Articles | Volume 13, issue 6
https://doi.org/10.5194/essd-13-2743-2021
https://doi.org/10.5194/essd-13-2743-2021
Data description paper
 | 
15 Jun 2021
Data description paper |  | 15 Jun 2021

tTEM20AAR: a benchmark geophysical data set for unconsolidated fluvioglacial sediments

Alexis Neven, Pradip Kumar Maurya, Anders Vest Christiansen, and Philippe Renard

Related authors

Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary

Related subject area

Geophysics and geodesy
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024,https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024,https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024,https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024,https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
GPS displacement dataset for the study of elastic surface mass variations
Athina Peidou, Donald F. Argus, Felix W. Landerer, David N. Wiese, and Matthias Ellmer
Earth Syst. Sci. Data, 16, 1317–1332, https://doi.org/10.5194/essd-16-1317-2024,https://doi.org/10.5194/essd-16-1317-2024, 2024
Short summary

Cited articles

Auken, E., Christiansen, A. V., Kirkegaard, C., Fiandaca, G., Schamper, C., Behroozmand, A. A., Binley, A., Nielsen, E., Effersø, F., Christensen, N. B., Sørensen, K., Foged, N., and Vignoli, G.: An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data, Explor. Geophys., 46, 223–235, https://doi.org/10.1071/eg13097, 2015. a, b
Auken, E., Foged, N., Larsen, J. J., Lassen, K. V. T., Maurya, P. K., Dath, S. M., and Eiskjær, T. T.: tTEM – A towed transient electromagnetic system for detailed 3D imaging of the top 70 m of the subsurface, Geophysics, 84, E13–E22, https://doi.org/10.1190/geo2018-0355.1, 2019. a, b
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water Resour. Res., 51, 3837–3866, https://doi.org/10.1002/2015WR017016, 2015. a
Christiansen, A. V. and Auken, E.: A global measure for depth of investigation, Geophysics, 77, WB171–WB177, https://doi.org/10.1190/geo2011-0393.1, 2012. a
Christiansen, A. V., Auken, E., and Sørensen, K.: The transient electromagnetic method, in: Groundwater Geophysics: A Tool for Hydrogeology, edited by: Kirsch, R., Springer Berlin Heidelberg, Berlin, Heidelberg, 179–226, https://doi.org/10.1007/978-3-540-88405-7_6, 2009. a
Download
Short summary
The shallow underground is constituted of sediments that present high spatial variability. This upper layer is the most extensively used for resource exploitation (groundwater, geothermal heat, construction materials, etc.). Understanding and modeling the spatial variability of these deposits is crucial. We present a high-resolution electrical resistivity dataset that covers the upper Aare Valley in Switzerland. These data can help develop methods to characterize these geological formations.
Altmetrics
Final-revised paper
Preprint