Articles | Volume 13, issue 4
https://doi.org/10.5194/essd-13-1711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gap-free global annual soil moisture: 15 km grids for 1991–2018
Mario Guevara
Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
present address: University of California Riverside, Environmental Sciences|USDA-ARS, U.S. Salinity Laboratory, Riverside, CA, USA
Michela Taufer
Department of Electrical Engineering and Computer Science, The
University of Tennessee, Knoxville, TN, USA
Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
Related authors
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Pilar Durante, Juan Miguel Requena-Mullor, Rodrigo Vargas, Mario Guevara, Domingo Alcaraz-Segura, and Cecilio Oyonarte
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-431, https://doi.org/10.5194/essd-2024-431, 2024
Manuscript not accepted for further review
Short summary
Short summary
Human activities have disrupted the global carbon cycle, increasing CO2 levels. Soils are the largest carbon stores on land, making it essential to understand how much carbon they hold to fight climate change. Our study improved estimates of soil carbon in peninsular Spain by integrating historical soil data and using machine-learning methods to create detailed maps of carbon content. These maps will help manage soil carbon better and support efforts to track carbon emissions globally.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Margaret Capooci and Rodrigo Vargas
Biogeosciences, 19, 4655–4670, https://doi.org/10.5194/bg-19-4655-2022, https://doi.org/10.5194/bg-19-4655-2022, 2022
Short summary
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Cited articles
Albergel, C., Dorigo, W., H, R. R., Balsamo, G., de Rosnay, P,
MuñozSabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and
Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote
Sensing, J. Hydrometeorol., 14, 1259–1277, 2013.
Alemohammad, S. H., Kolassa, J., Prigent, C., Aires, F., and Gentine, P.: Global downscaling of remotely sensed soil moisture using neural networks, Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, 2018.
Al-Yaari, A., Wigneron, J.-P., Dorigo, W., Colliander, A., Pellarin, T.,
Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y. H., and De Lannoy, G.:
Assessment and inter-comparison of recently developed/reprocessed microwave
satellite soil moisture products using ISMN ground-based measurements,
Remote Sens. Environ., 224, 289–303, https://doi.org/10.1016/j.rse.2019.02.008,
2019.
An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J., Shen, X., Gao,
W., Huang, L., Zhao, Y., and Ke, Z.: Validation of the ESA CCI soil moisture
product in China, Int. J. Appl. Earth Observ.
Geoinf., 48, 28–36, https://doi.org/10.1016/j.jag.2015.09.009, 2016.
Bauer-Marschallinger, B., Paulik, C., Hochstöger, S., Mistelbauer, T.,
Modanesi, S., Ciabatta, L., Massari, C., Brocca, L., and Wagner, W.: Soil
Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with
Temporal Filtering, Remote Sens., 2018, 1030, https://doi.org/10.3390/rs10071030, 2018.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B.,
Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R.,
Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Rosenberg, J. V., Wallace,
G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc
Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32,
355–371, https://doi.org/10.1080/01490410903297766, 2009.
Berg, A. and Sheffield, J.: Climate Change and Drought: the Soil Moisture
Perspective, Curr. Clim. Change Rep., 4, 180–191,
https://doi.org/10.1007/s40641-018-0095-0, 2018.
Behrens, T., Schmidt, K., MacMillan, R. A., and Viscarra Rossel, R. A.:
Multi-scale digital soil mapping with deep learning, Sci. Rep.,
8, 1–9, https://doi.org/10.1038/s41598-018-33516-6, 2018.
Bond-Lamberty, B. P. and Thomson, A. M.: A Global Database of Soil
Respiration Data, Version 4.0, ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1578, 2018.
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R.:
Globally rising soil heterotrophic respiration over recent decades, Nature
560, 80–83, 2018.
Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K., Yackulic, C. B.,
Duniway, M., Hall, S., Jia, G., Jamiyansharav, K., Munson, S. M., Wilson, S.
D., and Tietjen, B.: Future soil moisture and temperature extremes imply
expanding suitability for rainfed agriculture in temperate drylands,
Sci. Rep., 7, 12923, https://doi.org/10.1038/s41598-017-13165-x, 2017.
Chen, X., Su, Y., Liao, J., Shang, J., Dong, T., Wang, C., Liu, W., Zhou, G.,
and Liu, L.: Detecting significant decreasing trends of land surface soil
moisture in eastern China during the past three decades (1979–2010), J. Geophys. Res.-Atmos., 121, 5177–5192,
https://doi.org/10.1002/2015jd024676, 2016.
Chung, D., Dorigo, W., De Jeu, R., Kidd, R., and Wagner, W.: ESA Climate Change Initiative Phase II – Soil Moisture, Product Specification Document (PSD),
D.1.2.1 Version 4.4; Earth Observation Data Centre for Water Resources
Monitoring (EODC) GmbH, Vienna, Austria, p. 49, 2018.
Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S. B.,
Cosh, M. H., Dunbar, R. S., Dang, L., Pashaian, L., Asanuma, J., Aida, K.,
Berg, A., Rowlandson, T., Bosch, D., Caldwell, T., Caylor, K., Goodrich, D.,
al Jassar, H., Lopez-Baeza, E., Martínez-Fernández, J.,
González-Zamora, A., Livingston, S., McNairn, H., Pacheco, A.,
Moghaddam, M., Montzka, C., Notarnicola, C., Niedrist, G., Pellarin, T.,
Prueger, J., Pulliainen, J., Rautiainen, K., Ramos, J., Seyfried, M.,
Starks, P., Su, Z., Zeng, Y., van der Velde, R., Thibeault, M., Dorigo, W.,
Vreugdenhil, M., Walker, J. P., Wu, X., Monerris, A., O'Neill, P. E.,
Entekhabi, D., Njoku, E. G., and Yueh, S.: Validation of SMAP surface soil
moisture products with core validation sites, Remote Sens. Environ.,
191, 215–231, https://doi.org/10.1016/j.rse.2017.01.021, 2017b.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI Soil
Moisture for improved Earth system understanding: State-of-the art and
future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Dorigo, W. A., Oevelen, P. van, Wagner, W., Drusch, M., Mecklenburg, S.,
Robock, A., and Jackson, T.: A New International Network for in Situ Soil
Moisture Data, EOS T. Am. Geophys. Un., 92,
141–142, https://doi.org/10.1029/2011EO170001, 2011a.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011b.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J.,
Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C.,
Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman,
S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP)
Mission, IEEE, available at:
https://dspace.mit.edu/handle/1721.1/60043 (last access: 15 July 2019), 2010.
FAO: Global ecological zones for FAO forest reporting: 2010 Update, FAO Forest Resources Assessment Working Paper 179, Rome, Italy, 2012.
Fischer, G., van Velthuizen, H. T., and Nachtergaele, F. O.: Global
agro-ecological zones assessment: methodology and results, IIASA, Luxemburg,
Rome, 2000.
Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C. S. R.,
and Reichstein, M.: Trend Change Detection in NDVI Time Series: Effects of
Inter-Annual Variability and Methodology, Remote Sensing, 5, 2113–2144,
https://doi.org/10.3390/rs5052113, 2013.
Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S.,
Weber, U., and Carvalhais, N.: Codominant water control on global interannual
variability and trends in land surface phenology and greenness, Glob.
Change Biol., 21, 3414–3435, https://doi.org/10.1111/gcb.12950, 2015.
Florinsky, I. V.: Influence of Topography on Soil Properties, Digital
Terrain Analysis in Soil Science and Geology, Academic Press, 265–270,
https://doi.org/10.1016/b978-0-12-804632-6.00009-2, 2016.
Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Gupta, P. K., and
Srivastav, S. K.: Human-induced land use land cover change and its impact on
hydrology, HydroResearch, 1, 48–56, https://doi.org/10.1016/j.hydres.2019.06.001, 2019.
Global Administrative Areas: University of California, Berkely [digital geospatial data], available at: http://www.gadm.org, last access: 20 April 2021.
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S.,
Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on
long-term terrestrial carbon uptake, Nature, 565, 476–479,
https://doi.org/10.1038/s41586-018-0848-x, 2019.
Greve, P. and Seneviratne, S. I.: Assessment of future changes in water
availability and aridity, Geophys. Res. Lett., 42, 5493–5499,
https://doi.org/10.1002/2015gl064127, 2015.
Gruber, A., Dorigo, W. A., Crow, W., and Wagner, W.: Triple Collocation-Based
Merging of Satellite Soil Moisture Retrievals, IEEE T.
Geosci. Remote Sens., 55, 6780–6792,
https://doi.org/10.1109/tgrs.2017.2734070, 2017.
Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet,
J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi,
M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C.,
Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C.,
Scanlon, T., van der Schalie, R., Wigneron, J.-P., and Wagner, W.: Validation
practices for satellite soil moisture retrievals: What are (the) errors?,
Remote Sens. Environ., 244, 111806, https://doi.org/10.1016/j.rse.2020.111806,
2020.
Gu, X., Zhang, Q., Li, J., Singh, V. P., Liu, J., Sun, P., and Cheng,
C.: Attribution of Global Soil Moisture Drying to Human Activities: A
Quantitative Viewpoint, Geophys. Res. Lett., 46, 2573–2582,
https://doi.org/10.1029/2018gl080768, 2019a.
Guevara, M. and Vargas, R.: Downscaling satellite soil moisture using
geomorphometry and machine learning, edited by B. Poulter, PLOS ONE, 14,
e0219639, https://doi.org/10.1371/journal.pone.0219639, 2019.
Guevara, M., Vargas, R., and Taufer M.: Gap-Free Global Annual Soil Moisture: 15 km Grids for 1991–2018, HydroShare, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e, 2020.
Hechenbichler, K. and Schliep, K. P.: Weighted k-Nearest-Neighbor Techniques and Ordinal Classification, Discussion Paper 399, SFB 386, Ludwig-Maximilians
University Munich, 2004.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250 m: Global gridded soil information based on machine
learning, PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and Gräler,
B.: Random Forest as a generic framework for predictive modeling of spatial
and spatio-temporal variables, PeerJ Inc., https://doi.org/10.7717/peerj.5518, 2018.
Hijmans R. J.: raster: Geographic Data Analysis and Modeling, R package
version 2.9-23, https://CRAN.R-project.org/package=raster (last access: 20 April 2021), 2019.
Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A.,
Helber, R., and Arnone, R. A.: Summary diagrams for coupled
hydrodynamic-ecosystem model skill assessment, J. Marine Syst.,
76, 64–82, 2009.
Kunsch, H. R.: The jackknife and the bootstrap for general stationary observations, Ann. Stat., 17, 1217–1241, 1989.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Liu, Y., Liu, Y., and Wang, W.: Inter-comparison of satellite-retrieved and
Global Land Data Assimilation System-simulated soil moisture datasets for
global drought analysis, Remote Sens. Environ., 220, 1–18,
https://doi.org/10.1016/j.rse.2018.10.026, 2019.
Lorenz, R. D., Pitman, A. J., Hirsch, A. L., and Srbinovsky, J.:
Intraseasonal versus Interannual Measures of Land–Atmosphere Coupling
Strength in a Global Climate Model: GLACE-1 versus GLACE-CMIP5 Experiments
in ACCESS1.3b, available at:
https://www.semanticscholar.org/paper/Intraseasonal-versus-Interannual-Measures-of-in-a-Lorenz-Pitman/1327a707d832e98b6c011c2ba6dd1812d2e2c2d8
(last access: 25 September 2019), 2015.
Llamas, R. M., Guevara, M., Rorabaugh, D., Taufer, M., and Vargas, R.:
Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on
Geostatistical Techniques and Multiple Regression, Remote Sensing, 12,
665, https://doi.org/10.3390/rs12040665, 2020.
May, W., Rummukainen, M., Chéruy, F., Hagemann, S., and Meier, A.:
Contributions of soil moisture interactions to future precipitation changes
in the GLACE-CMIP5 experiment, Climate Dynam., 49, 1681–1704,
https://doi.org/10.1007/s00382-016-3408-9, 2016.
McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., and
Entekhabi, D.: The global distribution and dynamics of surface soil
moisture, Nat. Geosci., 10, 100–104, https://doi.org/10.1038/ngeo2868, 2017.
McBratney, A. B., Mendonça Santos, M. L., and Minasny, B.: On digital
soil mapping, Geoderma, 117, 3–52, https://doi.org/10.1016/S0016-7061(03)00223-4,
2003.
Minet, J., Bogaert, P., Vanclooster, M., and Lambot, S.: Validation of ground
penetrating radar full-waveform inversion for field scale soil moisture
mapping, J. Hydrol., 424–425, 112–123,
https://doi.org/10.1016/j.jhydrol.2011.12.034, 2012.
Mohanty, B. P., Cosh, M. H., Lakshmi, V., and Montzka, C.: Soil Moisture
Remote Sensing: State-of-the-Science, Vadose Zone J., 16,
https://doi.org/10.2136/vzj2016.10.0105, 2017.
Møller, A. B., Beucher, A. M., Pouladi, N., and Greve, M. H.: Oblique geographic coordinates as covariates for digital soil mapping, SOIL, 6, 269289, https://doi.org/10.5194/soil-6-269-2020, 2020.
Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J., and
Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using
GLEAM, Remote Sensing, 10, 1720, https://doi.org/10.3390/rs10111720, 2018.
Mason, D. C., Garcia-Pintado, J., Cloke, H. L., and Dance, S. L.: Evidence of
a topographic signal in surface soil moisture derived from ENVISAT ASAR wide
swath data, Int. J. Appl. Earth Observ.
Geoinf., 45, 178–186, https://doi.org/10.1016/j.jag.2015.02.004, 2016.
Mishra, V., Tiwari, A. D., Aadhar, S., Shah, R., Xiao, M., Pai, D. S., and
Lettenmaier, D.: Drought and Famine in India, 1870–2016, Geophys.
Res. Lett., 46, 2075–2083, https://doi.org/10.1029/2018gl081477, 2019.
Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T., Odgaard, M. V.,
Nygaard, B., and Svenning, J.-C.: Topographically controlled soil moisture is
the primary driver of local vegetation patterns across a lowland region,
Ecosphere, 4, art91, https://doi.org/10.1890/es13-00134.1, 2013.
Moore, I. D., Gessler, P. E., Nielsen, G. A., and Peterson, G. A.:
Soil Attribute Prediction Using Terrain Analysis, Soil Sci. Soc. Am. J.,
57, 443–452, https://doi.org/10.2136/sssaj1993.03615995005700020058x, 1993.
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook,
B. D., Vermote, E. F., Harding, D. J., and North, P. R. J.: Amazon forests
maintain consistent canopy structure and greenness during the dry season,
Nature, 506, 221–224, https://doi.org/10.1038/nature13006, 2014.
Naz, B. S., Kollet, S., Franssen, H.-J. H., Montzka, C., and Kurtz, W.: A 3 km spatially and temporally consistent European daily soil moisture
reanalysis from 2000 to 2015, Sci. Data, 7, 111,
https://doi.org/10.1038/s41597-020-0450-6, 2020.
Nicolai-Shaw, N., Hirschi, M., Mittelbach, H., and Seneviratne, S. I.:
Spatial representativeness of soil moisture using in situ, remote sensing,
and land reanalysis data, J. Geophys. Res.-Atmos.,
120, 9955–9964, https://doi.org/10.1002/2015jd023305, 2015.
Nogherotto, R., Coppola, E., Giorgi, F., and Mariotti, L.: Impact of Congo
Basin deforestation on the African monsoon, Atmos. Sci. Lett.,
14, 45–51, https://doi.org/10.1002/asl2.416, 2013.
Oliver, M. A. and Webster, R.: Basic Steps in Geostatistics: The Variogram
and Kriging, Springer International Publishing, Cham, 100 pp.,
https://doi.org/10.1007/978-3-319-15865-5, 2015.
Padarian, J., McBratney, A. B., and Minasny, B.: Game theory interpretation of digital soil mapping convolutional neural networks, SOIL, 6, 389–397, https://doi.org/10.5194/soil-6-389-2020, 2020.
Peng, J., Loew, A., Merlin, O., and Verhoest, N. E. C.: A review of spatial
downscaling of satellite remotely sensed soil moisture, Rev.
Geophys., 55, 341–366, https://doi.org/10.1002/2016rg000543, 2017.
Piles, M., Ballabrera-Poy, J., and Muñoz-Sabater, J.: Dominant Features
of Global Surface Soil Moisture Variability Observed by the SMOS Satellite,
Remote Sensing, 11, 95, https://doi.org/10.3390/rs11010095, 2019.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 20 April 2021), 2020.
Ribeiro, M. T., Singh, S., and Guestrin, C.: Model-Agnostic Interpretability
of Machine Learning, arXiv [preprint], arXiv:1606.05386, 16 June 2016.
Sabaghy, S., Walker, J. P., Renzullo, L. J., Akbar, R., Chan, S., Chaubell,
J., Das, N., Dunbar, R. S., Entekhabi, D., Gevaert, A., Jackson, T. J.,
Loew, A., Merlin, O., Moghaddam, M., Peng, J., Peng, J., Piepmeier, J.,
Rüdiger, C., Stefan, V., Wu, X., Ye, N., and Yueh, S.: Comprehensive
analysis of alternative downscaled soil moisture products, Remote Sens.
Environ., 239, 111586, https://doi.org/10.1016/j.rse.2019.111586, 2020.
Saleska, S. R., da Rocha, H. R., Huete, A. R., Nobre, A. D., Artaxo, P. E., and
Shimabukuro, Y. E.: LBA-ECO CD-32 Flux Tower Network Data Compilation,
Brazilian Amazon: 1999–2006, ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1174, 2013.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M.,
Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Change, 8,
421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018.
Senanayake, I. P., Yeo, I.-Y., Tangdamrongsub, N., Willgoose, G. R.,
Hancock, G. R., Wells, T., Fang, B., Lakshmi, V., and Walker, J. P.: An
in-situ data based model to downscale radiometric satellite soil moisture
products in the Upper Hunter Region of NSW, Australia, J. Hydrol.,
572, 820–838, https://doi.org/10.1016/j.jhydrol.2019.03.014, 2019.
Seneviratne, S. I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg,
A., Cheruy, F., Higgins, M. E., Meier, A., Brovkin, V., Claussen, M., Ducharne, A., Dufresne, J. L., Findell, K. L., Ghattas, J., Lawrence, D. M., Malyshev, S., Rummukainen, M., and Smith, B.: Impact of
soil moisture-climate feedbacks on CMIP5 projections: First results from the
GLACE-CMIP5 experiment, Geophys. Res. Lett., 40, 5212–5217,
https://doi.org/10.1002/grl.50956, 2013.
Singh, R. S., Reager, J. T., Miller, N. L., and Famiglietti, J. S.: Toward
hyper-resolution land-surface modeling: The effects of fine-scale topography
and soil texture on CLM4.0 simulations over the Southwestern U.S., Water
Resour. Res., 51, 2648–2667, https://doi.org/10.1002/2014WR015686, 2015.
Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C.,
Seneviratne, S. I., and Peñuelas, J.: Drought impacts on terrestrial
primary production underestimated by satellite monitoring, Nat.
Geosci., 12, 264–270, https://doi.org/10.1038/s41561-019-0318-6, 2019.
Tuttle, S. and Salvucci, G.: Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States, Science, 352, 825–828, https://doi.org/10.1126/science.aaa7185, 2016.
van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law,
B. E., Meir, P., Peters, W., Phillips, O. L., Reichstein, M.,
Chen, T., Dekker, S. C., Doubková, M., Friedl, M. A., Jung, M., van den Hurk, B. J. J. M., de Jeu, R. A. M., Kruijt, B., Ohta, T., Rebel, K. T., Plummer, S., Seneviratne, S. I., Sitch, S., Teuling, A. J., van der Werf, G. R., and Wang, G.:
Drought and ecosystem carbon cycling, Agr. Forest Meteorol.,
151, 765–773, https://doi.org/10.1016/j.agrformet.2011.01.018, 2011.
Vargas, R.: How a hurricane disturbance influences extreme CO2 fluxes and
variance in a tropical forest, Environ. Res. Lett., 7, 035704,
https://doi.org/10.1088/1748-9326/7/3/035704, 2012.
Wagner, F. H., Hérault, B., Rossi, V., Hilker, T., Maeda, E. E.,
Sanchez, A., Lyapustin, A. I., Galvão, L. S., Wang, Y., and Aragão,
L. E. O. C.: Climate drivers of the Amazon forest greening, edited by B.
Poulter, PLOS ONE, 12, e0180932, https://doi.org/10.1371/journal.pone.0180932, 2017.
Western, A. W., Grayson, R. B., and Blöschl, G.: Scaling of Soil
Moisture: A Hydrologic Perspective, Ann. Rev. Earth Planet.
Sc., 30, 149–180, https://doi.org/10.1146/annurev.earth.30.091201.140434, 2002.
Wieder, W. R., Boehnert, J., Bonan, G. B., and Langseth, M.: Regridded Harmonized World Soil Database v1.2 [Data set], Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1247, 2014.
Wilson, J. P.: Digital terrain modeling, Geomorphology, 137, 107–121,
https://doi.org/10.1016/j.geomorph.2011.03.012, 2012.
Yee, M. S., Walker, J. P., Monerris, A., Rüdiger, C., and Jackson, T. J.:
On the identification of representative in situ soil moisture monitoring
stations for the validation of SMAP soil moisture products in Australia,
J. Hydrol., 537, 367–381, https://doi.org/10.1016/j.jhydrol.2016.03.060,
2016.
Zhuo, L. and Han, D.: The Relevance of Soil Moisture by Remote Sensing and
Hydrological Modelling, Procedia Eng., 154, 1368–1375,
https://doi.org/10.1016/j.proeng.2016.07.499, 2016.
Zhou, W., Hui, D., and Shen, W.: Effects of Soil Moisture on the Temperature
Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation
Study, edited by S. Hu, PLoS ONE, 9, e92531,
https://doi.org/10.1371/journal.pone.0092531, 2014.
Short summary
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine learning approach to increase the spatial resolution of satellite-derived soil moisture information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated uncertainty for 28 years (1991–2018) across 15 km grids. This dataset has higher agreement with in situ soil moisture and precipitation measurements. Results show a decline of global annual soil moisture.
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine...
Altmetrics
Final-revised paper
Preprint