Articles | Volume 13, issue 11
https://doi.org/10.5194/essd-13-5337-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5337-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China
Yi-Wei Zhang
Institute of Ecology, College of Urban and Environmental Sciences and
Key Laboratory for Earth Surface Processes of the Ministry of Education,
Peking University, Beijing 100871, China
Yanpei Guo
Institute of Ecology, College of Urban and Environmental Sciences and
Key Laboratory for Earth Surface Processes of the Ministry of Education,
Peking University, Beijing 100871, China
Zhiyao Tang
CORRESPONDING AUTHOR
Institute of Ecology, College of Urban and Environmental Sciences and
Key Laboratory for Earth Surface Processes of the Ministry of Education,
Peking University, Beijing 100871, China
Yuhao Feng
Institute of Ecology, College of Urban and Environmental Sciences and
Key Laboratory for Earth Surface Processes of the Ministry of Education,
Peking University, Beijing 100871, China
Xinrong Zhu
Institute of Ecology, College of Urban and Environmental Sciences and
Key Laboratory for Earth Surface Processes of the Ministry of Education,
Peking University, Beijing 100871, China
Wenting Xu
State Key Laboratory of Vegetation and Environmental Change, Institute
of Botany, Chinese Academy of Sciences, Beijing 100093, China
Yongfei Bai
State Key Laboratory of Vegetation and Environmental Change, Institute
of Botany, Chinese Academy of Sciences, Beijing 100093, China
Guoyi Zhou
Institute of Ecology, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology,
Nanjing 210044, China
Zongqiang Xie
State Key Laboratory of Vegetation and Environmental Change, Institute
of Botany, Chinese Academy of Sciences, Beijing 100093, China
Jingyun Fang
Institute of Ecology, College of Urban and Environmental Sciences and
Key Laboratory for Earth Surface Processes of the Ministry of Education,
Peking University, Beijing 100871, China
Related authors
No articles found.
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023, https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary
Short summary
We provide the first long-term (since 1992), high-resolution (8.9 km) satellite radar backscatter data set (LHScat) with a C-band (5.3 GHz) signal dynamic for global lands. LHScat was created by fusing signals from ERS (1992–2001; C-band), QSCAT (1999–2009; Ku-band), and ASCAT (since 2007; C-band). LHScat has been validated against independent ERS-2 signals. It could be used in a variety of studies, such as vegetation monitoring and hydrological modelling.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Yang Wang, Wenting Xu, Zhiyao Tang, and Zongqiang Xie
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-44, https://doi.org/10.5194/essd-2021-44, 2021
Revised manuscript not accepted
Short summary
Short summary
A dataset consists of 822 biomass equations specific to 167 shrub species in China was developed based on field measurement and literature review. The equations featured excellent goodness-of-fit (mean value of R2 and Fitness Index are larger than 0.8) and prediction precision (mean value of slope, R2 and Relative Error of the simple linear regression between predicted and measured data are 0.96, 0.85 and −4.1%). The dataset provides key parameters for terrestrial ecosystem biomass estimation.
Cited articles
Achat, D. L., Bakker, M. R., and Morel, C.: Process-based assessment of
phosphorus availability in a low phosphorus sorbing forest soil using
isotopic dilution methods, Soil Sci. Soc. Am. J., 73, 2131–2142, 2009.
Augusto, L., Achat, D. L., Jonard, M., Vidal, D., and Ringeval, B.: Soil
parent material-A major driver of plant nutrient limitations in terrestrial
ecosystems, Glob. Chang Biol., 23, 3808–3824,
https://doi.org/10.1111/gcb.13691, 2017.
Bonan, G. B.: Carbon and nitrogen cycling in North American boreal forests,
Biogeochemistry, 10, 1–28, https://doi.org/10.1007/BF00000889, 1990.
Bonito, G. M., Coleman, D. C., Haines, B. L., and Cabrera, M. L.: Can
nitrogen budgets explain differences in soil nitrogen mineralization rates
of forest stands along an elevation gradient?, Forest Ecol. Manag., 176, 563–574, https://doi.org/10.1016/S0378-1127(02)00234-7,
2003.
Buol, S. W. and Eswaran, H.: Oxisols, in: Advances in Agronomy, vol. 68,
edited by: Sparks, D. L., Academic Press, New York, USA, 151–195,
https://doi.org/10.1016/S0065-2113(08)60845-7, 1999.
Campany, C. E., Medlyn, B. E., and Duursma, R. A.: Reduced growth due to
belowground sink limitation is not fully explained by reduced
photosynthesis, Tree Physiol., 37, 1042–1054,
https://doi.org/10.1093/treephys/tpx038, 2017.
Carvajal, M., Cooke, D. T., and Clarkson, D. T.: Responses of wheat plants
to nutrient deprivation may involve the regulation of water-channel
function, Planta, 199, 372–381, https://doi.org/10.1007/BF00195729, 1996.
Cheeseman, J. M. and Lovelock, C. E.: Photosynthetic characteristics of
dwarf and fringe Rhizophora mangle L. in a Belizean mangrove, Plant Cell
Environ., 27, 769–780, https://doi.org/10.1111/j.1365-3040.2004.01181.x,
2004.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs,
R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu,
Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of
the world through land-use management, Nat. Sustain., 2, 122–129,
https://doi.org/10.1038/s41893-019-0220-7, 2019.
Cleveland, C. C., Houlton, B. Z., Smith, W. K., Marklein, A. R., Reed, S.
C., Parton, W., Grosso, S. J. D., and Running, S. W.: Patterns of new versus
recycled primary production in the terrestrial biosphere, P. Natl. Acad.
Sci. USA, 110, 12733–12737, https://doi.org/10.1073/pnas.1302768110,
2013.
Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A.,
Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik,
C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and
Young-Molling, C.: Global response of terrestrial ecosystem structure and
function to CO2 and climate change: results from six dynamic global
vegetation models, Glob. Change Biol., 7, 357–373,
https://doi.org/10.1046/j.1365-2486.2001.00383.x, 2001.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova
Pinto, M., Casanova-Katny, A., Muñoz, C., Boudin, M., Zagal Venegas, E.,
and Boeckx, P.: Soil carbon storage controlled by interactions between
geochemistry and climate, Nat. Geosci., 8, 780–783,
https://doi.org/10.1038/ngeo2516, 2015.
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C.
J., Zhao, X., Xia, N., Wu, X., and Jackson, R. B.: Global patterns of
terrestrial nitrogen and phosphorus limitation, Nat. Geosci., 221–226,
https://doi.org/10.1038/s41561-019-0530-4, 2020.
Elser, J. J., Acharya, K., Kyle, M., Cotner, J., Makino, W., Markow, T.,
Watts, T., Hobbie, S., Fagan, W., Schade, J., Hood, J., and Sterner, R. W.:
Growth rate–stoichiometry couplings in diverse biota, Ecol. Lett., 6,
936–943, https://doi.org/10.1046/j.1461-0248.2003.00518.x, 2003.
Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W.
S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith,
J. E.: Global analysis of nitrogen and phosphorus limitation of primary
producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10,
1135–1142, https://doi.org/10.1111/j.1461-0248.2007.01113.x, 2007.
Elser, J. J., Fagan, W. F., Kerkhoff, A. J., Swenson, N. G., and Enquist, B.
J.: Biological stoichiometry of plant production: metabolism, scaling and
ecological response to global change, in: Tansley review, New Phytol., 186, 593–608,
https://doi.org/10.1111/j.1469-8137.2010.03214.x, 2010.
Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., and Fang, J.: Drought effect on plant biomass allocation: a meta-analysis, Ecol. Evol., 7, 11002–11010, https://doi.org/10.1002/ece3.3630, 2017.
Fatichi, S., Pappas, C., Zscheischler, J., and Leuzinger, S.: Modelling
carbon sources and sinks in terrestrial vegetation, New Phytol., 221,
652–668, https://doi.org/10.1111/nph.15451, 2019.
Fernández-Martínez, M., Pearse, I., Sardans, J., Sayol, F., Koenig,
W. D., LaMontagne, J. M., Bogdziewicz, M., Collalti, A., Hacket-Pain, A.,
Vacchiano, G., Espelta, J. M., Peñuelas, J., and Janssens, I. A.:
Nutrient scarcity as a selective pressure for mast seeding, Nat. Plants, 5,
1222–1228, https://doi.org/10.1038/s41477-019-0549-y, 2019.
Field, C.: Allocating leaf nitrogen for the maximization of carbon gain:
Leaf age as a control on the allocation program, Oecologia, 56, 341–347,
https://doi.org/10.1007/BF00379710, 1983.
Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B.,
Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B., Kubiske, M.
E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D.
R., Schlesinger, W. H., and Ceulemans, R.: Increases in nitrogen uptake
rather than nitrogen-use efficiency support higher rates of temperate forest
productivity under elevated CO2, P. Natl. Acad. Sci. USA, 104,
14014–14019, https://doi.org/10.1073/pnas.0706518104, 2007.
Fisher, J. B., Badgley, G., and Blyth, E.: Global nutrient limitation in
terrestrial vegetation, Glob. Biogeochem. Cycle, 26, GB3007,
https://doi.org/10.1029/2011GB004252, 2012.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd,
V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E.,
Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A.,
Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S.,
Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization
dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741,
https://doi.org/10.1038/s41561-019-0404-9, 2019.
Föllmi, K. B.: The phosphorus cycle, phosphogenesis and marine
phosphate-rich deposits, Earth-Sci. Rev., 40, 55–124,
https://doi.org/10.1016/0012-8252(95)00049-6, 1996.
Hou, E., Luo, Y., Kuang, Y., Chen, C., Lu, X., Jiang, L., Luo, X., and Wen,
D.: Global meta-analysis shows pervasive phosphorus limitation of
aboveground plant production in natural terrestrial ecosystems, Nat. Commun.,
11, 637, https://doi.org/10.1038/s41467-020-14492-w, 2020.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (Eds.): Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, 2001.
Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., and Field, C. B.: Nitrogen and climate change, Science, 302, 1512–1513,
https://doi.org/10.1126/science.1091390, 2003.
Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F. W., Asner,
G. P., Guralnick, R., Kattge, J., Latimer, A. M., Moorcroft, P., Schaepman,
M. E., Schildhauer, M. P., Schneider, F. D., Schrodt, F., Stahl, U., and
Ustin, S. L.: Monitoring plant functional diversity from space, Nat. Plants,
2, 16024, https://doi.org/10.1038/nplants.2016.24, 2016.
Jones Jr., J. B.: Laboratory guide for conducting soil tests and plant analysis, CRC press, Boca Raton, US, 76–77, https://doi.org/10.1201/9781420025293, ISBN: 9780429132117, 2001.
Jozsa, L. A. and Powell, J. M.: Some climatic aspects of biomass
productivity of white spruce stem wood, Can. J. For. Res., 17, 1075–1079,
https://doi.org/10.1139/x87-165, 1987.
Kirilenko, A. P. and Sedjo, R. A.: Climate change impacts on forestry, P.
Natl. Acad. Sci. USA, 104, 19697–19702,
https://doi.org/10.1073/pnas.0701424104, 2007.
Kramer-Walter, K. R. and Laughlin, D. C.: Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation, Plant Soil, 416, 539–550, https://doi.org/10.1007/s11104-017-3234-9, 2017.
Land Cover Atlas of the People's Republic of China Editorial Board: Land
Cover Atlas of the People's Republic of China (1:1000000), China Map Publishing House, Beijing, China, 2017.
LeBauer, D. S. and Treseder, K. K.: Nitrogen limitation of net primary
productivity in terrestrial ecosystems is globally distributed, Ecology, 89,
371–379, https://doi.org/10.1890/06-2057.1, 2008.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R News, 2, 18–22, 2002.
Lovelock, C. E., Feller, I. C., Mckee, K. L., Engelbrecht, B. M. J., and
Ball, M. C.: The effect of nutrient enrichment on growth, photosynthesis and
hydraulic conductance of dwarf mangroves in Panama, Funct. Ecol., 18,
25–33, https://doi.org/10.1046/j.0269-8463.2004.00805.x, 2004.
Lovelock, C. E., Feller, I. C., Ball, M. C., Engelbrecht, B. M. J., and Ewe,
M. L.: Differences in plant function in phosphorus- and nitrogen-limited
mangrove ecosystems, New Phytol., 172, 514–522,
https://doi.org/10.1111/j.1469-8137.2006.01851.x, 2006.
Lu, F., Hu, H., Sun, W., Zhu, J., Liu, G., Zhou, W., Zhang, Q., Shi, P.,
Liu, X., Wu, X., Zhang, L., Wei, X., Dai, L., Zhang, K., Sun, Y., Xue, S.,
Zhang, W., Xiong, D., Deng, L., Liu, B., Zhou, L., Zhang, C., Zheng, X.,
Cao, J., Huang, Y., He, N., Zhou, G., Bai, Y., Xie, Z., Tang, Z., Wu, B.,
Fang, J., Liu, G., and Yu, G.: Effects of national ecological restoration
projects on carbon sequestration in China from 2001 to 2010, P. Natl.
Acad. Sci. USA, 115, 4039–4044,
https://doi.org/10.1073/pnas.1700294115, 2018.
Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U.,
Hungate, B., McMurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw,
R. M., Zak, D. R., and Field, C. B.: Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide, BioScience, 54,
731–739, https://doi.org/10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2,
2004.
McGrath, D. A., Comerford, N. B., and Duryea, M. L.: Litter dynamics and
monthly fluctuations in soil phosphorus availability in an Amazonian
agroforest, For. Ecol. Manage., 131, 167–181,
https://doi.org/10.1016/S0378-1127(99)00207-8, 2000.
McVicar, T. R., Van Niel, T. G., Li, L., Hutchinson, M. F., Mu, X., and Liu,
Z.: Spatially distributing monthly reference evapotranspiration and pan
evaporation considering topographic influences, J. Hydrol., 338,
196–220, https://doi.org/10.1016/j.jhydrol.2007.02.018, 2007.
Miller, H. G.: Forest Fertilization: Some Guiding Concepts, Forestry, 54,
157–167, https://doi.org/10.1093/forestry/54.2.157, 1981.
Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E.,
and McMurtrie, R. E.: CO2 enhancement of forest productivity constrained by limited nitrogen availability, P. Natl. Acad. Sci. USA, 107, 19368–19373, https://doi.org//10.1073/pnas.1006463107, 2010.
Parks, S. E., Haigh, A. M., and Cresswell, G. C.: Stem tissue phosphorus as
an index of the phosphorus status of Banksia ericifolia L. f., Plant Soil,
227, 59–65, https://doi.org/10.1023/A:1026563926187, 2000.
Porder, S. and Chadwick, O. A.: Climate and soil-age constraints on nutrient
uplift and retention by plants, Ecology, 90, 623–636,
https://doi.org/10.1890/07-1739.1, 2009.
Poudel, B. C., Sathre, R., Gustavsson, L., Bergh, J., Lundström, A., and
Hyvönen, R.: Effects of climate change on biomass production and
substitution in north-central Sweden, Biomass Bioenerg., 35, 4340–4355,
https://doi.org/10.1016/j.biombioe.2011.08.005, 2011.
Raaimakers, D., Boot, R. G. A., Dijkstra, P., Pot, S., and Pons, T.: Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees, Oecologia, 102, 120–125, 1995.
R Core Team: R: A language and environment for statistical computing, Vienna, 2019.
Reed, S. C., Yang, X., and Thornton, P. E.: Incorporating phosphorus cycling
into global modeling efforts: a worthwhile, tractable endeavor, New Phytol.,
208, 324–329, https://doi.org/10.1111/nph.13521, 2015.
Reich, P. B. and Oleksyn, J.: Global patterns of plant leaf N and P in
relation to temperature and latitude, P. Natl. Acad. Sci. USA, 101,
11001–11006, https://doi.org/10.1073/pnas.0403588101, 2004.
Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A.,
Yuan, H., Zhang, Q., Chen, D., Chen, M., Chu, J., Dou, Y., Guo, J., Li, H.,
Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C., and Zhang, Y.: A
China data set of soil properties for land surface modeling, J. Adv. Model.
Earth Syst., 5, 212–224, https://doi.org/10.1002/jame.20026, 2013.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping the global depth to bedrock for land surface modeling, J. Adv. Model. Earth Syst., 9, 65–88,
https://doi.org/10.1002/2016MS000686, 2017.
Singh, A., Serbin, S. P., McNeil, B. E., Kingdon, C. C., and Townsend, P.
A.: Imaging spectroscopy algorithms for mapping canopy foliar chemical and
morphological traits and their uncertainties, Ecol. Appl., 25,
2180–2197, https://doi.org/10.1890/14-2098.1, 2015.
Skidmore, A. K., Ferwerda, J. G., Mutanga, O., Van Wieren, S. E., Peel, M.,
Grant, R. C., Prins, H. H. T., Balcik, F. B., and Venus, V.: Forage quality
of savannas – simultaneously mapping foliar protein and polyphenols for
trees and grass using hyperspectral imagery, Remote Sens. Environ.,
114, 64–72, https://doi.org/10.1016/j.rse.2009.08.010, 2010.
Sun, Y., Peng, S., Goll, D. S., Ciais, P., Guenet, B., Guimberteau, M.,
Hinsinger, P., Janssens, I. A., Peñuelas, J., Piao, S., Poulter, B.,
Violette, A., Yang, X., Yin, Y., and Zeng, H.: Diagnosing phosphorus
limitations in natural terrestrial ecosystems in carbon cycle models, Earth Future, 5,
730–749, https://doi.org/10.1002/2016EF000472, 2017.
Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., Wan, H., Xie, Z.,
Shi, X., Wu, B., Wang, G., Yan, J., Ma, K., Du, S., Li, S., Han, S., Ma, Y.,
Hu, H., He, N., Yang, Y., Han, W., He, H., Yu, G., Fang, J., and Zhou, G.:
Carbon pools in China's terrestrial ecosystems: New estimates based on an
intensive field survey, P. Natl. Acad. Sci. USA, 115, 4021–4026,
https://doi.org/10.1073/pnas.1700291115, 2018.
Tang, Z., Xu, W., Zhou, G., Bai, Y., Li, J., Tang, X., Chen, D., Liu, Q.,
Ma, W., Xiong, G., He, H., He, N., Guo, Y., Guo, Q., Zhu, J., Han, W., Hu,
H., Fang, J., and Xie, Z.: Patterns of plant carbon, nitrogen, and
phosphorus concentration in relation to productivity in China's terrestrial
ecosystems, P. Natl. Acad. Sci. USA., 115, 4033–4038,
https://doi.org/10.1073/pnas.1700295114, 2018.
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C.,
Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A.,
Peñuelas, J., McCallum, I., Soudzilovskaia, N. A., Cernusak, L. A.,
Talhelm, A. F., Van Sundert, K., Piao, S., Newton, P. C. D., Hovenden, M.
J., Blumenthal, D. M., Liu, Y. Y., Müller, C., Winter, K., Field, C. B.,
Viechtbauer, W., Van Lissa, C. J., Hoosbeek, M. R., Watanabe, M., Koike, T.,
Leshyk, V. O., Polley, H. W., and Franklin, O.: Nitrogen and phosphorus
constrain the CO2 fertilization of global plant biomass, Nat. Clim. Chang.,
9, 684–689, https://doi.org/10.1038/s41558-019-0545-2, 2019.
Thomas, R. Q., Canham, C. D., Weathers, K. C., and Goodale, C. L.:
Increased tree carbon storage in response to nitrogen deposition in the US,
Nat. Geosci., 3, 13–17, https://doi.org/10.1038/ngeo721, 2010.
Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., and Mahowald, N. M.:
Influence of carbon-nitrogen cycle coupling on land model response to CO2
fertilization and climate variability, Glob. Biogeochem. Cycle, 21, GB4018,
https://doi.org/10.1029/2006GB002868, 2007.
Tian, H., Chen, G., Zhang, C., Melillo, J. M., and Hall, C. A. S.: Pattern and variation of ratios in China’s soils: a synthesis of observational data, Biogeochemistry, 98, 139–151, https://doi.org/10.1007/s10533-009-9382-0, 2010.
Vincent, A. G., Sundqvist, M. K., Wardle, D. A., and Giesler, R.:
Bioavailable soil phosphorus decreases with increasing elevation in a
subarctic tundra landscape, Plos One, 9, e92942,
https://doi.org/10.1371/journal.pone.0092942, 2014.
Vitousek, P.: Nutrient cycling and nutrient use efficiency, Am. Nat., 119,
553–572, https://doi.org/10.1086/283931, 1982.
Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the
sea: How can it occur?, Biogeochemistry, 13, 87–115,
https://doi.org/10.1007/BF00002772, 1991.
Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.:
Terrestrial phosphorus limitation: mechanisms, implications, and
nitrogen–phosphorus interactions, Ecol. Appl., 20, 5–15, https://doi.org/10.1890/08-0127.1, 2010.
Walker, T. W. and Syers, J. K.: The fate of phosphorus during pedogenesis,
Geoderma, 15, 1–19, https://doi.org/10.1016/0016-7061(76)90066-5, 1976.
Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A.,
Hobbie, S. E., and Cavender-Bares, J.: Mapping foliar functional traits and
their uncertainties across three years in a grassland experiment, Remote
Sens. Environ., 221, 405–416,
https://doi.org/10.1016/j.rse.2018.11.016, 2019.
Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K.: Future
productivity and carbon storage limited by terrestrial nutrient
availability, Nat. Geosci., 8, 441–444, https://doi.org/10.1038/ngeo2413,
2015.
Xu, L., He, N., and Yu, G.: Nitrogen storage in China's terrestrial
ecosystems, Sci. Total Environ., 709, 136201,
https://doi.org/10.1016/j.scitotenv.2019.136201, 2020.
Yang, Y.-H., Ma, W.-H., Mohammat, A., and Fang, J.-Y.: Storage, patterns and controls of soil nitrogen in China, Pedosphere, 17, 776–785,
https://doi.org/10.1016/S1002-0160(07)60093-9, 2007.
Zhang, C., Tian, H., Liu, J., Wang, S., Liu, M., Pan, S., and Shi, X.: Pools
and distributions of soil phosphorus in China, Glob. Biogeochem. Cycle, 19,
GB1020, https://doi.org/10.1029/2004GB002296, 2005.
Zhang, J., Zhao, N., Liu, C., Yang, H., Li, M., Yu, G., Wilcox, K., Yu, Q.,
and He, N.: stoichiometry in China's forests: From organs to
ecosystems, Funct. Ecol., 32, 50–60,
https://doi.org/10.1111/1365-2435.12979, 2018.
Zhang, Y.-W., Guo, Y., Tang, Z., Feng, Y., Zhu, X., Xu, W., Bai, Y., Zhou,
G., Xie, Z., and Fang, J.: Patterns of nitrogen and phosphorus pools in
terrestrial ecosystems in China, Dryad [data set],
https://doi.org/10.5061/dryad.6hdr7sqzx, 2021.
Short summary
Nitrogen (N) and phosphorus (P) are limiting nutrients for ecosystem productivity. For the first time, we mapped N and P densities of living plants, litter, and soil in forest, shrubland, and grassland ecosystems across China using random forest models based on a dataset of 4868 field sites. Our results depicted the spatial distribution pattern, the total pool, and the allocation among ecosystem components of N and P, which could benefit a more precise prediction of the carbon cycle.
Nitrogen (N) and phosphorus (P) are limiting nutrients for ecosystem productivity. For the first...
Altmetrics
Final-revised paper
Preprint