Articles | Volume 13, issue 6
Earth Syst. Sci. Data, 13, 2743–2752, 2021
https://doi.org/10.5194/essd-13-2743-2021
Earth Syst. Sci. Data, 13, 2743–2752, 2021
https://doi.org/10.5194/essd-13-2743-2021
Data description paper
15 Jun 2021
Data description paper | 15 Jun 2021

tTEM20AAR: a benchmark geophysical data set for unconsolidated fluvioglacial sediments

Alexis Neven et al.

Related authors

Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary

Related subject area

Geosciences – Geophysics
Moment tensor catalogue of earthquakes in West Bohemia from 2008 to 2018
Václav Vavryčuk, Petra Adamová, Jana Doubravová, and Josef Horálek
Earth Syst. Sci. Data, 14, 2179–2194, https://doi.org/10.5194/essd-14-2179-2022,https://doi.org/10.5194/essd-14-2179-2022, 2022
Short summary
One hundred plus years of recomputed surface wave magnitude of shallow global earthquakes
Domenico Di Giacomo and Dmitry A. Storchak
Earth Syst. Sci. Data, 14, 393–409, https://doi.org/10.5194/essd-14-393-2022,https://doi.org/10.5194/essd-14-393-2022, 2022
Short summary
Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022,https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
INSTANCE – the Italian seismic dataset for machine learning
Alberto Michelini, Spina Cianetti, Sonja Gaviano, Carlo Giunchi, Dario Jozinović, and Valentino Lauciani
Earth Syst. Sci. Data, 13, 5509–5544, https://doi.org/10.5194/essd-13-5509-2021,https://doi.org/10.5194/essd-13-5509-2021, 2021
Short summary
Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys, and historical datasets
Ulysse Lebrec, Victorien Paumard, Michael J. O'Leary, and Simon C. Lang
Earth Syst. Sci. Data, 13, 5191–5212, https://doi.org/10.5194/essd-13-5191-2021,https://doi.org/10.5194/essd-13-5191-2021, 2021
Short summary

Cited articles

Auken, E., Christiansen, A. V., Kirkegaard, C., Fiandaca, G., Schamper, C., Behroozmand, A. A., Binley, A., Nielsen, E., Effersø, F., Christensen, N. B., Sørensen, K., Foged, N., and Vignoli, G.: An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data, Explor. Geophys., 46, 223–235, https://doi.org/10.1071/eg13097, 2015. a, b
Auken, E., Foged, N., Larsen, J. J., Lassen, K. V. T., Maurya, P. K., Dath, S. M., and Eiskjær, T. T.: tTEM – A towed transient electromagnetic system for detailed 3D imaging of the top 70 m of the subsurface, Geophysics, 84, E13–E22, https://doi.org/10.1190/geo2018-0355.1, 2019. a, b
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water Resour. Res., 51, 3837–3866, https://doi.org/10.1002/2015WR017016, 2015. a
Christiansen, A. V. and Auken, E.: A global measure for depth of investigation, Geophysics, 77, WB171–WB177, https://doi.org/10.1190/geo2011-0393.1, 2012. a
Christiansen, A. V., Auken, E., and Sørensen, K.: The transient electromagnetic method, in: Groundwater Geophysics: A Tool for Hydrogeology, edited by: Kirsch, R., Springer Berlin Heidelberg, Berlin, Heidelberg, 179–226, https://doi.org/10.1007/978-3-540-88405-7_6, 2009. a
Download
Short summary
The shallow underground is constituted of sediments that present high spatial variability. This upper layer is the most extensively used for resource exploitation (groundwater, geothermal heat, construction materials, etc.). Understanding and modeling the spatial variability of these deposits is crucial. We present a high-resolution electrical resistivity dataset that covers the upper Aare Valley in Switzerland. These data can help develop methods to characterize these geological formations.