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Supplementary

Table S1 Principal component analysis of 19 bioclimatic variables

Variables Describe Principal Component
PC1 PC2 PC3

BIO1 Annual Mean Temperature 0.272 0.112 0.224
B102 Mean Diurnal Range (Mean of monthly (max temp - min temp)) -0.205 0.177 -0.145
BIO3 Isothermality (BIO2/BIO7) (><100) -0.129 0.403 -0.123
B104 Temperature Seasonality (standard deviation ><100) 0.039 -0.476 0.128
BI1O5 Max Temperature of Warmest Month 0.266 -0.093 0.261
BIO6 Min Temperature of Coldest Month 0.262 0.181 0.200
BIO7 Temperature Annual Range (BIO5-BIO6) -0.059 -0.447 0.041
BIO8 Mean Temperature of Wettest Quarter 0.221 0.029 0.447
BIO9 Mean Temperature of Driest Quarter 0.253 0.220 0.097
B1010 Mean Temperature of Warmest Quarter 0.272 -0.069 0.264
BIO11 Mean Temperature of Coldest Quarter 0.243 0.253 0.168
B1012 Annual Precipitation 0.272 -0.013 -0.271
BIO13 Precipitation of Wettest Month 0.256 0.077 -0.266
B1014 Precipitation of Driest Month 0.255 -0.147 -0.257
B1015 Precipitation Seasonality (Coefficient of Variation) -0.198 0.286 0.066
B1016 Precipitation of Wettest Quarter 0.255 0.110 -0.269
B1017 Precipitation of Driest Quarter 0.248 -0.165 -0.275
B1018 Precipitation of Warmest Quarter 0.211 0.210 -0.162
B1019 Precipitation of Coldest Quarter 0.250 -0.124 -0.303

PC1 is related to BIO1, BIO2, BIOS, B1O6, BIO9, BIO10, BIO12 and BIO18

PC2 is related to BIO3, BIO4, BIO7, BIO11 and BIO15

PC3 is related to BIO8, BIO13, BIO14, BIO16, BIO17 and BIO19.
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Figure S1: Scree plot of 19 bioclimatic variables
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Figure S2: 1°x1° grids for China’s forest region. PF: planted forest, NF: Natural forest.
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Table S2. The thirteen alternative machine learning algorithms and their accuracies(R?)

Model Validation Test
CT WT QT ™ TS TD TN SE CT WT QT ™ TS TD TN SE

DecisionTree -0.1443 0.2008 0.2540 0.6540 0.5230 0.4843 0.2743 0.3521 -0.0116 0.2232 0.0815 0.7207 0.5480 0.5409 0.2882 0.3586
ExtraTree -0.1450 0.1879 0.1295 0.6354 0.4200 0.4582 0.2306 0.3115 -0.2244 0.2527 0.1297 0.6657 0.4828 0.5660 0.2398 0.3526
GaussianProcess -2.9984 -15756 -2.2477 -13.0362 -1.2202 -2.3692 -2.7937 -1.2905 -2.8423 -1.5995 -2.5428 -11.2968 -1.1853 -2.1186 -2.8901 -1.2705
XGB 0.3311 0.5718 0.5109 0.7942 0.7106 0.7077 0.5845 0.6573 0.3402 0.5857 0.3609 0.8241 0.7272 0.7586 0.6031 0.6690
RandomForest 0.4124 0.6017 0.5546 0.8113 0.7343 0.7067 0.6236 0.6609 0.4262 0.6121 0.5363 0.8414 0.7641 0.7724 0.6272 0.6749
Bagging 0.3646 0.5661 0.5268 0.7961 0.7043 0.6699 0.5859 0.6309 0.3674 0.5791 0.4387 0.8287 0.7315 0.7487 0.6055 0.6457
HistGradientBoost 0.3935 0.6039 0.5093 0.8051 0.7325 0.6931 0.6234 0.6685 0.4092 0.6113 0.4526 0.8341 0.7572 0.7825 0.6303 0.6885
LGBM 0.3986 0.6052 0.5202 0.8083 0.7234 0.6962 0.6262 0.6726 0.4203 0.6112 0.4552 0.8362 0.7513 0.7845 0.6341 0.6891
GradientBoosting 0.4208 0.5950 0.5484 0.8095 0.7260 0.7007 0.6223 0.6605 0.4543 0.5923 0.4930 0.8433 0.7435 0.7705 0.6228 0.6796
MLP 0.3990 0.5198 0.1415 0.5954 0.7076 0.6016 0.5953 0.6659 0.4311 0.5120 0.2354 0.7695 0.7170 0.6685 0.5900 0.6685
AdaBoost 0.1650 0.4622 0.4775 0.6436 0.5348 0.5867 0.5443 0.3152 0.1700 0.4808 0.4589 0.7705 0.6095 0.5980 0.5434 0.3559
KNeighbors -0.0304 0.3386 0.3247 0.5851 0.4612 0.5574 0.0958 0.3883 0.0013 0.3779 0.1892 0.6067 0.5253 0.6302 0.1312 0.4284
CatBoost 0.4263 0.6109 0.5814 0.8162 0.7409 0.7322 0.6271 0.6749 0.4501 0.6203 0.5022 0.8444 0.7602 0.7922 0.6275 0.6924




Table S3. The hyperparameters and their range for different models.

Algorithm Python Package

Hyperparameter Range

RF sklearn.ensemble.RandomForestRegressor

GBDT sklearn.ensemble.GradientBoostingRegres

sor

HistGradientBo  sklearn.ensemble.HistGradientBoostingRe

ost gressor
LightGBM lightgbm
CatBoost catboost

max_depth:[3,18]
n_estimators:[ 5000, 8000]
max_features:['auto’, 'sqrt’,
'log21]

min_samples_split:[ 2, 10]
min_samples_leaf:[ 2, 10]
random_state: 2023
max_depth:[ 2, 10]

learning_rate:
[0.001,0.005,0.01,0.05,0.1]
n_estimators:[4000, 5000]
subsample:[ 0.7, 0.9]
max_features: ['auto’, 'sqrt’,
'log2]

min_samples_split:[ 2, 10]
random_state:2023
max_depth:[ 2, 10]

learning_rate:
[0.001,0.02,0.03,0.005,0.01,0.0
5,0.1]

max_leaf nodes:[30, 40]
min_samples_leaf:[15, 25]
random_state:2023
reg_alpha: [0.001, 10.0]
reg_lambda: [0.001, 10.0]
num_leaves: [11, 333]
min_child_samples: [5, 100]
max_depth: [3, 20]
learning_rate:
[0.001,0.005,0.01,0.05,0.1]
colsample_bytree: [0.1, 0.5]
n_estimators: [7000, 8000]
cat_smooth: [10, 100]
cat_|2: [1, 20]
min_data_per_group: [50, 200]
cat_feature: [10, 60]
n_jobs: -1

random_state: 2023

depth: [3, 10]
learning_rate:
[0.001,0.005,0.01,0.05,0.1]
iterations: [5000, 9000]
max_bin: [200, 400]
min_data_in_leaf: [1, 30]
12_leaf reg: [0.0001, 1.0,
log=True]

subsample: [0.6, 0.9]
random_state: 2023




Table S4. The optimal hyperparameter parameter values for different MLAs.

V.egejfation Algorithm Hyperparameter values
division
CT RF (max_depth =8,n_estimators=6589,max_features= 'auto',min_samples leaf=9,min_samples_split =8,random_state=2023)
GBDT {'max_depth": 4, 'learning rate': 0.001, 'n_estimators: 4909, 'subsample: 0.7234085712326702, 'max_features': 'auto',
'min_samples_split':10 ,'random_state': 2023}
CatBoost (depth=10,learning_rate=0.1,iterations=86,max_bin=320,min_data_in leaf=27,12 leaf reg=0.17934206956587195,subsample=0.67
73452775007673,random_seed=2023)
WT RF (max_depth =19,n_estimators=348,max_features= 'sqrt',min_samples _leaf=1,min_samples_split =3,random_state=2023)
{'reg_alpha': 4.188760632650688, 'reg lambda": 4.255499587500175, 'mum_leaves': 75, 'min_child samples': 7, 'max_depth'": 19,
LGBM 'learning_rate":  0.001, 'colsample bytree': 0.4928730464443524, 'n_estimators: 7117, 'cat smooth': 84, 'cat 12" 15,
'min_data_per group': 193, 'cat_feature': 28, 'random_state': 2023}
CatBoost (depth=12,learning_rate=0.05,iterations=133,max_bin=314,min_data in_leaf=8,12 leaf reg=0.0021616691540516635,subsample=
0.827218563526197,random_seed=2023)
QT RF (max_depth =9,n_estimators=100,max_features= 'auto’,min_samples_leaf=1,min_samples_split =2,random_state=2023)
GBDT {'max_depth': 5 ; 'learning rate’: 0.001, 'n_estimators: 4873, ‘'subsample: 0.6338013854778914, 'max features: 'sqrt',
'min_samples_split":8 ,'random_state': 2023}
CatBoost (depth=7,learning_rate=0.1,iterations=90,max_bin=337,min_data_in_leaf=4,12 leaf reg=0.0008155227484111563,subsample=0.78
08941610379249,random_seed=2023)
™ HistGradientBoost (learning_rate=0.05, max_ leaf nodes=33, max depth=5, min_samples leaf=21, 12 regularization=0.0001, max_ bins=200,

TS

TD

GBDT

CatBoost
RF

LightGBM

CatBoost
HistGradientBoost

early stopping='auto', random_state=2023)

{'max_depth": 5, 'learning rate': 0.001, 'n_estimators: 4970, 'subsample': 0.7323582473497865, 'max_ features': 'auto',
'min_samples_split':9 ,'random_state': 2023}

(depth=5,learning_rate=0.1,iterations=228, max_bin=298 min_data in_leaf=14,12 leaf reg=0.912715671115768,subsample=0.7691
332886798857, random_seed=2023)

(max_depth =12,n_estimators=105,max_features='auto',min_samples_leaf=2,min_samples_split =8,random_state=2023)
{'reg_alpha': 3.0022329902119083, 'reg_lambda'": 6.129604703602383, 'num_leaves': 69, 'min_child samples': 38, 'max_depth": 15,
'learning_rate’:  0.001, 'colsample bytree': 0.48372749547013316, 'n_estimators: 7571, 'cat smooth': 82, 'cat 12": 5,
'min_data_per group': 128, 'cat_feature': 41, 'random_state': 2023}
(depth=7,learning_rate=0.005,iterations=4164,max_bin=215,min_data_in leaf=24,12 leaf reg=0.00017571003237103587,subsampl
¢=0.8817081947911567,random_seed=2023)

(learning_rate=0.1, max leaf nodes=39, max depth=4, min samples leaf=22, 12 regularization=0.0001, max bins=200,



TN

SE

LightGBM

CatBoostRegressor

HistGradientBoost

LightGBM

CatBoost

LightGBM

MLP

CatBoost

early stopping="auto', random_state=2023)

{'reg_alpha': 2.1333544399270994, 'reg_lambda': 7.980678166407649, 'num_leaves': 217, 'min_child _samples': 5, 'max_depth'": 5,
'learning_rate':  0.003, 'colsample bytree: 0.43984300935044063, 'n_estimators': 7992, 'cat smooth': 76, ‘'cat 12": 7,
'min_data_per group': 187, 'cat_feature': 47, 'random_state': 2023}
(depth=5,learning_rate=0.01,iterations=5203,max_bin=246,min_data_in_leaf=6,12 leaf reg=0.00045191356462636874,subsample
=0.6391293474573634,random_seed=2023)

(learning_rate=0.05, max_leaf nodes=38, max_depth=6, min_samples leaf=20, 12 regularization=0.0001, max bins=200,
early stopping="auto', random_state=2023)

{'reg_alpha': 3.0022329902119083, 'reg_lambda': 6.129604703602383, 'num_leaves': 69, 'min_child samples': 38, 'max_depth'": 15,
'learning_rate':  0.001, 'colsample bytree': 0.48372749547013316, 'n_estimators': 7571, 'cat smooth': 82, 'cat 12": 5,
'min_data per group": 128, 'cat feature': 41, rfandom_state': 2023}
(depth=10,learning_rate=0.1,iterations=155,max_bin=319,min_data_in leaf=1,12 leaf reg=0.33907394509650335,subsample=0.76
82844712570389,random_seed=2023)

{'reg_alpha': 6.116715128459515, 'reg lambda'": 5.231647634428009, 'num_leaves": 18, 'min_child samples': 73, 'max_depth": 8§,
'learning_rate":  0.002, 'colsample bytree': 0.4726653436124117, 'n_estimators': 7288, 'cat smooth: 67, 'cat 12" 6,
'min_data_per group': 79, 'cat_feature': 36, 'random_state': 2023}

{'hidden_layer sizes'": (200, 200, 200), 'activation': 'relu’, 'solver': 'adam’, 'alpha': 0.0001, 'batch_size": 'auto', 'learning_rate": 'constant’,
'learning_rate init": 0.001, 'max_iter': 155, 'random_state': 2023}
(depth=7,learning_rate=0.005,iterations=6248,max_bin=383,min_data_in_leaf=20,12 leaf reg=0.6887500276693759,subsample=0.
7127716543175433,random seed=2023)




Table S5. The training results of different MLAs

. L ) Train Validation
Vegetation division Algorithm

R2 RMSE R2 RMSE

CT RF 0.6102  4.6402 0.4394  25.6178

GBDT 0.6463 45287 0.4398 256177

CatBoost 0.7573 41219  0.4307 25.8266

WT RF 0.9286  2.2631  0.6108 11.9231

LGBM 0.8303 2.8096 0.6112 11.9211

CatBoost 0.8309 2.8073  0.6085 11.9593

QT RF 0.9326  4.7895  0.5135 56.7438

GBDT 0.8846  5.4791  0.5430 55.6378

CatBoost 0.9637 41029  0.5648 54.1309

™ HistGradientBoost 0.8729  1.9054  0.8129 4.3884

GBDT 0.9059 1.7673  0.8139 4.3779

CatBoost 0.8969  1.8083  0.8202 4.3006

TS RF 0.9068  3.2872  0.7365 18.0381

LightGBM 0.8685  3.5823  0.7456 17.7228

CatBoost 0.9375  2.9747  0.7493 17.5945

TD HistGradientBoost 0.8555  4.8085 0.7125 32.2791

LightGBM 0.9485  3.7154  0.7065 32.6168

CatBoostRegressor 0.9834  2.8009  0.7235 31.5870

TN HistGradientBoost 0.6581  4.0517  0.6246 17.1609

LightGBM 0.8080  3.5072  0.6292 17.0570

CatBoost 0.7633  3.6956  0.6198 17.2713

SE LightGBM 0.7273  3.3467  0.6722 12.2440

MLP 0.7013  3.4237  0.6571 12.5179

CatBoost 0.7899  3.1354  0.6774 12.1481

Table S6. Mean and standard deviation of forest age in provinces
Province Mean S.D.

Anhui 30.0438 13.18046
Beijing 23.72932 6.941676
Chongging 4421707 14.81873
Fujian 34.71088 14.08378
Gansu 62.91986 28.90555
Guangdong 32.2954 14.03617
Guangxi 35.98391 14.40237
Guizhou 38.97128 14.09774
Hainan 31.67802 14.70032
Hebei 20.04016 9.452565
Heilongjiang 76.63183 26.88827
Henan 26.42557 13.65384
Hong Kong 2.905065 3.205983
Hubei 44.2699 17.3144
Hunan 30.98115 11.84794
Inner Mongolia 95.71522 35.21181



Jiangsu 22.35844 11.39468
Jiangxi 34.05567 13.07562
Jilin 75.20958 26.22582
Liaoning 29.84999 21.79875
Macao 3.805029 2.552609
Ningxia 4401774 22.64126
Qinghai 115.7855 47.51708
Shaanxi 52.42966 20.90854
Shandong 15.81338 6.811547
Shanghai 5.695209 3.581797
Shanxi 30.59349 11.17819
Sichuan 75.09604 32.48283
Taiwan 53.18191 20.35996
Tianjin 15.6741 6.724648
Tibet 83.86414 30.52417
Xinjiang 103.28 50.83277
Yunnan 54.69701 21.25958
Zhejiang 35.3726 13.07106
Table S7. Mean and standard deviation of forest age in eight vegetation
zones
Vegetation zone Mean S.D.
CT 106.6109 24.25592
WT 27.47919 13.87375
QT 136.9514 36.23872
™ 52.04598 26.27037
TS 106.0278 56.54841
TD 59.32036 33.32852
TN 67.25398 22.54142
SE 48.23603 26.65255
Table S8. Field measurements of forest age collected from published
papers
ID Longitude Latitude Year Mean age (2020) Reference
1 23.2450 113.4210 2020 6 Chenetal., (2022)
2 23.2260 113.3930 2020 10 Chenetal., (2022)
3 23.2560 113.4190 2020 15 Chenetal., (2022)
4 23.2120 113.3940 2020 20 Chenetal., (2022)
5 23.2550 113.3810 2020 30 Chenetal, (2022)
6 24.5200 114.4300 2010-2011 40 Di Y et al. (2012)
7 26.8814 117.9353 2017 10  Fengetal., (2021)
8 30.0800 110.5600 2010 40 Hu et al., (2012)
9 31.4300 110.3500 2010 45 Hu et al., (2012)
10 23.4800 100.5300 2013 67 Li et al. (2015)
11 23.0502 109.3289 2021 3 Lietal., (2021)
12 23.0535 109.3329 2021 8 Lietal., (2021)
13 23.1118 109.2420 2021 18 Lietal., (2021)
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