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Abstract. A high-resolution, spatially explicit forest age map is essential for quantifying forest carbon stocks
and carbon sequestration potential. Prior attempts to estimate forest age on a national scale in China have been
limited by sparse resolution and incomplete coverage of forest ecosystems, attributed to complex species com-
position, extensive forest areas, insufficient field measurements, and inadequate methods. To address these chal-
lenges, we developed a framework that combines machine learning algorithms (MLAs) and remote sensing time
series analysis for estimating the age of China’s forests. Initially, we identify and develop the optimal MLAs
for forest age estimation across various vegetation divisions based on forest height, climate, terrain, soil, and
forest-age field measurements, utilizing these MLAs to ascertain forest age information. Subsequently, we apply
the LandTrendr time series analysis to detect forest disturbances from 1985 to 2020, with the time since the
last disturbance serving as a proxy for forest age. Ultimately, the forest age data derived from LandTrendr are
integrated with the result of MLAs to produce the 2020 forest age map of China. Validation against independent
field plots yielded an R2 ranging from 0.51 to 0.63. On a national scale, the average forest age is 56.1 years
(standard deviation of 32.7 years). The Qinghai–Tibet Plateau alpine vegetation zone possesses the oldest forest
with an average of 138.0 years, whereas the forest in the warm temperate deciduous-broadleaf forest vegetation
zone averages only 28.5 years. This 30 m-resolution forest age map offers crucial insights for comprehensively
understanding the ecological benefits of China’s forests and to sustainably manage China’s forest resources. The
map is available at https://doi.org/10.5281/zenodo.8354262 (Cheng et al., 2023a).
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1 Introduction

Forest age is crucial for gaining insights into forest ecosys-
tem succession and condition, thereby playing a pivotal role
in comprehending the ecological benefits of forests (Lin et
al., 2023). China’s forests have undergone significant dis-
ruptions due to natural disasters and human activities over
the past few decades, leading to notable changes in the for-
est age structure (Niu et al., 2023). Consequently, this sce-
nario presents considerable challenges in accurately assess-
ing forest ecosystem carbon storage (Pan et al., 2011; Tong
et al., 2020). The complexity of species composition, exten-
sive forest areas, limited field measurements, and ineffec-
tive methods have led to existing national-scale estimates
of China’s forest age focusing on either sparse resolution
(Zhang et al., 2017) or partial forest ecosystem coverage
(Xiao et al., 2023). This has resulted in significant uncertain-
ties in evaluating the carbon sources and sinks within China’s
forest ecosystem (Piao et al., 2022; Wang et al., 2022). There-
fore, there is an urgent requirement for time-efficient, high-
resolution mapping of forest age across China.

At present, China’s forest age data are primarily obtained
through the national forest inventory with its high accuracy
(Xiao et al., 2023), but this method requires extensive labor
and material resources, making it time-consuming and costly
(Liu et al., 2022). Additionally, most of China’s forests are
rugged mountainous areas that are difficult to access (Cheng
et al., 2023b), which limits the survey range and uneven dis-
tribution of field samples, making it difficult to estimate the
age of China’s forests on a national scale. Thus, the tradi-
tional forest inventory method struggles to accurately and
timely capture the complete age distribution and spatial char-
acteristics of China’s forests.

Remote sensing technology has demonstrated effective-
ness in estimating forest cover (Su et al., 2020; Tubiello et
al., 2023) and forest structure (Yu et al., 2020; Maltman et
al., 2023) across various scales. The availability and sharing
of Landsat time series data, along with the development of
Google Earth Engine (GEE) cloud-processing platform, have
significantly facilitated the application of remote sensing in
forest age estimation. Several studies have been conducted
to map China’s forest age. Xiao et al. (2023) mapped the
age of China’s young forests at 30 m resolution using time
series Landsat imagery. Yu et al. (2020) produced a 1 km res-
olution map of the age for planted forests in China. Zhang
et al. (2017) developed a 1 km stand age map using climate
and forest height data. Zhang et al. (2014) mapped a na-
tional forest age map with 1 km resolution by using remote-
sensing forest height and forest type data. However, the ex-
isting China’s forest age maps are typically undertaken at
coarser spatial resolutions (e.g., 1 km), with finer resolutions
(e.g., 30 m) being limited to young forests. There remains a
lack of high-resolution forest age spatial dataset covering the
entire forest region of China.

Statistical models and disturbance detection approaches
are two common methods utilized in remote-sensing-based
forest age estimations. Statistical models deduce forest age
by establishing a coherent relationship between remote sens-
ing features and field-collected empirical samples, includ-
ing parametric regression approaches (Maltamo et al., 2020;
Schumacher et al., 2020) and nonparametric machine learn-
ing algorithms (MLAs). Growth models represent one of the
most widely used parametric models for estimating forest
age (Zhang et al., 2014, 2017; Yu et al., 2020). However,
this type of model relies on tree species information, pos-
ing challenges in forest age derivation when such data are
lacking, particularly at large scales. MLAs have been em-
ployed for forest age estimation, owing to their flexibility in
addressing complex problems (Alerskans et al., 2022). For
example, Huang et al. (2023) integrated random forest (RF)
to derived forest age. Chen et al. (2016) mapped forest stand
age dynamics using RF and Landsat imagery. Nevertheless,
the application of MLAs to estimate national forest age has
not been deeply explored. Most previous studies used a sin-
gle MLA, such as RF (Besnard et al., 2021), to estimate for-
est age. The extensive distribution of forests, diverse forest
types, and varying terrain and climate conditions in China
make it difficult in using a single model for accurately forest
age determination on a national scale. Therefore, exploring
the applicability of MLAs for forest age estimation in vari-
ous regions of China is essential.

Disturbance detection approaches, capable of identifying
the time of the most recent stand-replacing disturbance, have
been proven accurate in forest age estimation (Li et al.,
2024). These approaches mainly include Landsat-based De-
tection of Trends in Disturbance and Recovery (LandTrendr)
(Kennedy et al., 2010), Continuous Change Detection and
Classification (CCDC) (Zhu and Woodcock, 2014), the Veg-
etation Change Tracker (VCT) (Huang et al., 2010), and
Breaks for Additive Season and Trend (BFAST) (Verbesselt
et al., 2010a, b). Among these algorithms, LandTrendr has
been recognized for its efficiency in detecting forest distur-
bances such as fire, deforestation, and urban expansion (de
Jong et al., 2021; Rodman et al., 2021). For instance, Li et
al. (2024) mapped planted forest age using the LandTrendr
algorithm, demonstrating its efficiency and reliability for for-
est age mapping. However, these approaches are limited to
obtaining forest age in areas with disturbance recorded by
remote sensing, thus restricting a comprehensive understand-
ing of forest age structures. Consequently, it is necessary to
develop a framework that can provide comprehensive forest
age information on a large scale.

The objective of the present study is to generate the first
China forest age dataset at 30 m resolution using multisource
datasets through combining remote sensing time series anal-
ysis and MLAs. This involves (1) identifying the most opti-
mal MLAs for age estimation across various vegetation zones
in China and estimating the age of China’s forests, (2) utiliz-
ing the LandTrendr disturbance detection algorithm to iden-
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tify the most recent forest disturbances from 1985 to 2020
and estimating the forest of these disturbed areas, and (3) us-
ing the forest age derived by the LandTrendr algorithm to
update the result of MLAs to generate China’s forest age
map, which is then subjected to validation. The generated
30 m resolution forest age map provides critical information
to quantify forest carbon storage and to sustainably manage
China’s forests.

2 Materials and methods

2.1 Dataset and pre-processing

2.1.1 Forest inventory data

The data from China’s seventh national forest inventory sur-
vey from 2004 to 2008 (http://www.forestry.gov.cn/, last ac-
cess: 22 September 2023) were collected to develop models
to estimate forest age. The inventory involves systematically
and accurately monitoring the national forest resources based
on 667 m2 sample plots covering the whole country (Ren et
al., 2011). The main information collected from the sample
plots are tree species, stand age, average tree height, and ge-
ographic location. The stand age is determined based on the
planting time or is estimated using tree diameter at breast
height (Zhang et al., 2017). We totally collected 58,033 field
plots ranging in age from 1 to 480 years (Fig. 1b and c). The
mean age of the samples is 34.0 years, with a standard devi-
ation of 29.6 years. The sample plots were distributed across
eight vegetation divisions (Fig. 1b) (Liu et al., 2022), each
containing at least 436 sample plots for building MLAs to
estimate forest age (Fig. 1d).

2.1.2 Landsat time series data

From the GEE platform, we collected Landsat TM, ETM+,
OLI Tier 1 surface reflectance images dating from 1985 to
2020 to estimate forest age for disturbed forest regions. All
data were atmospherically corrected and processed by the
Land Surface Reflectance Code and the Landsat Ecosystem
Disturbance Adaptive Processing System algorithms. We re-
moved the clouds or cloud shadows using the C function of
the mask algorithm (Du et al., 2023), then we created com-
posited images using a median compositing method for for-
est regions. Finally, we calculated the normalized burn ratio
(NBR) to detect forest disturbance. NBR has been proven ef-
fective in numerous studies detecting forest disturbance (e.g.,
Du et al., 2023; Tian et al., 2023). It is calculated as fol-
lows by using the near-infrared (NIR) and shortwave infrared
(SWIR) bands:

NBR=
NIR−SWIR
NIR+SWIR

. (1)

2.1.3 Forest mask

This study uses the 2020 dataset of planted and natural
forests at 30 m resolution in China (Fig. 1a) as a mask for
forest age mapping. This dataset is produced by integrat-
ing multisource remote-sensing data and a large number of
crowdsourced samples, with an overall accuracy of over 80 %
(Cheng et al., 2023b). In this study, we employ this dataset
as a forest mask and utilize a combination of time series
change detection algorithms and MLAs to trace the age of
these planted and natural forests.

2.1.4 Forest height data

The canopy height data for China was downloaded
from https://3decology.org/ (last access: 22 Septem-
ber 2023), which was generated based on deep learning by
integrating Global Ecosystem Dynamics Investigation and
Ice, Cloud and Land Elevation Satellite-2 data. This dataset
has a spatial resolution of 30 m and corresponds to 2019.
The accuracy of this national forest canopy height data
was assessed by comparing three independent validation
datasets, indicating high accuracy for the canopy height
product by neural network guided interpolation (R2

≥ 0.55;
RMSE≤ 5.5 m) (Liu et al., 2022). Notably, the forest extent
used in this dataset is consistent with the forest extent
mentioned earlier for planted and natural forests, ensuring
spatial consistency when estimating forest age.

2.1.5 Climate data

Climate data were acquired from WorldClim 2.1 (https://
worldclim.org/; last access: 22 September 2023), which of-
fers 19 bioclimatic variables, including temperature and pre-
cipitation, with 30 arcsec resolution. The 19 bioclimatic vari-
ables include annual trends, seasonality, and extreme envi-
ronmental factors in temperature and precipitation. We re-
sampled the 19 GeoTiff (.tif) files to 30 m resolution using
a nearest-resampling method for spatial resolution consis-
tency. To reduce the dimension of bioclimatic variables, we
applied a principal component analysis to map the 19 biocli-
matic variables into a new principal component (PC) space.
We use the first three components PC1, PC2, PC3 to repre-
sent the climate factors. According to the results of the analy-
sis, PC1 gives annual trends in temperature and precipitation,
PC2 gives seasonal variations in temperature and precipita-
tion, and PC3 gives precipitation and temperature extremes
(Table S1 in the Supplement).

2.1.6 Soil data

Soil data with a resolution of 30 arcsec were extracted from
the Harmonized World Soil Database v1.2, developed jointly
by the Food and Agriculture Organization of the United Na-
tions, the International Institute for Applied Systems, the
ISRIC-World Soil Information, the Institute of Soil Science,
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Figure 1. Forest mask and field sample distribution. Panel (a) shows planted forest and natural forest mask generated by Cheng et al. (2023b).
Panel (b) shows distribution of field samples over eight vegetation divisions. Panel (c) shows frequency distribution of field sample ages.
Panel (d) shows frequency distribution of field samples for eight vegetation divisions. PF: planted forest, NF: natural forest, CT: cold
temperate needleleaf forest, WT: warm temperate deciduous-broadleaf forest, QT: Qinghai–Tibet Plateau alpine vegetation, TM: tropical
monsoon forest–rainforest, TS: temperate steppe, TD: temperate desert, TN: temperate needleleaf–broadleaf mixed forest, SE: subtropical
evergreen broadleaf forest, N: the number of plots, Std: standard deviation, Mean: mean age. Publisher’s remark: please note that the above
figure contains disputed territories.

the Chinese Academy of Sciences, and the Joint Research
Centre of the European Commission. As per previous stud-
ies, soil type and texture were selected from the soil dataset
in this study to construct the model to estimate forest age
(Besnard et al., 2021). We also resampled the soil data to
30 m using a nearest-resampling method.

2.1.7 Topographic data

The Shuttle Radar Topography Mission (SRTM) V3 provides
global digital elevation data at 30 m resolution and was used
in this study to extract topographic variables (Su et al., 2020).
Three topographic features – elevation, slope, and aspect –
were calculated to estimate forest ages.

2.2 Forest age estimation

To generate China’s forest age map and explore the perfor-
mance of MLAs to retrieve forest age, we applied two ap-
proaches to estimate forest age in China: the MLA approach
and the LandTrendr disturbance detection approach. First,
the MLA approach estimates ages for forest regions using
forest inventory and multisource remote sensing data. Sec-

ond, the LandTrendr algorithm is applied to detect stand-
replacing disturbances based on the Landsat time series
images. Third, we use the forest age map detected by
LandTrendr to update the forest age map derived using the
MLA approach and generate China’s forest age map with
30 m resolution. Figure 2 shows a detailed framework for the
forest age estimation proposed in this study.

2.2.1 Machine learning approach

The MLA employed in this study comprised the steps de-
scribed below.

1. MLA selection.

This study used the following model-screening pro-
cedure to explore which model works best for each
vegetation division: first, we used the automated ma-
chine learning (Auto-ML) open-source Python library
LazyPredict to filter for alternative models. LazyRe-
gressor (including 40 MLAs) was used to build stand-
age estimation models based on all data, which helps to
understand which MLA works well without tuning pa-
rameters. The performing models with R2 greater than
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Table 1. Descriptions of variables used to estimate forest ages in China.

Data type Data source Resolution Period Variables

Remote sensing images Landsat TM/ETM+/OLI 30 m 1985–2020 NBR

Forest mask Planted and natural forest map (Cheng et al.,
2023b)

30 m 2020 Planted and natural forest

Forest canopy height data NNGI-Forest Canopy Height 30 m 2019 Forest height

Climate data WorldClim version 2.1 (Fick and Hijmans,
2017)

30 arcsec 1970–2000 PC1, PC2, PC3

Soil data Harmonized World Soil Database
v1.2 (https://www.fao.org/soils-portal/
data-hub/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/;
last access: 22 September 2023)

30 arcsec 1971–1981 Soil type, soil texture

Topographic data SRTM DEM 30 m 2000 Elevation, slope, and aspect

Figure 2. Framework of China’s forest age estimation (green boxes represent data, blue boxes represent methods, and yellow boxes represent
results).

0.60 in each vegetation division were concentrated in
13 MLAs (Table S2). Second, by splitting training data
and testing data, the top three MLAs for each vegetation
division were determined (Table S2). It can be found
that the potential optimal models of eight vegetation
divisions were concentrated in RF, Gradient Boosting
Decision Tree (GBDT), Histogram Gradient Boosting
(HistGradientBoost), Light Gradient Boosting Machine
(LightGBM), and Categorical Boosting (CatBoost).

RF is an ensemble learning method that combines mul-
tiple decision trees (Breiman, 2001; Dutta et al., 2020).

It leverages the wisdom of crowds to make accurate
predictions. RF mitigates overfitting and provides ro-
bust results by training each tree on a random subset
of the data and features (Lavanya et al., 2017; Guo et
al., 2019). GBDT is an ensemble technique that builds
a strong predictive model by sequentially training de-
cision trees (Jerome, 2001). Each tree corrects the er-
rors of its predecessor (Wei et al., 2019), resulting
in a highly accurate and robust model. HistGradient-
Boost is a variant of GBDT that employs histogram-
based techniques. It efficiently approximates data distri-

https://doi.org/10.5194/essd-16-803-2024 Earth Syst. Sci. Data, 16, 803–819, 2024

https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/


808 K. Cheng et al.: A 2020 forest age map for China with 30 m resolution

butions and reduces memory consumption during train-
ing. This algorithm is particularly beneficial when deal-
ing with large datasets and complex features (Tesfager-
gish et al., 2022). LightGBM is a gradient-boosting
framework that prioritizes speed and efficiency. It em-
ploys a histogram-based approach and parallel comput-
ing, making it suitable for large datasets. CatBoost, as
a new modification gradient boosting algorithm, is de-
signed specifically for handling categorical features. It
automatically encodes categorical variables, simplify-
ing the data pre-processing stage. CatBoost is known
for its robustness and efficiency, and it can achieve high
accuracy on a small-scale dataset.

We implemented RF, GBDT, and HistGradientBoost by
using the Scikit-learn package, while the LightGBM
and CatBoost algorithms were constructed by using the
lightgbm and catboost packages in Python 3.9.11.

2. Hyperparameter tuning.

Hyperparameter tuning of MLAs is critical in the ML
model training process because it significantly enhances
the model’s performance, generalization capability, and
adaptability (Sandha et al., 2020). Bayesian optimiza-
tion has been selected for hyperparameter tuning due to
its complicated derivative evaluation and non-convex-
function-related features (Mekruksavanich et al., 2022).
It is implemented by using Optuna, an open source hy-
perparameter optimization framework to automate hy-
perparameter searches (Akiba et al., 2019). The hyper-
parameters and their searching range in MLAs are listed
in Table S3.

3. Model interpretation.

We used Shapley Additive explanations (SHAP) val-
ues (Lundberg and Lee, 2017; Lundberg et al., 2019), a
model-agnostic technique for interpreting ML models,
to explore functional correlations between the variables
and forest age (Besnard et al., 2021). SHAP derives
the Shapely additive contribution values from coali-
tional game theory (Kim et al., 2023). By examining
the contribution of each input variable to the model’s
output, SHAP can identify the primary drivers of the
model’s predictions and provide insights into the under-
lying causes that influence forest age (Sun et al., 2023).
The higher the SHAP value, the larger the contribu-
tion of the variable. Here SHAP value was calculated
through shap package in Python 3.9.11.

2.2.2 LandTrendr disturbance detection approach

LandTrendr was designed to detect and analyze changes in
surface features, particularly disturbances and recovery pro-
cesses, and is commonly applied to multispectral remote
sensing imagery from the Landsat satellite series to cap-

ture long-term forest disturbances (Du et al., 2022). Using
LandTrendr to detect forest age involves the following steps:

1. Time series data transformation.

LandTrendr transforms multiple temporal remote-
sensing image datasets into a series of indices, such as
the NBR.

2. Breakpoint detection.

Using the generated time series indices, LandTrendr
retraces from the 2020 state to search breakpoints in
the time series. These breakpoints represent transition
points in the time series, indicating instances of surface
disturbance or recovery.

3. Age estimation.

By pinpointing breakpoints, the time of occurrence for
each breakpoint is established. Forest age estimates for
the current location are accomplished by subtracting the
breakpoint time from the latest time.

LandTrendr was implemented on the GEE platform by us-
ing the function of runLT() provided by the LT_GEE API
(Kennedy et al., 2018). Table 2 lists the main input parame-
ters.

2.2.3 Mapping China’s forest age

Given the extensive forest coverage in China, it is chal-
lenging to handle such large forest area for ML and the
LandTrendr algorithm to estimate forest age, even with our
vegetation zoning efforts. To enhance the efficiency of for-
est age estimation and conserve computational resources, we
have divided China into 1◦× 1◦ grids (see Fig. S2 in the Sup-
plement), limiting ML and LandTrendr algorithms to esti-
mate forest age within each grid. Subsequently, we merge
the predictive results from each grid using the Mosaic New
Raster tool in ArcGIS Pro 3.0 to obtain a nationwide forest
age map. Finally, the forest age map estimated through the
LandTrendr algorithm is applied to update the ML-based re-
sults to produce China’s forest age data.

2.3 Accuracy assessment

2.3.1 Comparison with field samples

We collected field samples through two sources to validate
the generated final forest age map. The first source is the
forest inventory samples independent of training data. The
second source involves validation samples obtained from the
literature. To ensure that the samples collected were repre-
sentative, we excluded samples dated before 2010. As vali-
dation metrics, we used the coefficient of determination (R2),
the root mean square error (RMSE), the mean absolute error
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Table 2. Parameters of LandTrendr used in this study.

Parameter Definition Value

maxSegments Maximum number of segments to be fitted on the time series. 10

spikeThreshold Threshold for dampening the spikes (1.0 means no dampening). 0.9

vertexCountOvershoot The initial model can overshoot the maxSegments+ 1 vertices
by this amount. Later, it will be pruned down to maxSeg-
ments+ 1.

3

preventOneYearRecovery Prevent segments that represent 1-year recoveries. False

recoveryThreshold If a segment has a recovery rate faster than 1/recovery threshold
(in years), then the segment is disallowed.

0.25

pvalThreshold If the p value of the fitted model exceeds this threshold, then
the current model is discarded and another one is fit by using
the Levenberg–Marquardt optimizer.

0.05

bestModelProportion Takes the model with the most vertices that has a p value that
is at most this fraction away from the model with the lowest
p value.

0.75

minObservationsNeeded Minimum observations required to perform output fitting. 6

(MAE), and the mean error (ME). These metrics are calcu-
lated as

R2
= 1−

∑n
i=1(yi−i)2∑n

i=1(yi − yi)2 (2)

RMSE=

√
1
n

∑n

i=1
(yi − )2 (3)

MAE=
1
n

∑n

i=1
|yi−| , (4)

ME=

n∑
i=0

(yi − ŷi)

n
, (5)

where yi is the observed value for the ith analytic tree, ŷi is
the predicted value of the ith observed value, n is the number
of trees, and yi is the mean of the observed value.

2.3.2 Comparison with existing forest age data

To make our forest age map more reliable and comparable,
we also downloaded a global forest age data product pro-
duced by Besnard et al. (2021), which is the only forest
age map that is publicly accessible covering all of China’s
forests. Then, we resampled our result to the same resolu-
tion as this global map and compared our resultant forest age
map with it by assessing their differences in each cell. Addi-
tionally, we collected estimated average forest ages in China
from previous studies, using these statistical numbers to fur-
ther validate our estimation.

3 Results

3.1 MLA performance for China’s forest age estimation

Through a rigorous hyperparameter-optimization process
and independent validation, four distinct MLAs (RF, GBDT,
LightGBM, and CatBoost) were selected across eight dif-
ferent vegetation divisions (Table 3). GBDT performed ex-
ceptionally well for estimating the forest age of cold tem-
perate needleleaf forest (CT) vegetation zone, producing an
R2 of 0.47 and an RMSE of 4.95 years (MAE= 17.99;
ME=−1.86). RF excelled at estimating the forest age of
warm temperate deciduous-broadleaf forest (WT) vegetation
zone, producing an independent validation an R2 of 0.61 and
an RMSE of 3.47 years (MAE= 9.13; ME=−0.01). Cat-
Boost consistently demonstrated strong performance for the
Qinghai–Tibet Plateau alpine vegetation (QT), tropical mon-
soon forest–rainforest (TM), temperate steppe (TS), temper-
ate desert (TD), and subtropical evergreen broadleaf forest
(SE) zones, with R2 values ranging from 0.57 to 0.85 and
RMSE values from 2.04 to 7.65 years. LGBMRegressor was
the preferred choice in the temperate needleleaf–broadleaf
mixed forest (TN) vegetation division, yielding an R2 of 0.63
and an RMSE of 4.14 years.

We further analyzed the factors influencing the forest age
estimation in each vegetation division, and the findings are
illustrated in Fig. 3. While the prioritization of factors affect-
ing forest age estimation varies across different vegetation
divisions, canopy height is unquestionably the predominant
factor influencing this estimation. Its absolute value is the
highest of the CT, WT, TN, TS, and TM vegetation zones
(Fig. 3). Moreover, it is among the top three most influ-
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Table 3. MLAs for eight vegetation divisions and their validation
metrics.

Vegetation Algorithm R2 RMSE MAE ME
division

CT GradientBoost 0.47 4.95 17.99 −1.86
WT RF 0.61 3.47 9.13 −0.01
QT CatBoost 0.57 7.65 42.58 10.43
TM CatBoost 0.85 2.04 1.34 −0.08
TS CatBoost 0.78 4.16 11.85 −0.87
TD CatBoost 0.80 5.33 21.02 1.84
TN LGBM 0.63 4.14 12.78 0.36
SE CatBoost 0.70 3.49 7.97 0.00

CT: cold temperate needleleaf forest, WT: warm temperate deciduous-broadleaf forest,
QT: Qinghai–Tibet Plateau alpine vegetation, TM: tropical monsoon forest-rainforest,
TS: temperate steppe, TD: temperate desert, TN: temperate needleleaf-broadleaf mixed
forest, SE: subtropical evergreen broadleaf forest.

ential factors in all the remaining vegetation zones. Subse-
quently, topographical conditions assume prominence, with
elevation consistently featuring among the top three factors
in the SHAP value across all vegetation divisions. In the TD
vegetation division, elevation becomes the most influential
factor. Climate factors earn third-tier consideration, partic-
ularly in the SE vegetation zone, where the impact of PC2
of the climate factors surpasses that of both canopy height
and topographical conditions. In the other vegetation divi-
sions, the influence of climate factors generally falls to the
mid-range. In contrast, across all eight vegetation divisions,
factors related to soil, such as soil type and soil texture, do
not exert a pronounced influence on forest age estimation.

3.2 China’s forest age map

Based on the optimal MLAs and the LandTrendr change de-
tection algorithm, we have obtained forest age data for China
as shown in Fig. 4. Figure 4a presents the nationwide distri-
bution of forest age as estimated by MLAs, whereas Fig. 4b
displays the age distribution from 1985 and 2020 as deter-
mined through change detection. The results reveal that re-
forestation activities from 1985 and 2020 are primarily sit-
uated in southern, southeastern, and northern China, align-
ing with the findings of Xiao et al. (2023). Furthermore, es-
timates derived from MLAs indicate that old-growth forests
are primarily located in the northeast and southwest regions
of China.

The final forest age map for China obtained in this study
is depicted in Fig. 4c. Statistically, the mean of the esti-
mated China’s forest age is 56.11 years with a standard de-
viation of 32.67 years. Geographically, forests in northeast
and southwest China are relatively older than those in other
regions (Fig. 4c). At the provincial scale, the average for-
est age ranges from 3.9 to 116.8 years (Fig. 5a; Table S6),
whereas Qinghai Province has the highest mean forest age
and Hong Kong has the lowest mean forest age. Forest ages

Table 4. China’s mean forest age collected from published papers.

Source Mean forest Resolution Mapping
age (years) year

Zhang et al. (2017) 42.6 1 km 2013
Zhang et al. (2014) 43 1 km 2005
Dai et al. (2011) 40.6 8 km 1998
Wang et al. (2007) < 40 1 km 2001
Xia et al. (2023) 44.0 1 km 2015
This study 56.1 30 m 2020

in Sichuan Province are more varied than in other provinces
(Fig. 5a). On the regional scale, the QT vegetation zones have
the oldest forests with an average of 138.0 years, followed
by CT (107.6 years), TS (107.0 years), TN (68.3 years), TD
(60.3 years), TM (53.0 years), and SE (49.2 years) (Fig. 5b;
Table S7). The WT vegetation zones have the youngest
forests (28.5 years).

3.3 Evaluation

3.3.1 Comparison with field samples

We initially validated the forest age estimations by using for-
est inventory data. The forest inventory samples were ac-
quired from 2004 to 2008. To align with the time frame of
the forest age data obtained in this study, we shifted the
predicted values corresponding to each sample forward by
∼ 16 years. This strategy allows us to compare them with the
inventory-measured forest ages. Figure 6a shows the com-
parison, which suggests that they have a significant linear re-
lationship with R2

= 0.51 (Fig. 6a). We collected 99 field
measurements of mean forest stand age after 2010 from pub-
lished papers (Table S8) and compared them with our esti-
mated results. Figure 6b shows that the predicted forest ages
also present a significant linear relationship with field mea-
surements, with R2

= 0.62.

3.3.2 Comparison with existing forest age map

Figure 7 shows the difference between our estimation and
the existing global forest age map, which suggests an aver-
age difference of 9.7 years. Our mapped forest age shows
older forests in the northeast regions but younger forests in
the central regions compared with the dataset from Besnard
et al. (2021). In addition, we gathered the existing forest age
maps over China from published datasets and compared their
average forest age with our results (Table 4). According to
the available data, the average forest age in China ranged
from 40 to 43 years between 2000 and 2013, corresponding
to approximately 50–53 years in 2020. This aligns with the
average forest age of 56.1 years obtained in this study for the
year 2020, further underscoring the reliability of the forest
age mapped in this study.
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Figure 3. Order of shape values of factors affecting the estimation of forest age in different vegetation zones.

4 Discussion

A high-spatial-resolution forest age map is an important in-
put for accurately quantifying forest carbon storage and its
potential. Despite the generation of several forest age maps
for China in recent decades, their spatial resolution is rela-
tively coarse, typically ranging from 1 to 8 km (e.g., Zhang
et al., 2014, 2017). This resolution does not meet the appli-

cation requirements for local-to-regional scales (Xiao et al.,
2023). Therefore, we generated a 30 m resolution forest age
map of China using remote sensing and inventory data for
2020. Validation against independent forest inventory sam-
ples, field measurements collected from published papers,
and existing forest age products indicate that the estimated
forest age map has an R2 of 0.51–0.62 and presented high
spatial agreement with the existing forest age products. Such
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Figure 4. Forest age with 30 m resolution estimated from LandTrendr (a), MLAs (b), and China’s final forest age distribution (c). Publisher’s
remark: please note that the above figure contains disputed territories.

a high-resolution and timely forest age dataset is vital to as-
sess ecological benefits of China’s forests and to manage for-
est resources for sustainable development.

The generated forest age map indicates that 40.08 % of
forests are younger than 40 years, 38.11 % are 41–80 years
old, and 21.81 % are over 80 years old. Consistent with the
findings of Zhang et al. (2014, 2017), our results show that
the majority of China’s forests are young, while the specific
proportions exhibit some variance due to the variations in
produced time. Furthermore, similar to the findings of Zhang
et al. (2014, 2017), forests younger than 40 years are primar-
ily in southern and eastern China, whereas forests older than
80 years are predominantly in northeastern and southwest-
ern China (Fig. 4). We further analyze forest age by using
China’s planted and natural forest mask generated by Cheng
et al. (2023b) for 2020. The results reveal that the average
forest age for planted forests in China is 29.1 years with
a standard deviation of 18.2 years, whereas natural forests

have an average age of 69.7 years with a standard deviation
of 30.6 years. This result aligns with the reported 16.5 years
for China’s planted forests in 2005 (which equates to approx-
imately 31 years in 2020) by Yu et al. (2020).

This study combines two methods to estimate forest age
across China. We first investigate in-depth the suitability of
current mainstream MLAs for estimating forest age. For each
vegetation division, we establish the optimal MLAs and its
optimal parameters (Tables 3 and S4). Of the established
MLAs, the ensemble learning approaches perform best for
both training and evaluation compared with individual-based
learners. Several previous studies support the idea that en-
semble techniques have achieved better performance than
that of base learners (e.g., Rodriguez et al., 2006; Banfield
et al., 2007; Canul-Reich et al., 2007; Rokach, 2009; De Ste-
fano et al., 2011; Matloob et al., 2021). Bagging and boosting
are two mainstream ensemble techniques in ensemble learn-
ing that combine multiple base models to improve predictive
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Figure 5. Panel (a) is a box plot of China’s forest age grouped by provinces and (b) is a violin plot of the forest age grouped by vegetation
divisions.

Figure 6. Scatter plots of (a) forest inventory age vs. predicted forest age for this study and (b) field measurements of forest stand age
collected from published papers vs. predicted forest age.

performance. Bagging reduces variance, whereas boosting
reduces bias and improves overall model performance (Ab-
basi et al., 2022). However, most previous studies focused on
bagging-based RF models to derive forest structure parame-
ters in remote sensing fields (Simard et al., 2011; Cartus et

al., 2012; Montesano et al., 2013; Matasci et al., 2018; Luther
et al., 2019; Bolton et al., 2020). The present study highlights
that ensemble learning algorithms based on boosting, includ-
ing GBDT, LightGBM, and CatBoost, demonstrate higher
accuracy in estimating China’s forest age compared with the
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Figure 7. Comparison with global forest age product. The inset at the top shows the frequency distribution of differences between the global
forest age map and our estimated forest age map. Publisher’s remark: please note that the above figure contains disputed territories.

bagging-based RF algorithm. Furthermore, within the cur-
rent ensemble learning framework, the CatBoost algorithm
based on boosting has a clear advantage for estimating forest
age in China (Table 3). It produces optimal results in five veg-
etation zones and is as accurate as the best-performing algo-
rithms in the remaining vegetation zones (Table S5). There-
fore, we recommend giving priority to the utilization of the
CatBoost algorithm in deriving the forest structural parame-
ters in China.

In the process of machine learning modeling for forest
age estimation, we selected a total of 10 features, includ-
ing canopy height, meteorological factors, soil factors, ter-
rain factors, and human activities. Factor analysis indicates
that canopy height has significantly influenced forest age
modeling, which is consistent with previous research such
as that of Zhang et al. (2017), who estimated forest age in
China based on the relationship between canopy height and
forest age. The main reason is that canopy height is typ-
ically correlated with the growth period (Sharma and Par-
ton, 2007; Schumacher et al., 2020; Lin et al., 2023). Young
trees usually have lower canopy height and, as trees age,
canopy height gradually increases (Yu et al., 2020). There-
fore, canopy height gives clues about tree age, and many
age-estimation models are based on forest height (Lin et
al., 2023). Terrain conditions also play important roles in all
vegetation zones, especially the elevation and slope features
(Fig. 2). This is mainly because terrain factors are closely re-
lated to vegetation distribution, growth conditions, and hy-
drological processes (Fernández-Martínez et al., 2014), as

well as affecting forest age estimation (Lin et al., 2008). Cli-
mate factors, including temperature and precipitation, also
play a significant role in estimating forest age and have been
applied to estimate global forest age (Besnard et al., 2021).
Climate elements are most pronounced in the SE and QT
vegetation zones because these two zones belong to areas
with extreme climates and pronounced seasonal variations
(Zhang et al., 2018). The SE region has a warm and humid
climate with abundant rainfall (Zhang et al., 2018), which
aligns with seasonal growth, making it influential in forest
age estimation. The QT region experiences extreme temper-
ature fluctuations, with extremely cold winters and short and
cool summers, significantly affecting tree growth rates and
cycles (Zhang et al., 2021). Although soil and human activ-
ities seem to have a relatively smaller impact in this study,
the high accuracy achieved in this study is attributed to the
combined contributions of all factors.

The second method uses time series remote sensing im-
agery and the LandTrendr algorithm to detect pixels that
changed within the forest extent from 1985 to 2020. The for-
est age was estimated according to the time since the last
disturbance serving as a proxy for forest age. This approach
has been extensively used to estimate forest age and is gen-
erally acknowledged to be accurate and reliable for detect-
ing disturbance (Hermosilla et al., 2016). For instance, Du et
al. (2022) used the LandTrendr algorithm to detect planting
times of global planted forests, and Xiao et al. (2023) esti-
mated the forest age of young forests in China since 1984
by using the CCDC time series algorithm. These success-
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Figure 8. Panel (a) shows the age difference and (b) the linear relationship between estimated forest age and China’s Young Forest Age
dataset generated by Xiao et al. (2023).

ful cases validate the feasibility of using time series change-
detection algorithms to estimate the age of disturbed forests.
In this study, we compared our change-detection-derived for-
est age with the age, provided by Xiao et al. (2023), of young
forests (Fig. 8). These two outcomes have a mean difference
of −3.79 years (Fig. 8a) and have a significant linear rela-
tionship with R2

= 0.53 (Fig. 8b).
Overall, we produce a reliable forest age map for China.

This forest age product has been validated by independent
field samples and compared with existing datasets with an
R2 ranging from 0.51 to 0.62 (Fig. 6). However, there is still
a slight overestimation of younger forest and an underes-
timation of older forest compared with validation samples,
which is mainly related to the dataset and methods used in
this study. In terms of dataset, primarily, the utilization of a
forest mask that delineates planted and natural forests intro-
duces an inescapable source of uncertainty, which is partic-
ularly high (approximately 10 %) in the southern regions of
China (Cheng et al., 2023b). Furthermore, the dependence on
canopy-height data generated by Liu et al. (2022) as the cru-
cial determinant in forest age estimation (Fig. 2) necessitates
meticulous consideration (Zhang et al., 2017), given that the
uncertainties in the canopy-height data (R2

= 0.55) could
strongly affect the accuracy in forest age modeling. Finally,
when benchmarked against extant products, conspicuous dis-
parities in forest age estimates appear within the northeastern
and southwestern regions (Fig. 7). These disparities, coupled
with insights from forest inventory data, highlight the preva-
lence of older forests (exceeding 100 years) within these re-
gions (Fig. 4). The unique challenge posed by estimating the
age of such older forests, characterized by sluggish growth
rates (Maltman et al., 2023), accentuates the sensitivity to
crown height data. Consequently, the uncertainty associated
with canopy height data was conspicuously accentuated in
these regions. Regarding methods, we combined MLAs and
our disturbance detection approach to derive forest age. For
MLAs, overfitting is a common challenge in which a model

learns the training data too accurately but fails to generalize
it to unseen data (Belgiu and Drăguţ 2016). The results (Ta-
ble S5) suggest that the constructed forest age models exhibit
a certain degree of overfitting, which can cause some errors
in forest age estimation. Addressing the issue of overfitting,
data augmentation and exploring new deep learning algo-
rithms may be a direction for further investigation. For the
LandTrendr approach, it is affected by different parameters
such as input bands, vegetation parameters (NBR index), cli-
mates, vegetation, terrain, and atmospheric conditions (Ban-
skota et al., 2014; Hermosilla et al., 2015; Hua et al., 2021;
Huang et al., 2023; Yang et al., 2018). China’s unprecedented
development has led to extensive land cover changes, making
it one of the most intensively managed forest regions glob-
ally (Tong et al., 2020). This has resulted in significant for-
est fragmentation, posing challenges in using NBR and other
indices for change detection (Li et al., 2024) and creating
uncertainty in forest age identification. Furthermore, while
the LandTrendr algorithm effectively captures sharp distur-
bances like fires, clearcutting, and reforestation, it falls short
in detecting subtle changes such as silviculture and thinning
(Huang et al., 2023; Zhu, 2017). This limitation may lead to
the omission of young trees and an overestimation of forest
age.

5 Data availability

The 30 m resolution forest age map of China
generated by this study is openly available at
https://doi.org/10.5281/zenodo.8354262 (Cheng et al.,
2023a). Please contact the authors for more detailed
information.

https://doi.org/10.5194/essd-16-803-2024 Earth Syst. Sci. Data, 16, 803–819, 2024

https://doi.org/10.5281/zenodo.8354262


816 K. Cheng et al.: A 2020 forest age map for China with 30 m resolution

6 Conclusion

High-resolution and spatially explicit forest age mapping for
China play a crucial role in accurately quantifying the current
carbon sequestration of forest ecosystems and its future po-
tential. Currently, the available China forest age data suffer
from low resolution and incomplete coverage of age ranges,
making it difficult to meet the requirements of studies at var-
ious spatial scales. Therefore, this study combines time se-
ries analysis of remote sensing imagery with MLAs to cre-
ate the first 30 m resolution China’s forest age map for the
year 2020. Validation against forest inventory data, field mea-
surements, and existing products demonstrates the R2 values
to be between 0.51 and 0.62. The estimated forest age data
reveal an average forest age of 56.1 years for China, with a
standard deviation of 32.7 years. This dataset holds signifi-
cant importance for understanding the carbon source and sink
dynamics in China’s forest ecosystem.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-803-2024-supplement.

Author contributions. KC, YC, and QG designed the research.
KC, YC, and TX performed the analysis. QG, KC, YC, and WL
collected the field measurements and existing remote sensing prod-
ucts. KC and YC wrote the manuscript. HG and YR reviewed the
manuscript. QG, HY, and QM supervised and reviewed the paper.
KC and YC contributed equally to this work.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank the editor and the reviewers for
their valuable comments.

Financial support. This research has been supported by the
National Key Research and Development Program of China
(grant no. 2022YFF1300203), the International Research Cen-
ter of Big Data for Sustainable Development Goals (grant
no. CBAS2022GSP06), the National Natural Science Foundation
of China (grant nos. 42371329, 31971575, and 42201366). Qin Ma
is also supported by the research fund provided by Nanjing Normal
University (grant no. 184080H202B349).

Review statement. This paper was edited by Zhen Yu and re-
viewed by two anonymous referees.

References

Abbasi, E., Alavi Moghaddam, M. R., and Kowsari, E.:
A systematic and critical review on development of ma-
chine learning based-ensemble models for prediction of ad-
sorption process efficiency, J. Clean. Prod., 379, 134588,
https://doi.org/10.1016/j.jclepro.2022.134588, 2022.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Op-
tuna: A Next-generation Hyperparameter Optimization Frame-
work, Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2623–2631,
Association for Computing Machinery, Anchorage, AK, USA,
https://doi.org/10.48550/arXiv.1907.10902, 2019.

Alerskans, E., Zinck, A.-S. P., Nielsen-Englyst, P., and
Høyer, J. L.: Exploring machine learning techniques to re-
trieve sea surface temperatures from passive microwave
measurements, Remote Sens Environ., 281, 113220,
https://doi.org/10.1016/j.rse.2022.113220, 2022.

Banfield, R. E., Hall, L. O., Bowyer, K. W., and Kegelmeyer,
W. P.: A Comparison of Decision Tree Ensemble Creation
Techniques, IEEE T. Pattern Anal. Mach. Intell., 29, 173–180,
https://doi.org/10.1109/TPAMI.2007.250609, 2007.

Banskota, A., Kayastha, N., Falkowski, M. J., Wulder, M. A.,
Froese, R. E., and White, J. C.: Forest Monitoring Using Landsat
Time Series Data: A Review, Can. J. Remote. Sens., 40, 362–384,
https://doi.org/10.1080/07038992.2014.987376, 2014.
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