Articles | Volume 16, issue 3
https://doi.org/10.5194/essd-16-1167-2024
https://doi.org/10.5194/essd-16-1167-2024
Data description paper
 | 
05 Mar 2024
Data description paper |  | 05 Mar 2024

Global marine gravity gradient tensor inverted from altimetry-derived deflections of the vertical: CUGB2023GRAD

Richard Fiifi Annan, Xiaoyun Wan, Ruijie Hao, and Fei Wang

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024,https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
3D reconstruction of horizontal and vertical quasi-geostrophic currents in the North Atlantic Ocean
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024,https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Laboratory data linking the reconfiguration of and drag on individual plants to the velocity structure and wave dissipation over a meadow of salt marsh plants under waves with and without current
Xiaoxia Zhang and Heidi Nepf
Earth Syst. Sci. Data, 16, 1047–1062, https://doi.org/10.5194/essd-16-1047-2024,https://doi.org/10.5194/essd-16-1047-2024, 2024
Short summary
Exploring multi-decadal time series of temperature extremes in Australian coastal waters
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024,https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary
Measurements of morphodynamics of a sheltered beach along the Dutch Wadden Sea
Marlies A. van der Lugt, Jorn W. Bosma, Matthieu A. de Schipper, Timothy D. Price, Marcel C. G. van Maarseveen, Pieter van der Gaag, Gerben Ruessink, Ad J. H. M. Reniers, and Stefan G. J. Aarninkhof
Earth Syst. Sci. Data, 16, 903–918, https://doi.org/10.5194/essd-16-903-2024,https://doi.org/10.5194/essd-16-903-2024, 2024
Short summary

Cited articles

Andersen, O. B.: Marine Gravity and Geoid from Satellite Altimetry, in: Geoid Determination: Theory and Methods, edited by: Sanso, F. and Sideris, M. G., Springer-Verlag, Heidelberg, 401–451, 2013. 
Andersen, O. B. and Knudsen, P.: The DTU17 Global Marine Gravity Field: First Validation Results, in: Fiducial Reference Measurements for Altimetry, vol. 150, edited by: Mertikas, S. P. and Pail, R., Springer, Cham, 83–87, 2019. 
Andersen, O. B., Zhang, S., Sandwell, D. T., Dibarboure, G., Smith, W. H. F., and Abulaitijiang, A.: The Unique Role of the Jason Geodetic Missions for high Resolution Gravity Field and Mean Sea Surface Modelling, Remote Sensing, 13, 646, https://doi.org/10.3390/rs13040646, 2021. 
Andersen, O. B., Rose, S. K., Abulaitijiang, A., Zhang, S., and Fleury, S.: The DTU21 global mean sea surface and first evaluation, Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, 2023. 
Annan, R. F. and Wan, X.: Mapping seafloor topography of gulf of Guinea using an adaptive meshed gravity-geologic method, Arab J Geosci, 13, 12, https://doi.org/10.1007/s12517-020-05297-8, 2020. 
Download
Short summary
Gravity gradient tensor, a set of six unique gravity signals, is suitable for detecting undersea features. However, due to poor spatial resolution in past years, it has received less research interest and investment. However, current datasets have better accuracy and resolutions, thereby necessitating a revisit. Our analysis shows comparable results with reference models. We conclude that current-generation altimetry datasets can precisely resolve all six gravity gradients.
Altmetrics
Final-revised paper
Preprint