Articles | Volume 16, issue 2
https://doi.org/10.5194/essd-16-803-2024
https://doi.org/10.5194/essd-16-803-2024
Data description paper
 | 
07 Feb 2024
Data description paper |  | 07 Feb 2024

A 2020 forest age map for China with 30 m resolution

Kai Cheng, Yuling Chen, Tianyu Xiang, Haitao Yang, Weiyan Liu, Yu Ren, Hongcan Guan, Tianyu Hu, Qin Ma, and Qinghua Guo

Related authors

Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024,https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024,https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary
Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020
Jia Zhou, Jin Niu, Ning Wu, and Tao Lu
Earth Syst. Sci. Data, 16, 5171–5189, https://doi.org/10.5194/essd-16-5171-2024,https://doi.org/10.5194/essd-16-5171-2024, 2024
Short summary
Global mapping of oil palm planting year from 1990 to 2021
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024,https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024,https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary
Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2
Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell
Earth Syst. Sci. Data, 16, 4931–4947, https://doi.org/10.5194/essd-16-4931-2024,https://doi.org/10.5194/essd-16-4931-2024, 2024
Short summary

Cited articles

Abbasi, E., Alavi Moghaddam, M. R., and Kowsari, E.: A systematic and critical review on development of machine learning based-ensemble models for prediction of adsorption process efficiency, J. Clean. Prod., 379, 134588, https://doi.org/10.1016/j.jclepro.2022.134588, 2022. 
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623–2631, Association for Computing Machinery, Anchorage, AK, USA, https://doi.org/10.48550/arXiv.1907.10902, 2019. 
Alerskans, E., Zinck, A.-S. P., Nielsen-Englyst, P., and Høyer, J. L.: Exploring machine learning techniques to retrieve sea surface temperatures from passive microwave measurements, Remote Sens Environ., 281, 113220, https://doi.org/10.1016/j.rse.2022.113220, 2022. 
Banfield, R. E., Hall, L. O., Bowyer, K. W., and Kegelmeyer, W. P.: A Comparison of Decision Tree Ensemble Creation Techniques, IEEE T. Pattern Anal. Mach. Intell., 29, 173–180, https://doi.org/10.1109/TPAMI.2007.250609, 2007. 
Banskota, A., Kayastha, N., Falkowski, M. J., Wulder, M. A., Froese, R. E., and White, J. C.: Forest Monitoring Using Landsat Time Series Data: A Review, Can. J. Remote. Sens., 40, 362–384, https://doi.org/10.1080/07038992.2014.987376, 2014. 
Download
Short summary
To quantify forest carbon stock and its future potential accurately, we generated a 30 m resolution forest age map for China in 2020 using multisource remote sensing datasets based on machine learning and time series analysis approaches. Validation with independent field samples indicated that the mapped forest age had an R2 of 0.51--0.63. Nationally, the average forest age is 56.1 years (standard deviation of 32.7 years).
Altmetrics
Final-revised paper
Preprint