 0951 0949 0.995 0997 0.996
05 1.140 1050 1.137 1322 1248 1271 0955 0972 0963 0.997 0.998 0.997

Mean 300 1.598 1.759 0.888 0.996

TMP (°C) 100 1277  1.140  1.188 1433 1.293 1358 0.899 0914 0904 0997 0997 0.997
s 1117 0980  1.003 1222 1.133 1.197 0926 0950 0933 0997 0.997 0.997
25 0977 0836  0.859 1.157 0988 0993 0966 0976 0973 0.997 0.998 0.997
05 0826 0820 0822 0974 0969 0970 0977 0981 0980 0.998 0998 0.998

Maximum 30 2.034 2.206 0.800 0.995

TMP (°C) 100 1.800 1.672 1755  2.044  1.886 1968 0.811 0.832 0.824 0995 099 0.996
5 1.649 1487  1.548 1.864  1.700 1.756  0.843 0.856 0.850 0.996 0.996 0.996
25 1455 1310 1387 1.666 1523 1.632  0.875 0909 0.887 0.996 0997 0.996
05 1296 1282  1.291 1.511 1.491 1.500 0.909 0910 0910 0.997 0997 0.997

PRE 300 17.850 29.559 0.614 0.885

(mm) 100 16.884 16.647 16741  28.022 27.559  27.946 0675 0.735 0.700 0.887 0.890 0.890
5' 16134 15223 15942 26222 25.185 25888 0.764 0.791 0773 0.892 0.900 0.894
2.5 14867 14.024 14557 24374 23.191 23867 0.791 0792 0.791 0914 0920 0919
0.5 13772 13269 13443  22.655 21.941 22213 0794 0808 0.802 0920 0929 0.926

Notes: Res indicates spatial resolution. Subscripts ¢, /, and n indicate bicubic, bilinear, and nearest-neighbor interpolations, respectively. The original TMPs and PRE are the 30
CRU data and are directly compared with the observed data. Evaluations at 10/, 5’, 2.5, and 0.5’ pertain to the downscaled datasets. MAE, RMSE, NSE, and Cor indicate the mean
absolute error, root-mean-square error, Nash—Sutcliffe efficiency coefficient, and correlation coefficient, respectively.

Table 4. Comparison of the averaged climatology among the independent weather stations during 1951-2016, based on the 30" original
datasets, the 0.5 datasets downscaled with the bilinear interpolation, and the observations.

Annual minimum  Annual maximum  Annual mean

Annual total

TMP (°C) TMP (°C) TMP (°C)  PRE (mm)
30/ —8.2640.41 28.2440.18 11.41+£0.30 898.4+£223
0.5 —7.44 4 0.40 20.624+0.16 12.13+£0.28 879.7+£22.8
Observation —7.3240.41 29.744+0.16  12.12+£0.28 880.2+23.2

Note all values are presented as mean =+ standard error.

of the downscaled data at 0.5" under the bilinear interpola-
tion method decreased by 25.7 %, the RMSE decreased by
25.8 %, the NSE increased by 31.6 %, and the Cor increased
by 5.0 %. Overall, the downscaled datasets had higher accu-
racy than the original CRU dataset, especially the 0.5’ dataset
downscaled using the bilinear interpolation method, which
is, therefore, the new dataset proposed by this study.

Figure 5 maps the relative MAE decrement upon going
from the 30’ original dataset to the 0.5 dataset downscaled
using the bilinear interpolation method. Compared with the
MAE:s of the original dataset, those of the downscaled dataset
were lower for all independent stations, especially in the
northwest of China and the Qinghai-Tibet Plateau.

www.earth-syst-sci-data.net/11/1931/2019/

4.4 Climatology of China based on the 0.5' downscaled
dataset

Table 4 lists the averaged climatology data obtained from in-
dependent weather stations during 1951-2016 based on the
30’ original dataset, the 0.5 dataset downscaled with bilin-
ear interpolation, and the observations. The results indicate
that the averaged climatology data for each climatic vari-
able from the 0.5" downscaled data were closer to those from
the observed data than to those from the 30" original data.
Specifically, the averaged climatology differences between
the 0.5” downscaled and observed data equaled —0.12 °C for
the annual minimum TMP, —0.12 °C for the annual maxi-
mum TMP, 0.01 °C for the annual mean TMP, and —0.5 mm
for the annual total PRE.

Earth Syst. Sci. Data, 11, 1931-1946, 2019
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Figure 5. Relative decrement in MAEs from the 30’ original datasets to 0.5" downscaled datasets generated using bilinear interpolation
at each independent weather station. Panels (a)—(d) are the relative decrements in MAE for the monthly minimum, mean, and maximum

temperatures as well as monthly precipitation, respectively.

To further illustrate the ability of the downscaled data to
reflect climatology, we constructed box plots of the clima-
tology anomaly during 1951-2016 for the 30" original and
0.5’ downscaled datasets at independent weather stations,
where the climatology anomaly is equal to the bias from the
original-downscaled data to the observed values at each sta-
tion (Fig. 6). The results show that the climatology anomaly
from the 0.5” downscaled dataset more intensively embraced
the zero value than that from the 30" original dataset, espe-
cially for median and mean values. These results imply that
the 0.5 dataset downscaled with bilinear interpolation could
better represent climatology in TMPs and PRE of China than
the 30’ original dataset.

In addition, we investigated climatology by using the 0.5’
downscaled TMPs and PRE data generated by the bilin-
ear interpolation method for 1901 to 2017 (Fig. 7). The
mean annual minimum TMP for China ranged from —47.44
to 18.70°C, with an average of —13.19°C, and the low-
est value corresponded to a location in the western part of
the Qinghai-Tibet Plateau (Fig. 7a). The mean annual max-
imum TMP ranged from —17.53 to 42.23°C, with an av-
erage of 26.70°C, and the highest value was observed at
a location in the Turpan Basin (Fig. 7b). The mean annual
TMP ranged from —34.41 to 26.39 °C, with an average of
6.18°C, and the lowest and highest values corresponded to

Earth Syst. Sci. Data, 11, 1931-1946, 2019

locations in the western part of the Qinghai—Tibet Plateau
and Hainan Island, respectively (Fig. 7c). The mean annual
total PRE ranged from 3.2 to 4854.0 mm, with an average
value of 564.4mm, and the minimum and maximum val-
ues corresponded to locations in the northwestern part of
the Qinghai-Tibet Plateau near the Tarim Basin and Taiwan
Island, respectively (Fig. 7d). The climatology data for the
three TMPs varied with topography and notably decreased
with orographic uplift. The climatology data for PRE de-
creased upon going from the southeastern coastal region to
the northwestern region. These results almost fit the oro-
graphic and coastal effects on the climatology of China.

4.5 Trends of the annual temperatures and precipitation
in China

Figure 8 maps the annual trends in TMPs and PRE over
China during 1951-2016 based on the 0.5’ downscaled
dataset with bilinear interpolation, the 30’ original dataset,
and the observed dataset. The results show that (1) the an-
nual values of TMPs and PRE in the 0.5” downscaled dataset
were closer to observations than the original values in the
time series, (2) the annual trends from the 0.5’ downscaled
dataset were closer to the observed trends than to those from
the 30’ original data, and (3) the temporal correlations be-

www.earth-syst-sci-data.net/11/1931/2019/
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Figure 6. Box plots of climatology anomaly during 1951-2016 for 30’ original and 0.5" downscaled datasets at independent weather stations.
The climatology anomaly is equal to the bias from the original-downscaled to the observed values. Red lines in boxes show median values.
Boxes indicate the inter-quantile range (25 %-75 %). Crosses (x) in boxes indicate the averages of all anomaly values. Horizontal dotted
lines indicate zero values. An_original and An_downscale indicate climatology anomalies of the 30 original and 0.5’ downscaled datasets,
respectively. The 0.5” downscaled datasets were generated using bilinear interpolation in the delta downscaling framework.
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Figure 7. Spatial distributions of climatology data in the time period of 1901-2017 for TMPs and PRE over China, based on the 0.5
downscaled datasets generated using bilinear interpolation in the delta downscaling framework. Panels (a)—(d) correspond to the mean
annual minimum, maximum, and mean temperatures as well as the mean annual precipitation, respectively.
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Figure 8. Temporal variations in annual TMPs and PRE over China during 1951-2016 based on the 0.5" downscaled datasets with bilinear
interpolation, 30’ original datasets, and observed datasets. Tr-obs, Tr-down, and Tr-ori indicate the annual trends calculated using the ob-
served, 0.5" downscaled, and 30’ original datasets, respectively. Cor(obs, down) indicates the correlation coefficients of the annual values
from observed and 0.5” downscaled data, while Cor(obs, ori) indicates the correlation coefficients of the annual values from the observed and

30/ original data.

tween the 0.5 downscaled and observed data were slightly
better than those between the 30’ original and observed data,
although the latter were sufficiently good. Furthermore, the
annual trends in the TMPs in the 0.5’ downscaled dataset
were underestimated (by 0.053, 0.048, and 0.06 °C lOyr_1
for the minimum, maximum, and mean TMPs), while those
in the PRE in the 0.5 downscaled dataset were overesti-
mated (by 0.505 mm 10 yr~"). Overall, the 0.5 downscaled
and observed data had minor differences with respect to an-
nual trends and high temporal correlations, and thus it was
concluded that the 0.5" downscaled dataset can be used to
represent temporal variations and trends in TMPs and PRE
across China.

In addition, we investigated the spatial patterns of annual
trends in TMPs and PRE from 1901 to 2017 across China
by using the 0.5" dataset downscaled with bilinear interpola-
tion (Fig. 9). A 95 % significance level was selected to rep-

Earth Syst. Sci. Data, 11, 1931-1946, 2019

resent the significance of the trend for each climatic vari-
able. The annual minimum TMP exhibited a significant up-
ward trend from 0.018 to 0.240°C 10 yr‘l, with an aver-
age of 0.131°C 10yr~!, over areas accounting for approx-
imately 94.17 % of the total land area of China (Fig. 9a).
The annual maximum TMP exhibited a significant upward
trend from 0.016 to 0.171°C 10yr~!, with an average of
0.081°C10yr~!, over areas accounting for approximately
80.85 % of the total land area of China (Fig. 9b). Mean-
while, the annual maximum TMP exhibited a significant
downward trend from 0.019 to 0.034°C 10yr~!, with an
average of 0.027°C 10yr~!, in areas accounting for only
~0.33 % of the land area of China (Fig. 9b). The annual
mean TMP exhibited a significant upward trend from 0.017
to 0.189°C10yr~!, with an average of 0.104°C10yr~!,
over areas accounting for approximately 90.92 % of the to-
tal land area of China (Fig. 9c). The annual PRE exhibited

www.earth-syst-sci-data.net/11/1931/2019/
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Figure 9. Spatial patterns of the annual trends in TMPs and PRE from 1901 to 2017 across China obtained using the 0.5’ downscaled
data with bilinear interpolation. Panels (a)—(d) correspond to the annual minimum, maximum, and mean TMPs as well as the annual PRE,
respectively. Purple zones indicate locations where trends are significant at the 95 % confidence level.

a significant upward trend from 0.11 to 21.206 mm 10 yr—!,
with an average of 3.306 mm 10 yr~!, over areas accounting
for ~22.02 % of the total land area of China (Fig. 9d). Mean-
while, the annual PRE exhibited a significant downward
trend from 0.13 to 30.321 mm 10yr~!, with an average of
7.147mm 10yr~!, over areas accounting for only ~2.01 %
of China (Fig. 9d). Therefore, the 0.5" data downscaled with
the bilinear interpolation proposed herein were concluded to
represent the detailed spatial variability of trends in TMPs
and PRE across China well.

5 Data availability

The 0.5’ downscaled dataset with bilinear inter-
polation developed in this study has been pub-
lished in Network Common Data Form (NetCDF) at
https://doi.org/10.5281/zenodo.3114194 for precipitation
(Peng, 2019a) and https://doi.org/10.5281/zenodo.3185722
for air temperatures at 2m (Peng, 2019b). The dataset
includes the monthly minimum, maximum, and mean
temperatures, as well as the monthly total precipitation
from January 1901 to December 2017. Because of the
availability of original CRU data and the spatial resolution
of the reference climatology data, the data cover most of the
land area of China, with a geographic range of 18.2-53.5° N
and 73.5-135.0° E. The total number of grids is 13 808 747.
To reduce the size of the NetCDF file, the data for each
climatic variable are divided into intervals of 3 years. TMPs
and PRE are expressed to precision of 0.1 °C and 0.1 mm,

www.earth-syst-sci-data.net/11/1931/2019/

respectively, and stored using the int16 format. Thus, each
file contains 36 months of data and requires 2.42 GB of
storage space. This file size is convenient for processing by
modern computers, and subparagraph storage in the time
series can satisfy the need for quick data access for a specific
period. Each file name indicates the data contained in the
file, in the format “data type”_‘“beginning year”_‘“‘ending
year”.nc. For example, the file named tmn_1901_1903.nc
contains minimum temperature data from 1901 to 1903.
The total number of NetCDF files is 156, and the total
size of the dataset in nc format is approximately 378 GB.
After compression in zip format, the size of each file is
approximately 300 MB, which translates into a total dataset
size of 47.8 GB. This dataset will be updated yearly, as the
CRU TS dataset is also updated yearly, and new data will
become available for download from the website identified
above.

The monthly TMPs and PRE data in the 30’ original
dataset from 1901 to 2017 were obtained from the CRU
TS v4.02 dataset (http://www.cru.uea.ac.uk/data, last access:
25 April 2019). The high-resolution reference data at spa-
tial resolutions of 10/, 5/, 2.5/, and 0.5’ for TMPs and PRE
were supported by WorldClim v2.0 (http://worldclim.org/
version2, last access: 25 April 2019). The observed monthly
meteorological data from the 496 weather stations across
China were provided by the National Meteorological Infor-
mation Center of China (http://data.cma.cn/en, last access:
25 April 2019).
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6 Discussion, limitations, and recommendations

Although the original CRU dataset with a 30 spatial resolu-
tion was not evaluated as being poor, the 0.5" dataset down-
scaled with bilinear interpolation was evaluated as being bet-
ter, with deviations decreasing by 35.4 %—48.7 % for TMPs
and by 25.7 % for PRE relative to the original CRU dataset
(Table 3). Thus, the original CRU dataset needs to be cor-
rected. Many factors contribute to these deviations, e.g., ob-
servational errors, sample size, and operator errors in gath-
ering the original CRU data. However, little work has been
done to address this issue. Previous studies indicated that to-
pographic information (e.g., elevation, location, slope, and
aspect) may be the key factor for correcting deviations, es-
pecially in mountainous areas (Gao et al., 2018, 2017; Peng
et al., 2014). Therefore, a high-resolution reference clima-
tology dataset containing detailed topographic information,
as well as the effects of distance to the nearest coast and
satellite-derived covariates, was used in this study to down-
scale the 30" original CRU dataset to a 0.5" dataset compris-
ing monthly TMPs and PRE from January 1901 to December
2017 across China, which has a low density of weather sta-
tions in mountainous areas. To the best of our knowledge,
this 0.5" downscaled dataset is the first dataset (version 1.0)
developed with such a high spatiotemporal resolution over
such a long time period for China.

Compared with the original CRU dataset, the downscaled
dataset exhibited smaller deviations and higher spatial reso-
lutions, which suggested that the delta downscaling frame-
work can be used to downscale and correct low-spatial-
resolution climate data. This should be attributed to the in-
troduction of the high-spatial-resolution WorldClim data be-
cause the reference climatology dataset with higher spatial
resolution could produce more accurate downscaled data
with a higher spatial resolution (Tables 1-3). Remarkably,
because of the introduction of the averaged 30’ elevation in-
formation in the original CRU data, these data weaken the
representation of TMPs and PRE on the actual land sur-
face, especially in regions with complex terrain. Moreover,
the original CRU dataset was evaluated at weather stations,
which are often located in valleys near counties or cities.
Thus, the TMPs and PRE from the CRU dataset exhibited
lower and higher values than those from the observations,
respectively (Table 4 and Fig. 6). However, the deviations
decreased to a certain extent in the 0.5" downscaled dataset
(Table 4 and Fig. 6). Even so, the delta downscaling pro-
cesses did not considerably improve the temporal correla-
tions between 0.5 downscaled and observed data (Table 3).
This could be attributed to the fact that the delta downscal-
ing processes focus on correcting deviations and downscal-
ing the spatial resolution, using the 12 climatology layers
from the WorldClim dataset. In geographical space, the cor-
rections are evident, especially in the northwest of China and
the Qinghai-Tibet Plateau (Fig. 5), which should result from
the introduction of orographic effects, distance to the nearest
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coast, and effects of satellite-derived covariates in the World-
Clim dataset.

The 0.5" downscaled TMP and PRE dataset with bilinear
interpolation captures the detailed climatology of the whole
of China very well (Fig. 7), accurately representing climate
characteristics such as the minimum TMP at high elevations
(e.g., the Qinghai-Tibet Plateau), the maximum TMP at low
elevations (e.g., the Turpan Basin), and heavy PRE in marine
areas (e.g., Taiwan Island). The biases of climatology data
were only —0.12 °C for the minimum TMP, —0.12 °C for the
maximum TMP, 0.01 °C for the mean TMP, and —0.5 mm
for PRE (Table 4). Furthermore, the climatology anomaly
at each weather station from the 0.5" downscaled dataset is
closer to zero than that from the 30’ original dataset (Fig. 6).
The 0.5’ dataset downscaled with bilinear interpolation also
represents detailed annual trends in climatic variables over
China very well (Fig. 9), precisely representing the trends
and their significance levels over the geographic space, such
as significant increases and decreases in the maximum TMP
and PRE. In general, compared with the 30’ original dataset,
this dataset captures the annual trends very well (Fig. 8);
the 0.5" downscaled and observed data exhibit high temporal
correlations and minor differences in annual trends (Fig. 8).
Therefore, the 0.5’ dataset downscaled with bilinear interpo-
lation can be used to successfully assess climate change and
its spatial effects across China.

As mentioned previously, the accuracy of the reference cli-
matology dataset largely determines its quality. Herein, the
reference climatology dataset from WorldClim was adopted.
Although our evaluation indicated that the quality of the
dataset is very good, a gap between the dataset and observed
data was observed. We think that a new and better reference
climatology dataset should be generated using the observed
data gathered across China. However, the current release of
public climate data over China is insufficient to construct a
reference climatology dataset better than that available from
WorldClim. In our future research, we plan to collect more
public and private climate data to construct a better reference
climatology dataset and then generate a more accurate down-
scaled dataset for China.

Another limitation is the difficulty of validating the new
dataset before 1950. Although China had several weather
stations with data collected starting from 1901, all of them
have been used to generate the CRU time series (Harris et
al., 2014). Therefore, we cannot verify the quality of data be-
fore 1950 because of data unavailability. However, the down-
scaling procedure only used data from original CRU and
WorldClim datasets as inputs, and thus the quality of the
new dataset throughout the period of 1901-2017 depended
on input quality. Evaluations showed that the qualities of
the original CRU and WorldClim datasets are overall satis-
factory and that the downscaling procedure can further im-
prove the quality of the original CRU dataset as well as en-
hance its spatial resolution. The usage of some evaluation in-
dices may have defects and should be clarified in this study.
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The indices used herein can be classified into two groups,
one based on the sums of squared errors (i.e., RMSE and
NSE) and the other based on the sums of error magnitudes
(i.e., MAE). The sums of the squared errors are influenced
by three independent variables, namely the mean of individ-
ual error magnitudes, variability among error magnitudes,
and the number of observations or domains of integration
(Willmott et al., 2009). Willmott and Matsuura (2005) rec-
ommended MAE as an evaluation criterion for estimations.
However, this study adopted the CRU time series dataset as
a unique original dataset and observations from 496 weather
stations as a unique evaluation dataset. Thus, the variations
in RMSE or NSE in different cases were only influenced by
the mean of individual error magnitudes, which were intro-
duced by different spatial resolutions and interpolation meth-
ods. Thus, RMSE and NSE indices satisfied the evaluation
criteria of this study. Further, the evaluation indices were
mainly used to compare the performance of the downscaled
and original datasets. Therefore, the usage of these indices in
this study is reasonable.

In addition, because of the limitations associated with the
computational resources and the resolutions of reference cli-
matology and the original CRU dataset, the resolution of the
new dataset is limited to monthly and 0.5" (~ 1 km) grid spac-
ing. However, the current dataset (approximately 378 GB) is
very large to process and store. The computational resources
and disk space required for the dataset will increase exponen-
tially with increasing spatiotemporal resolution (Gao et al.,
2018). For such a large amount of data, storage and extraction
are not convenient, and supercomputers as well as parallel
computing will be required for work with larger datasets in
the future. Another limitation is that the current dataset only
includes historical climate data. Many GCM products have
been released, but their coarse spatial resolution and low ac-
curacy prevent detailed projections of future climate trends
and their effects on local scales, which are urgently required
for planning local strategies of coping with the negative ef-
fects of future climate changes. The delta spatial downscaling
procedure has been employed to generate future climate data
at high resolutions for some areas (Peng et al., 2017).

The issues associated with computational resources, vali-
dation, and a reasonable reference climatology must be ad-
dressed to generate high-resolution climate data for China
in the future. Higher-resolution data, more validation, and a
better reference climatology for historical and future climate
data (version 2.0) are concerns to be addressed in future re-
search.
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