Articles | Volume 13, issue 4
https://doi.org/10.5194/essd-13-1711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gap-free global annual soil moisture: 15 km grids for 1991–2018
Mario Guevara
Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
present address: University of California Riverside, Environmental Sciences|USDA-ARS, U.S. Salinity Laboratory, Riverside, CA, USA
Michela Taufer
Department of Electrical Engineering and Computer Science, The
University of Tennessee, Knoxville, TN, USA
Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
Related authors
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Mario Guevara, Michela Taufer, and Rodrigo Vargas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-191, https://doi.org/10.5194/essd-2019-191, 2019
Revised manuscript not accepted
Mario Guevara, Guillermo Federico Olmedo, Emma Stell, Yusuf Yigini, Yameli Aguilar Duarte, Carlos Arellano Hernández, Gloria E. Arévalo, Carlos Eduardo Arroyo-Cruz, Adriana Bolivar, Sally Bunning, Nelson Bustamante Cañas, Carlos Omar Cruz-Gaistardo, Fabian Davila, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo Tacona, Fernando Fontes, José Antonio Hernández Herrera, Alejandro Roberto Ibelles Navarro, Veronica Loayza, Alexandra M. Manueles, Fernando Mendoza Jara, Carolina Olivera, Rodrigo Osorio Hermosilla, Gonzalo Pereira, Pablo Prieto, Iván Alexis Ramos, Juan Carlos Rey Brina, Rafael Rivera, Javier Rodríguez-Rodríguez, Ronald Roopnarine, Albán Rosales Ibarra, Kenset Amaury Rosales Riveiro, Guillermo Andrés Schulz, Adrian Spence, Gustavo M. Vasques, Ronald R. Vargas, and Rodrigo Vargas
SOIL, 4, 173–193, https://doi.org/10.5194/soil-4-173-2018, https://doi.org/10.5194/soil-4-173-2018, 2018
Short summary
Short summary
We provide a reproducible multi-modeling approach for SOC mapping across Latin America on a country-specific basis as required by the Global Soil Partnership of the United Nations. We identify key prediction factors for SOC across each country. We compare and test different methods to generate spatially explicit predictions of SOC and conclude that there is no best method on a quantifiable basis.
M. F. Adame, N. S. Santini, C. Tovilla, A. Vázquez-Lule, L. Castro, and M. Guevara
Biogeosciences, 12, 3805–3818, https://doi.org/10.5194/bg-12-3805-2015, https://doi.org/10.5194/bg-12-3805-2015, 2015
Short summary
Short summary
Riverine wetlands of the south Pacific coast of Mexico had large ecosystem C stocks (784.5 MgC ha-1 for mangroves, 722.2 MgC ha-1 for peat swamps, and 336.5 MgC ha-1 for marshes). Long-term soil C sequestration values in mangroves were 1.3 ± 0.2 MgC ha-1yr-1. C stocks, and soil nitrogen stocks were in general larger for mangroves in the upper than in the lower estuary.
Pilar Durante, Juan Miguel Requena-Mullor, Rodrigo Vargas, Mario Guevara, Domingo Alcaraz-Segura, and Cecilio Oyonarte
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-431, https://doi.org/10.5194/essd-2024-431, 2024
Preprint under review for ESSD
Short summary
Short summary
Human activities have disrupted the global carbon cycle, increasing CO2 levels. Soils are the largest carbon stores on land, making it essential to understand how much carbon they hold to fight climate change. Our study improved estimates of soil carbon in peninsular Spain by integrating historical soil data and using machine-learning methods to create detailed maps of carbon content. These maps will help manage soil carbon better and support efforts to track carbon emissions globally.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Margaret Capooci and Rodrigo Vargas
Biogeosciences, 19, 4655–4670, https://doi.org/10.5194/bg-19-4655-2022, https://doi.org/10.5194/bg-19-4655-2022, 2022
Short summary
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Mario Guevara, Michela Taufer, and Rodrigo Vargas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-191, https://doi.org/10.5194/essd-2019-191, 2019
Revised manuscript not accepted
Mario Guevara, Guillermo Federico Olmedo, Emma Stell, Yusuf Yigini, Yameli Aguilar Duarte, Carlos Arellano Hernández, Gloria E. Arévalo, Carlos Eduardo Arroyo-Cruz, Adriana Bolivar, Sally Bunning, Nelson Bustamante Cañas, Carlos Omar Cruz-Gaistardo, Fabian Davila, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo Tacona, Fernando Fontes, José Antonio Hernández Herrera, Alejandro Roberto Ibelles Navarro, Veronica Loayza, Alexandra M. Manueles, Fernando Mendoza Jara, Carolina Olivera, Rodrigo Osorio Hermosilla, Gonzalo Pereira, Pablo Prieto, Iván Alexis Ramos, Juan Carlos Rey Brina, Rafael Rivera, Javier Rodríguez-Rodríguez, Ronald Roopnarine, Albán Rosales Ibarra, Kenset Amaury Rosales Riveiro, Guillermo Andrés Schulz, Adrian Spence, Gustavo M. Vasques, Ronald R. Vargas, and Rodrigo Vargas
SOIL, 4, 173–193, https://doi.org/10.5194/soil-4-173-2018, https://doi.org/10.5194/soil-4-173-2018, 2018
Short summary
Short summary
We provide a reproducible multi-modeling approach for SOC mapping across Latin America on a country-specific basis as required by the Global Soil Partnership of the United Nations. We identify key prediction factors for SOC across each country. We compare and test different methods to generate spatially explicit predictions of SOC and conclude that there is no best method on a quantifiable basis.
M. F. Adame, N. S. Santini, C. Tovilla, A. Vázquez-Lule, L. Castro, and M. Guevara
Biogeosciences, 12, 3805–3818, https://doi.org/10.5194/bg-12-3805-2015, https://doi.org/10.5194/bg-12-3805-2015, 2015
Short summary
Short summary
Riverine wetlands of the south Pacific coast of Mexico had large ecosystem C stocks (784.5 MgC ha-1 for mangroves, 722.2 MgC ha-1 for peat swamps, and 336.5 MgC ha-1 for marshes). Long-term soil C sequestration values in mangroves were 1.3 ± 0.2 MgC ha-1yr-1. C stocks, and soil nitrogen stocks were in general larger for mangroves in the upper than in the lower estuary.
A. W. King, R. J. Andres, K. J. Davis, M. Hafer, D. J. Hayes, D. N. Huntzinger, B. de Jong, W. A. Kurz, A. D. McGuire, R. Vargas, Y. Wei, T. O. West, and C. W. Woodall
Biogeosciences, 12, 399–414, https://doi.org/10.5194/bg-12-399-2015, https://doi.org/10.5194/bg-12-399-2015, 2015
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
Related subject area
Biogeosciences and biodiversity
Gas exchange velocities (k600), gas exchange rates (K600), and hydraulic geometries for streams and rivers derived from the NEON Reaeration field and lab collection data product (DP1.20190.001)
A spectral–structural characterization of European temperate, hemiboreal, and boreal forests
VODCA v2: multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring
Crop-specific management history of phosphorus fertilizer input (CMH-P) in the croplands of the United States: reconciliation of top-down and bottom-up data sources
Enhancing long-term vegetation monitoring in Australia: a new approach for harmonising the Advanced Very High Resolution Radiometer normalised-difference vegetation (NVDI) with MODIS NDVI
A synthesized field survey database of vegetation and active-layer properties for the Alaskan tundra (1972–2020)
TCSIF: a temporally consistent global Global Ozone Monitoring Experiment-2A (GOME-2A) solar-induced chlorophyll fluorescence dataset with the correction of sensor degradation
Global nitrous oxide budget (1980–2020)
National forest carbon harvesting and allocation dataset for the period 2003 to 2018
Spatial mapping of key plant functional traits in terrestrial ecosystems across China
HiQ-LAI: a high-quality reprocessed MODIS leaf area index dataset with better spatiotemporal consistency from 2000 to 2022
EUPollMap: the European atlas of contemporary pollen distribution maps derived from an integrated Kriging interpolation approach
Reference maps of soil phosphorus for the pan-Amazon region
Mapping 24 woody plant species phenology and ground forest phenology over China from 1951 to 2020
Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022
Investigating limnological processes and modern sedimentation at Lake Żabińskie, northeast Poland: a decade-long multi-variable dataset, 2012–2021
Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020
Organic Matter Database (OMD): Consolidating global residue data from agriculture, fisheries, forestry and related industries
Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022
CLIM4OMICS: a geospatially comprehensive climate and multi-OMICS database for maize phenotype predictability in the United States and Canada
Quantifying exchangeable base cations in permafrost: a reserve of nutrients about to thaw
Routine monitoring of western Lake Erie to track water quality changes associated with cyanobacterial harmful algal blooms
The Portuguese Large Wildfire Spread database (PT-FireSprd)
Thirty-meter map of young forest age in China
GRiMeDB: the Global River Methane Database of concentrations and fluxes
A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical evergreen broadleaved forests
Fire weather index data under historical and shared socioeconomic pathway projections in the 6th phase of the Coupled Model Intercomparison Project from 1850 to 2100
A remote-sensing-based dataset to characterize the ecosystem functioning and functional diversity in the Biosphere Reserve of the Sierra Nevada (southeastern Spain)
A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT
A global database on holdover time of lightning-ignited wildfires
National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake
Mammals in the Chornobyl Exclusion Zone's Red Forest: a motion-activated camera trap study
Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20 years
AnisoVeg: anisotropy and nadir-normalized MODIS multi-angle implementation atmospheric correction (MAIAC) datasets for satellite vegetation studies in South America
TiP-Leaf: a dataset of leaf traits across vegetation types on the Tibetan Plateau
Forest structure and individual tree inventories of northeastern Siberia along climatic gradients
Global climate-related predictors at kilometer resolution for the past and future
A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020
Global land surface 250 m 8 d fraction of absorbed photosynthetically active radiation (FAPAR) product from 2000 to 2021
Rates and timing of chlorophyll-a increases and related environmental variables in global temperate and cold-temperate lakes
Harmonized gap-filled datasets from 20 urban flux tower sites
Holocene spatiotemporal millet agricultural patterns in northern China: a dataset of archaeobotanical macroremains
The biogeography of relative abundance of soil fungi versus bacteria in surface topsoil
Airborne SnowSAR data at X and Ku bands over boreal forest, alpine and tundra snow cover
The Landscape Fire Scars Database: mapping historical burned area and fire severity in Chile
Aridec: an open database of litter mass loss from aridlands worldwide with recommendations on suitable model applications
LegacyPollen 1.0: a taxonomically harmonized global late Quaternary pollen dataset of 2831 records with standardized chronologies
Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests
A 30 m annual maize phenology dataset from 1985 to 2020 in China
Optical and biogeochemical properties of diverse Belgian inland and coastal waters
Kelly S. Aho, Kaelin M. Cawley, Robert T. Hensley, Robert O. Hall Jr., Walter K. Dodds, and Keli J. Goodman
Earth Syst. Sci. Data, 16, 5563–5578, https://doi.org/10.5194/essd-16-5563-2024, https://doi.org/10.5194/essd-16-5563-2024, 2024
Short summary
Short summary
Gas exchange is fundamental to many biogeochemical processes in streams and depends on the degree of gas saturation and the gas transfer velocity (k). Currently, k is harder to measure than concentration. Here, we present a processing pipeline to estimate k from tracer-gas experiments conducted in 22 streams by the National Ecological Observatory Network. The processed dataset (n = 339) represents the largest compilation of standardized k estimates available.
Miina Rautiainen, Aarne Hovi, Daniel Schraik, Jan Hanuš, Petr Lukeš, Zuzana Lhotáková, and Lucie Homolová
Earth Syst. Sci. Data, 16, 5069–5087, https://doi.org/10.5194/essd-16-5069-2024, https://doi.org/10.5194/essd-16-5069-2024, 2024
Short summary
Short summary
Radiative transfer models play a key role in monitoring vegetation using remote sensing data such as satellite or airborne images. The development of these models has been hindered by a lack of comprehensive ground reference data on structural and spectral characteristics of forests. Here, we reported datasets on the structural and spectral properties of temperate, hemiboreal, and boreal European forest stands. We anticipate that these data will have wide use in remote sensing applications.
Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo
Earth Syst. Sci. Data, 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024, https://doi.org/10.5194/essd-16-4573-2024, 2024
Short summary
Short summary
VODCA v2 is a dataset providing vegetation indicators for long-term ecosystem monitoring. VODCA v2 comprises two products: VODCA CXKu, spanning 34 years of observations (1987–2021), suitable for monitoring upper canopy dynamics, and VODCA L (2010–2021), for above-ground biomass monitoring. VODCA v2 has lower noise levels than the previous product version and provides valuable insights into plant water dynamics and biomass changes, even in areas where optical data are limited.
Peiyu Cao, Bo Yi, Franco Bilotto, Carlos Gonzalez Fischer, Mario Herrero, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 4557–4572, https://doi.org/10.5194/essd-16-4557-2024, https://doi.org/10.5194/essd-16-4557-2024, 2024
Short summary
Short summary
This article presents a spatially explicit time series dataset reconstructing crop-specific phosphorus fertilizer application rates, timing, and methods at a 4 km × 4 km resolution in the United States from 1850 to 2022. We comprehensively characterized the spatio-temporal dynamics of P fertilizer management over the last 170 years by considering cross-crop variations. This dataset will greatly contribute to the field of agricultural sustainability assessment and Earth system modeling.
Chad A. Burton, Sami W. Rifai, Luigi J. Renzullo, and Albert I. J. M. Van Dijk
Earth Syst. Sci. Data, 16, 4389–4416, https://doi.org/10.5194/essd-16-4389-2024, https://doi.org/10.5194/essd-16-4389-2024, 2024
Short summary
Short summary
Understanding vegetation response to environmental change requires accurate, long-term data on vegetation condition (VC). We evaluated existing satellite VC datasets over Australia and found them lacking, so we developed a new VC dataset for Australia, AusENDVI. It can be used for studying Australia's changing vegetation dynamics and downstream impacts on the carbon and water cycles, and it provides a reliable foundation for further research into the drivers of vegetation change.
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024, https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
Short summary
The Arctic tundra is experiencing widespread physical and biological changes, largely in response to warming, yet scientific understanding of tundra ecology and change remains limited due to relatively limited accessibility and studies compared to other terrestrial biomes. To support synthesis research and inform future studies, we created the Synthesized Alaskan Tundra Field Dataset (SATFiD), which brings together field datasets and includes vegetation, active-layer, and fire properties.
Chu Zou, Shanshan Du, Xinjie Liu, and Liangyun Liu
Earth Syst. Sci. Data, 16, 2789–2809, https://doi.org/10.5194/essd-16-2789-2024, https://doi.org/10.5194/essd-16-2789-2024, 2024
Short summary
Short summary
To obtain a temporally consistent satellite solar-induced chlorophyll fluorescence
(SIF) product (TCSIF), we corrected for time degradation of GOME-2A using a pseudo-invariant method. After the correction, the global SIF grew by 0.70 % per year from 2007 to 2021, and 62.91 % of vegetated regions underwent an increase in SIF. The dataset is a promising tool for monitoring global vegetation variation and will advance our understanding of vegetation's photosynthetic activities at a global scale.
(SIF) product (TCSIF), we corrected for time degradation of GOME-2A using a pseudo-invariant method. After the correction, the global SIF grew by 0.70 % per year from 2007 to 2021, and 62.91 % of vegetated regions underwent an increase in SIF. The dataset is a promising tool for monitoring global vegetation variation and will advance our understanding of vegetation's photosynthetic activities at a global scale.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 16, 2465–2481, https://doi.org/10.5194/essd-16-2465-2024, https://doi.org/10.5194/essd-16-2465-2024, 2024
Short summary
Short summary
This study generated a high-precision dataset, locating forest harvested carbon and quantifying post-harvest wood emissions for various uses. It enhances our understanding of forest harvesting and post-harvest carbon dynamics in China, providing essential data for estimating the forest ecosystem carbon budget and emphasizing wood utilization's impact on carbon emissions.
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024, https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary
Short summary
This study generated a spatially continuous plant functional trait dataset (~1 km) in China in combination with field observations, environmental variables and vegetation indices using machine learning methods. Results showed that wood density, leaf P concentration and specific leaf area showed good accuracy with an average R2 of higher than 0.45. This dataset could provide data support for development of Earth system models to predict vegetation distribution and ecosystem functions.
Kai Yan, Jingrui Wang, Rui Peng, Kai Yang, Xiuzhi Chen, Gaofei Yin, Jinwei Dong, Marie Weiss, Jiabin Pu, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 1601–1622, https://doi.org/10.5194/essd-16-1601-2024, https://doi.org/10.5194/essd-16-1601-2024, 2024
Short summary
Short summary
Variations in observational conditions have led to poor spatiotemporal consistency in leaf area index (LAI) time series. Using prior knowledge, we leveraged high-quality observations and spatiotemporal correlation to reprocess MODIS LAI, thereby generating HiQ-LAI, a product that exhibits fewer abnormal fluctuations in time series. Reprocessing was done on Google Earth Engine, providing users with convenient access to this value-added data and facilitating large-scale research and applications.
Fabio Oriani, Gregoire Mariethoz, and Manuel Chevalier
Earth Syst. Sci. Data, 16, 731–742, https://doi.org/10.5194/essd-16-731-2024, https://doi.org/10.5194/essd-16-731-2024, 2024
Short summary
Short summary
Modern and fossil pollen data contain precious information for reconstructing the climate and environment of the past. However, these data are only achieved for single locations with no continuity in space. We present here a systematic atlas of 194 digital maps containing the spatial estimation of contemporary pollen presence over Europe. This dataset constitutes a free and ready-to-use tool to study climate, biodiversity, and environment in time and space.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Mengyao Zhu, Junhu Dai, Huanjiong Wang, Juha M. Alatalo, Wei Liu, Yulong Hao, and Quansheng Ge
Earth Syst. Sci. Data, 16, 277–293, https://doi.org/10.5194/essd-16-277-2024, https://doi.org/10.5194/essd-16-277-2024, 2024
Short summary
Short summary
This study utilized 24,552 in situ phenology observation records from the Chinese Phenology Observation Network to model and map 24 woody plant species phenology and ground forest phenology over China from 1951 to 2020. These phenology maps are the first gridded, independent and reliable phenology data sources for China, offering a high spatial resolution of 0.1° and an average deviation of about 10 days. It contributes to more comprehensive research on plant phenology and climate change.
Jiabin Pu, Kai Yan, Samapriya Roy, Zaichun Zhu, Miina Rautiainen, Yuri Knyazikhin, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 15–34, https://doi.org/10.5194/essd-16-15-2024, https://doi.org/10.5194/essd-16-15-2024, 2024
Short summary
Short summary
Long-term global LAI/FPAR products provide the fundamental dataset for accessing vegetation dynamics and studying climate change. This study develops a sensor-independent LAI/FPAR climate data record based on the integration of Terra-MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products and applies advanced gap-filling techniques. The SI LAI/FPAR CDR provides a valuable resource for researchers studying vegetation dynamics and their relationship to climate change in the 21st century.
Wojciech Tylmann, Alicja Bonk, Dariusz Borowiak, Paulina Głowacka, Kamil Nowiński, Joanna Piłczyńska, Agnieszka Szczerba, and Maurycy Żarczyński
Earth Syst. Sci. Data, 15, 5093–5103, https://doi.org/10.5194/essd-15-5093-2023, https://doi.org/10.5194/essd-15-5093-2023, 2023
Short summary
Short summary
We present a dataset from the decade-long monitoring of Lake Żabińskie, a hardwater and eutrophic lake in northeast Poland. The lake contains varved sediments, which form a unique archive of past environmental variability. The monitoring program was designed to capture a pattern of relationships between meteorological conditions, limnological processes, and modern sedimentation and to verify if meteorological and limnological phenomena can be precisely tracked with varves.
Sen Cao, Muyi Li, Zaichun Zhu, Zhe Wang, Junjun Zha, Weiqing Zhao, Zeyu Duanmu, Jiana Chen, Yaoyao Zheng, Yue Chen, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4877–4899, https://doi.org/10.5194/essd-15-4877-2023, https://doi.org/10.5194/essd-15-4877-2023, 2023
Short summary
Short summary
The long-term global leaf area index (LAI) products are critical for characterizing vegetation dynamics under environmental changes. This study presents an updated GIMMS LAI product (GIMMS LAI4g; 1982−2020) based on PKU GIMMS NDVI and massive Landsat LAI samples. With higher accuracy than other LAI products, GIMMS LAI4g removes the effects of orbital drift and sensor degradation in AVHRR data. It has better temporal consistency before and after 2000 and a more reasonable global vegetation trend.
Gudeta Sileshi, Edmundo Barrios, Johannes Lehmann, and Francesco N. Tubiello
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-288, https://doi.org/10.5194/essd-2023-288, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Agricultural, fisheries, forestry and agro-processing activities produce large quantities of residues, by-products and waste materials every year. Here, we present a global organic matter database (OMD, the first of its kind, consolidating estimates of residues and by-products potentially available for use in a circular bio-economy. It also provides definitions, typologies and methods to aid consistent classification, estimation and reporting of the various residues and by-products.
Muyi Li, Sen Cao, Zaichun Zhu, Zhe Wang, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4181–4203, https://doi.org/10.5194/essd-15-4181-2023, https://doi.org/10.5194/essd-15-4181-2023, 2023
Short summary
Short summary
Long-term global Normalized Difference Vegetation Index (NDVI) products support the understanding of changes in vegetation under environmental changes. This study generates a consistent global NDVI product (PKU GIMMS NDVI) from 1982–2022 that eliminates the issue of orbital drift and sensor degradation in Advanced Very High Resolution Radiometer (AVHRR) data. More accurate than its predecessor (GIMMS NDVI3g), it shows high temporal consistency with MODIS NDVI in describing vegetation trends.
Parisa Sarzaeim, Francisco Muñoz-Arriola, Diego Jarquin, Hasnat Aslam, and Natalia De Leon Gatti
Earth Syst. Sci. Data, 15, 3963–3990, https://doi.org/10.5194/essd-15-3963-2023, https://doi.org/10.5194/essd-15-3963-2023, 2023
Short summary
Short summary
A genomic, phenomic, and climate database for maize phenotype predictability in the US and Canada is introduced. The database encompasses climate from multiple sources and OMICS from the Genomes to Fields initiative (G2F) data from 2014 to 2021, including codes for input data quality and consistency controls. Earth system modelers and breeders can use CLIM4OMICS since it interconnects the climate and biological system sciences. CLIM4OMICS is designed to foster phenotype predictability.
Elisabeth Mauclet, Maëlle Villani, Arthur Monhonval, Catherine Hirst, Edward A. G. Schuur, and Sophie Opfergelt
Earth Syst. Sci. Data, 15, 3891–3904, https://doi.org/10.5194/essd-15-3891-2023, https://doi.org/10.5194/essd-15-3891-2023, 2023
Short summary
Short summary
Permafrost ecosystems are limited in nutrients for vegetation development and constrain the biological activity to the active layer. Upon Arctic warming, permafrost degradation exposes organic and mineral soil material that may directly influence the capacity of the soil to retain key nutrients for vegetation growth and development. Here, we demonstrate that the average total exchangeable nutrient density (Ca, K, Mg, and Na) is more than 2 times higher in the permafrost than in the active layer.
Anna G. Boegehold, Ashley M. Burtner, Andrew C. Camilleri, Glenn Carter, Paul DenUyl, David Fanslow, Deanna Fyffe Semenyuk, Casey M. Godwin, Duane Gossiaux, Thomas H. Johengen, Holly Kelchner, Christine Kitchens, Lacey A. Mason, Kelly McCabe, Danna Palladino, Dack Stuart, Henry Vanderploeg, and Reagan Errera
Earth Syst. Sci. Data, 15, 3853–3868, https://doi.org/10.5194/essd-15-3853-2023, https://doi.org/10.5194/essd-15-3853-2023, 2023
Short summary
Short summary
Western Lake Erie suffers from cyanobacterial harmful algal blooms (HABs) despite decades of international management efforts. In response, the US National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) and the Cooperative Institute for Great Lakes Research (CIGLR) created an annual sampling program to detect, monitor, assess, and predict HABs. Here we describe the data collected from this monitoring program from 2012 to 2021.
Akli Benali, Nuno Guiomar, Hugo Gonçalves, Bernardo Mota, Fábio Silva, Paulo M. Fernandes, Carlos Mota, Alexandre Penha, João Santos, José M. C. Pereira, and Ana C. L. Sá
Earth Syst. Sci. Data, 15, 3791–3818, https://doi.org/10.5194/essd-15-3791-2023, https://doi.org/10.5194/essd-15-3791-2023, 2023
Short summary
Short summary
We reconstructed the spread of 80 large wildfires that burned recently in Portugal and calculated metrics that describe how wildfires behave, such as rate of spread, growth rate, and energy released. We describe the fire behaviour distribution using six percentile intervals that can be easily communicated to both research and management communities. The database will help improve our current knowledge on wildfire behaviour and support better decision making.
Yuelong Xiao, Qunming Wang, Xiaohua Tong, and Peter M. Atkinson
Earth Syst. Sci. Data, 15, 3365–3386, https://doi.org/10.5194/essd-15-3365-2023, https://doi.org/10.5194/essd-15-3365-2023, 2023
Short summary
Short summary
Forest age is closely related to forest production, carbon cycles, and other ecosystem services. Existing stand age products in China derived from remote-sensing images are of a coarse spatial resolution and are not suitable for applications at the regional scale. Here, we mapped young forest ages across China at an unprecedented fine spatial resolution of 30 m. The overall accuracy (OA) of the generated map of young forest stand ages across China was 90.28 %.
Emily H. Stanley, Luke C. Loken, Nora J. Casson, Samantha K. Oliver, Ryan A. Sponseller, Marcus B. Wallin, Liwei Zhang, and Gerard Rocher-Ros
Earth Syst. Sci. Data, 15, 2879–2926, https://doi.org/10.5194/essd-15-2879-2023, https://doi.org/10.5194/essd-15-2879-2023, 2023
Short summary
Short summary
The Global River Methane Database (GRiMeDB) presents CH4 concentrations and fluxes for flowing waters and concurrent measures of CO2, N2O, and several physicochemical variables, plus information about sample locations and methods used to measure gas fluxes. GRiMeDB is intended to increase opportunities to understand variation in fluvial CH4, test hypotheses related to greenhouse gas dynamics, and reduce uncertainty in future estimates of gas emissions from world streams and rivers.
Xueqin Yang, Xiuzhi Chen, Jiashun Ren, Wenping Yuan, Liyang Liu, Juxiu Liu, Dexiang Chen, Yihua Xiao, Qinghai Song, Yanjun Du, Shengbiao Wu, Lei Fan, Xiaoai Dai, Yunpeng Wang, and Yongxian Su
Earth Syst. Sci. Data, 15, 2601–2622, https://doi.org/10.5194/essd-15-2601-2023, https://doi.org/10.5194/essd-15-2601-2023, 2023
Short summary
Short summary
We developed the first time-mapped, continental-scale gridded dataset of monthly leaf area index (LAI) in three leaf age cohorts (i.e., young, mature, and old) from 2001–2018 data (referred to as Lad-LAI). The seasonality of three LAI cohorts from the new Lad-LAI product agrees well at eight sites with very fine-scale collections of monthly LAI. The proposed satellite-based approaches can provide references for mapping finer spatiotemporal-resolution LAI products with different leaf age cohorts.
Yann Quilcaille, Fulden Batibeniz, Andreia F. S. Ribeiro, Ryan S. Padrón, and Sonia I. Seneviratne
Earth Syst. Sci. Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, https://doi.org/10.5194/essd-15-2153-2023, 2023
Short summary
Short summary
We present a new database of four annual fire weather indicators over 1850–2100 and over all land areas. In a 3°C warmer world with respect to preindustrial times, the mean fire weather would increase on average by at least 66% in both intensity and duration and even triple for 1-in-10-year events. The dataset is a freely available resource for fire danger studies and beyond, highlighting that the best course of action would require limiting global warming as much as possible.
Beatriz P. Cazorla, Javier Cabello, Andrés Reyes, Emilio Guirado, Julio Peñas, Antonio J. Pérez-Luque, and Domingo Alcaraz-Segura
Earth Syst. Sci. Data, 15, 1871–1887, https://doi.org/10.5194/essd-15-1871-2023, https://doi.org/10.5194/essd-15-1871-2023, 2023
Short summary
Short summary
This dataset provides scientists, environmental managers, and the public in general with valuable information on the first characterization of ecosystem functional diversity based on primary production developed in the Sierra Nevada (Spain), a biodiversity hotspot in the Mediterranean basin and an exceptional natural laboratory for ecological research within the Long-Term Social-Ecological Research (LTSER) network.
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023, https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary
Short summary
We provide the first long-term (since 1992), high-resolution (8.9 km) satellite radar backscatter data set (LHScat) with a C-band (5.3 GHz) signal dynamic for global lands. LHScat was created by fusing signals from ERS (1992–2001; C-band), QSCAT (1999–2009; Ku-band), and ASCAT (since 2007; C-band). LHScat has been validated against independent ERS-2 signals. It could be used in a variety of studies, such as vegetation monitoring and hydrological modelling.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Nicholas A. Beresford, Sergii Gashchak, Michael D. Wood, and Catherine L. Barnett
Earth Syst. Sci. Data, 15, 911–920, https://doi.org/10.5194/essd-15-911-2023, https://doi.org/10.5194/essd-15-911-2023, 2023
Short summary
Short summary
Camera traps were established in a highly contaminated area of the Chornobyl Exclusion Zone (CEZ) to capture images of mammals. Over 1 year, 14 mammal species were recorded. The number of species observed did not vary with estimated radiation exposure. The data will be of value from the perspectives of effects of radiation on wildlife and also rewilding in this large, abandoned area. They may also have value in future studies investigating impacts of recent Russian military action in the CEZ.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Ricardo Dalagnol, Lênio Soares Galvão, Fabien Hubert Wagner, Yhasmin Mendes de Moura, Nathan Gonçalves, Yujie Wang, Alexei Lyapustin, Yan Yang, Sassan Saatchi, and Luiz Eduardo Oliveira Cruz Aragão
Earth Syst. Sci. Data, 15, 345–358, https://doi.org/10.5194/essd-15-345-2023, https://doi.org/10.5194/essd-15-345-2023, 2023
Short summary
Short summary
The AnisoVeg dataset brings 22 years of monthly satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor for South America at 1 km resolution aimed at vegetation applications. It has nadir-normalized data, which is the most traditional approach to correct satellite data but also unique anisotropy data with strong biophysical meaning, explaining 55 % of Amazon forest height. We expect this dataset to help large-scale estimates of vegetation biomass and carbon.
Yili Jin, Haoyan Wang, Jie Xia, Jian Ni, Kai Li, Ying Hou, Jing Hu, Linfeng Wei, Kai Wu, Haojun Xia, and Borui Zhou
Earth Syst. Sci. Data, 15, 25–39, https://doi.org/10.5194/essd-15-25-2023, https://doi.org/10.5194/essd-15-25-2023, 2023
Short summary
Short summary
The TiP-Leaf dataset was compiled from direct field measurements and included 11 leaf traits from 468 species of 1692 individuals, covering a great proportion of species and vegetation types on the highest plateau in the world. This work is the first plant trait dataset that represents all of the alpine vegetation on the TP, which is not only an update of the Chinese plant trait database, but also a great contribution to the global trait database.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Shaoyang He, Yongqiang Zhang, Ning Ma, Jing Tian, Dongdong Kong, and Changming Liu
Earth Syst. Sci. Data, 14, 5463–5488, https://doi.org/10.5194/essd-14-5463-2022, https://doi.org/10.5194/essd-14-5463-2022, 2022
Short summary
Short summary
This study developed a daily, 500 m evapotranspiration and gross primary production product (PML-V2(China)) using a locally calibrated water–carbon coupled model, PML-V2, which was well calibrated against observations at 26 flux sites across nine land cover types. PML-V2 (China) performs satisfactorily in the plot- and basin-scale evaluations compared with other mainstream products. It improved intra-annual ET and GPP dynamics, particularly in the cropland ecosystem.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Keyang He, Houyuan Lu, Jianping Zhang, and Can Wang
Earth Syst. Sci. Data, 14, 4777–4791, https://doi.org/10.5194/essd-14-4777-2022, https://doi.org/10.5194/essd-14-4777-2022, 2022
Short summary
Short summary
Here we presented the first quantitative spatiotemporal cropping patterns spanning the Neolithic and Bronze ages in northern China. Temporally, millet agriculture underwent a dramatic transition from low-yield broomcorn to high-yield foxtail millet around 6000 cal. a BP under the influence of climate and population. Spatially, millet agriculture spread westward and northward from the mid-lower Yellow River (MLY) to the agro-pastoral ecotone (APE) around 6000 cal. a BP and diversified afterwards.
Kailiang Yu, Johan van den Hoogen, Zhiqiang Wang, Colin Averill, Devin Routh, Gabriel Reuben Smith, Rebecca E. Drenovsky, Kate M. Scow, Fei Mo, Mark P. Waldrop, Yuanhe Yang, Weize Tang, Franciska T. De Vries, Richard D. Bardgett, Peter Manning, Felipe Bastida, Sara G. Baer, Elizabeth M. Bach, Carlos García, Qingkui Wang, Linna Ma, Baodong Chen, Xianjing He, Sven Teurlincx, Amber Heijboer, James A. Bradley, and Thomas W. Crowther
Earth Syst. Sci. Data, 14, 4339–4350, https://doi.org/10.5194/essd-14-4339-2022, https://doi.org/10.5194/essd-14-4339-2022, 2022
Short summary
Short summary
We used a global-scale dataset for the surface topsoil (>3000 distinct observations of abundance of soil fungi versus bacteria) to generate the first quantitative map of soil fungal proportion across terrestrial ecosystems. We reveal striking latitudinal trends. Fungi dominated in regions with low mean annual temperature (MAT) and net primary productivity (NPP) and bacteria dominated in regions with high MAT and NPP.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Alejandro Miranda, Rayén Mentler, Ítalo Moletto-Lobos, Gabriela Alfaro, Leonardo Aliaga, Dana Balbontín, Maximiliano Barraza, Susanne Baumbach, Patricio Calderón, Fernando Cárdenas, Iván Castillo, Gonzalo Contreras, Felipe de la Barra, Mauricio Galleguillos, Mauro E. González, Carlos Hormazábal, Antonio Lara, Ian Mancilla, Francisca Muñoz, Cristian Oyarce, Francisca Pantoja, Rocío Ramírez, and Vicente Urrutia
Earth Syst. Sci. Data, 14, 3599–3613, https://doi.org/10.5194/essd-14-3599-2022, https://doi.org/10.5194/essd-14-3599-2022, 2022
Short summary
Short summary
Achieving a local understanding of fire regimes requires high-resolution, systematic and dynamic data. High-quality information can help to transform evidence into decision-making. Taking advantage of big-data and remote sensing technics we developed a flexible workflow to reconstruct burned area and fire severity data for more than 8000 individual fires in Chile. The framework developed for the database can be applied anywhere in the world with minimal adaptation.
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
Short summary
Plant litter breakdown in aridlands is driven by processes different from those in more humid ecosystems. A better understanding of these processes will allow us to make better predictions of future carbon cycling. We have compiled aridec, a database of plant litter decomposition studies in aridlands and tested some modeling applications for potential users. Aridec is open for use and collaboration, and we hope it will help answer newer and more important questions as the database develops.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Hannah Weiser, Jannika Schäfer, Lukas Winiwarter, Nina Krašovec, Fabian E. Fassnacht, and Bernhard Höfle
Earth Syst. Sci. Data, 14, 2989–3012, https://doi.org/10.5194/essd-14-2989-2022, https://doi.org/10.5194/essd-14-2989-2022, 2022
Short summary
Short summary
3D point clouds, acquired by laser scanning, allow us to retrieve information about forest structure and individual tree properties. We conducted airborne, UAV-borne and terrestrial laser scanning in German mixed forests, resulting in overlapping point clouds with different characteristics. From these, we generated a comprehensive database of individual tree point clouds and corresponding tree metrics. Our dataset may serve as a benchmark dataset for algorithms in forestry research.
Quandi Niu, Xuecao Li, Jianxi Huang, Hai Huang, Xianda Huang, Wei Su, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2851–2864, https://doi.org/10.5194/essd-14-2851-2022, https://doi.org/10.5194/essd-14-2851-2022, 2022
Short summary
Short summary
In this paper we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985–2020) in China, using Landsat images. The derived phenological indicators agree with in situ observations and provide more spatial details than moderate resolution phenology products. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the response of agroecosystem to global warming in the future.
Alexandre Castagna, Luz Amadei Martínez, Margarita Bogorad, Ilse Daveloose, Renaat Dasseville, Heidi Melita Dierssen, Matthew Beck, Jonas Mortelmans, Héloïse Lavigne, Ana Dogliotti, David Doxaran, Kevin Ruddick, Wim Vyverman, and Koen Sabbe
Earth Syst. Sci. Data, 14, 2697–2719, https://doi.org/10.5194/essd-14-2697-2022, https://doi.org/10.5194/essd-14-2697-2022, 2022
Short summary
Short summary
Here we describe a dataset of optical measurements paired with the concentration and composition of dissolved and particulate components of water systems in Belgium. Sampling was performed over eight lakes, a coastal lagoon, an estuary, and coastal waters, covering the period of 2017 to 2019. The data cover a broad range of conditions and can be useful for development and evaluation of hyperspectral methods in hydrology optics and remote sensing.
Cited articles
Albergel, C., Dorigo, W., H, R. R., Balsamo, G., de Rosnay, P,
MuñozSabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and
Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote
Sensing, J. Hydrometeorol., 14, 1259–1277, 2013.
Alemohammad, S. H., Kolassa, J., Prigent, C., Aires, F., and Gentine, P.: Global downscaling of remotely sensed soil moisture using neural networks, Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, 2018.
Al-Yaari, A., Wigneron, J.-P., Dorigo, W., Colliander, A., Pellarin, T.,
Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y. H., and De Lannoy, G.:
Assessment and inter-comparison of recently developed/reprocessed microwave
satellite soil moisture products using ISMN ground-based measurements,
Remote Sens. Environ., 224, 289–303, https://doi.org/10.1016/j.rse.2019.02.008,
2019.
An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J., Shen, X., Gao,
W., Huang, L., Zhao, Y., and Ke, Z.: Validation of the ESA CCI soil moisture
product in China, Int. J. Appl. Earth Observ.
Geoinf., 48, 28–36, https://doi.org/10.1016/j.jag.2015.09.009, 2016.
Bauer-Marschallinger, B., Paulik, C., Hochstöger, S., Mistelbauer, T.,
Modanesi, S., Ciabatta, L., Massari, C., Brocca, L., and Wagner, W.: Soil
Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with
Temporal Filtering, Remote Sens., 2018, 1030, https://doi.org/10.3390/rs10071030, 2018.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B.,
Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R.,
Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Rosenberg, J. V., Wallace,
G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc
Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32,
355–371, https://doi.org/10.1080/01490410903297766, 2009.
Berg, A. and Sheffield, J.: Climate Change and Drought: the Soil Moisture
Perspective, Curr. Clim. Change Rep., 4, 180–191,
https://doi.org/10.1007/s40641-018-0095-0, 2018.
Behrens, T., Schmidt, K., MacMillan, R. A., and Viscarra Rossel, R. A.:
Multi-scale digital soil mapping with deep learning, Sci. Rep.,
8, 1–9, https://doi.org/10.1038/s41598-018-33516-6, 2018.
Bond-Lamberty, B. P. and Thomson, A. M.: A Global Database of Soil
Respiration Data, Version 4.0, ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1578, 2018.
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R.:
Globally rising soil heterotrophic respiration over recent decades, Nature
560, 80–83, 2018.
Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K., Yackulic, C. B.,
Duniway, M., Hall, S., Jia, G., Jamiyansharav, K., Munson, S. M., Wilson, S.
D., and Tietjen, B.: Future soil moisture and temperature extremes imply
expanding suitability for rainfed agriculture in temperate drylands,
Sci. Rep., 7, 12923, https://doi.org/10.1038/s41598-017-13165-x, 2017.
Chen, X., Su, Y., Liao, J., Shang, J., Dong, T., Wang, C., Liu, W., Zhou, G.,
and Liu, L.: Detecting significant decreasing trends of land surface soil
moisture in eastern China during the past three decades (1979–2010), J. Geophys. Res.-Atmos., 121, 5177–5192,
https://doi.org/10.1002/2015jd024676, 2016.
Chung, D., Dorigo, W., De Jeu, R., Kidd, R., and Wagner, W.: ESA Climate Change Initiative Phase II – Soil Moisture, Product Specification Document (PSD),
D.1.2.1 Version 4.4; Earth Observation Data Centre for Water Resources
Monitoring (EODC) GmbH, Vienna, Austria, p. 49, 2018.
Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S. B.,
Cosh, M. H., Dunbar, R. S., Dang, L., Pashaian, L., Asanuma, J., Aida, K.,
Berg, A., Rowlandson, T., Bosch, D., Caldwell, T., Caylor, K., Goodrich, D.,
al Jassar, H., Lopez-Baeza, E., Martínez-Fernández, J.,
González-Zamora, A., Livingston, S., McNairn, H., Pacheco, A.,
Moghaddam, M., Montzka, C., Notarnicola, C., Niedrist, G., Pellarin, T.,
Prueger, J., Pulliainen, J., Rautiainen, K., Ramos, J., Seyfried, M.,
Starks, P., Su, Z., Zeng, Y., van der Velde, R., Thibeault, M., Dorigo, W.,
Vreugdenhil, M., Walker, J. P., Wu, X., Monerris, A., O'Neill, P. E.,
Entekhabi, D., Njoku, E. G., and Yueh, S.: Validation of SMAP surface soil
moisture products with core validation sites, Remote Sens. Environ.,
191, 215–231, https://doi.org/10.1016/j.rse.2017.01.021, 2017b.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI Soil
Moisture for improved Earth system understanding: State-of-the art and
future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Dorigo, W. A., Oevelen, P. van, Wagner, W., Drusch, M., Mecklenburg, S.,
Robock, A., and Jackson, T.: A New International Network for in Situ Soil
Moisture Data, EOS T. Am. Geophys. Un., 92,
141–142, https://doi.org/10.1029/2011EO170001, 2011a.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011b.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J.,
Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C.,
Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman,
S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP)
Mission, IEEE, available at:
https://dspace.mit.edu/handle/1721.1/60043 (last access: 15 July 2019), 2010.
FAO: Global ecological zones for FAO forest reporting: 2010 Update, FAO Forest Resources Assessment Working Paper 179, Rome, Italy, 2012.
Fischer, G., van Velthuizen, H. T., and Nachtergaele, F. O.: Global
agro-ecological zones assessment: methodology and results, IIASA, Luxemburg,
Rome, 2000.
Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C. S. R.,
and Reichstein, M.: Trend Change Detection in NDVI Time Series: Effects of
Inter-Annual Variability and Methodology, Remote Sensing, 5, 2113–2144,
https://doi.org/10.3390/rs5052113, 2013.
Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S.,
Weber, U., and Carvalhais, N.: Codominant water control on global interannual
variability and trends in land surface phenology and greenness, Glob.
Change Biol., 21, 3414–3435, https://doi.org/10.1111/gcb.12950, 2015.
Florinsky, I. V.: Influence of Topography on Soil Properties, Digital
Terrain Analysis in Soil Science and Geology, Academic Press, 265–270,
https://doi.org/10.1016/b978-0-12-804632-6.00009-2, 2016.
Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Gupta, P. K., and
Srivastav, S. K.: Human-induced land use land cover change and its impact on
hydrology, HydroResearch, 1, 48–56, https://doi.org/10.1016/j.hydres.2019.06.001, 2019.
Global Administrative Areas: University of California, Berkely [digital geospatial data], available at: http://www.gadm.org, last access: 20 April 2021.
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S.,
Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on
long-term terrestrial carbon uptake, Nature, 565, 476–479,
https://doi.org/10.1038/s41586-018-0848-x, 2019.
Greve, P. and Seneviratne, S. I.: Assessment of future changes in water
availability and aridity, Geophys. Res. Lett., 42, 5493–5499,
https://doi.org/10.1002/2015gl064127, 2015.
Gruber, A., Dorigo, W. A., Crow, W., and Wagner, W.: Triple Collocation-Based
Merging of Satellite Soil Moisture Retrievals, IEEE T.
Geosci. Remote Sens., 55, 6780–6792,
https://doi.org/10.1109/tgrs.2017.2734070, 2017.
Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet,
J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi,
M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C.,
Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C.,
Scanlon, T., van der Schalie, R., Wigneron, J.-P., and Wagner, W.: Validation
practices for satellite soil moisture retrievals: What are (the) errors?,
Remote Sens. Environ., 244, 111806, https://doi.org/10.1016/j.rse.2020.111806,
2020.
Gu, X., Zhang, Q., Li, J., Singh, V. P., Liu, J., Sun, P., and Cheng,
C.: Attribution of Global Soil Moisture Drying to Human Activities: A
Quantitative Viewpoint, Geophys. Res. Lett., 46, 2573–2582,
https://doi.org/10.1029/2018gl080768, 2019a.
Guevara, M. and Vargas, R.: Downscaling satellite soil moisture using
geomorphometry and machine learning, edited by B. Poulter, PLOS ONE, 14,
e0219639, https://doi.org/10.1371/journal.pone.0219639, 2019.
Guevara, M., Vargas, R., and Taufer M.: Gap-Free Global Annual Soil Moisture: 15 km Grids for 1991–2018, HydroShare, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e, 2020.
Hechenbichler, K. and Schliep, K. P.: Weighted k-Nearest-Neighbor Techniques and Ordinal Classification, Discussion Paper 399, SFB 386, Ludwig-Maximilians
University Munich, 2004.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250 m: Global gridded soil information based on machine
learning, PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and Gräler,
B.: Random Forest as a generic framework for predictive modeling of spatial
and spatio-temporal variables, PeerJ Inc., https://doi.org/10.7717/peerj.5518, 2018.
Hijmans R. J.: raster: Geographic Data Analysis and Modeling, R package
version 2.9-23, https://CRAN.R-project.org/package=raster (last access: 20 April 2021), 2019.
Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A.,
Helber, R., and Arnone, R. A.: Summary diagrams for coupled
hydrodynamic-ecosystem model skill assessment, J. Marine Syst.,
76, 64–82, 2009.
Kunsch, H. R.: The jackknife and the bootstrap for general stationary observations, Ann. Stat., 17, 1217–1241, 1989.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Liu, Y., Liu, Y., and Wang, W.: Inter-comparison of satellite-retrieved and
Global Land Data Assimilation System-simulated soil moisture datasets for
global drought analysis, Remote Sens. Environ., 220, 1–18,
https://doi.org/10.1016/j.rse.2018.10.026, 2019.
Lorenz, R. D., Pitman, A. J., Hirsch, A. L., and Srbinovsky, J.:
Intraseasonal versus Interannual Measures of Land–Atmosphere Coupling
Strength in a Global Climate Model: GLACE-1 versus GLACE-CMIP5 Experiments
in ACCESS1.3b, available at:
https://www.semanticscholar.org/paper/Intraseasonal-versus-Interannual-Measures-of-in-a-Lorenz-Pitman/1327a707d832e98b6c011c2ba6dd1812d2e2c2d8
(last access: 25 September 2019), 2015.
Llamas, R. M., Guevara, M., Rorabaugh, D., Taufer, M., and Vargas, R.:
Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on
Geostatistical Techniques and Multiple Regression, Remote Sensing, 12,
665, https://doi.org/10.3390/rs12040665, 2020.
May, W., Rummukainen, M., Chéruy, F., Hagemann, S., and Meier, A.:
Contributions of soil moisture interactions to future precipitation changes
in the GLACE-CMIP5 experiment, Climate Dynam., 49, 1681–1704,
https://doi.org/10.1007/s00382-016-3408-9, 2016.
McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., and
Entekhabi, D.: The global distribution and dynamics of surface soil
moisture, Nat. Geosci., 10, 100–104, https://doi.org/10.1038/ngeo2868, 2017.
McBratney, A. B., Mendonça Santos, M. L., and Minasny, B.: On digital
soil mapping, Geoderma, 117, 3–52, https://doi.org/10.1016/S0016-7061(03)00223-4,
2003.
Minet, J., Bogaert, P., Vanclooster, M., and Lambot, S.: Validation of ground
penetrating radar full-waveform inversion for field scale soil moisture
mapping, J. Hydrol., 424–425, 112–123,
https://doi.org/10.1016/j.jhydrol.2011.12.034, 2012.
Mohanty, B. P., Cosh, M. H., Lakshmi, V., and Montzka, C.: Soil Moisture
Remote Sensing: State-of-the-Science, Vadose Zone J., 16,
https://doi.org/10.2136/vzj2016.10.0105, 2017.
Møller, A. B., Beucher, A. M., Pouladi, N., and Greve, M. H.: Oblique geographic coordinates as covariates for digital soil mapping, SOIL, 6, 269289, https://doi.org/10.5194/soil-6-269-2020, 2020.
Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J., and
Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using
GLEAM, Remote Sensing, 10, 1720, https://doi.org/10.3390/rs10111720, 2018.
Mason, D. C., Garcia-Pintado, J., Cloke, H. L., and Dance, S. L.: Evidence of
a topographic signal in surface soil moisture derived from ENVISAT ASAR wide
swath data, Int. J. Appl. Earth Observ.
Geoinf., 45, 178–186, https://doi.org/10.1016/j.jag.2015.02.004, 2016.
Mishra, V., Tiwari, A. D., Aadhar, S., Shah, R., Xiao, M., Pai, D. S., and
Lettenmaier, D.: Drought and Famine in India, 1870–2016, Geophys.
Res. Lett., 46, 2075–2083, https://doi.org/10.1029/2018gl081477, 2019.
Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T., Odgaard, M. V.,
Nygaard, B., and Svenning, J.-C.: Topographically controlled soil moisture is
the primary driver of local vegetation patterns across a lowland region,
Ecosphere, 4, art91, https://doi.org/10.1890/es13-00134.1, 2013.
Moore, I. D., Gessler, P. E., Nielsen, G. A., and Peterson, G. A.:
Soil Attribute Prediction Using Terrain Analysis, Soil Sci. Soc. Am. J.,
57, 443–452, https://doi.org/10.2136/sssaj1993.03615995005700020058x, 1993.
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook,
B. D., Vermote, E. F., Harding, D. J., and North, P. R. J.: Amazon forests
maintain consistent canopy structure and greenness during the dry season,
Nature, 506, 221–224, https://doi.org/10.1038/nature13006, 2014.
Naz, B. S., Kollet, S., Franssen, H.-J. H., Montzka, C., and Kurtz, W.: A 3 km spatially and temporally consistent European daily soil moisture
reanalysis from 2000 to 2015, Sci. Data, 7, 111,
https://doi.org/10.1038/s41597-020-0450-6, 2020.
Nicolai-Shaw, N., Hirschi, M., Mittelbach, H., and Seneviratne, S. I.:
Spatial representativeness of soil moisture using in situ, remote sensing,
and land reanalysis data, J. Geophys. Res.-Atmos.,
120, 9955–9964, https://doi.org/10.1002/2015jd023305, 2015.
Nogherotto, R., Coppola, E., Giorgi, F., and Mariotti, L.: Impact of Congo
Basin deforestation on the African monsoon, Atmos. Sci. Lett.,
14, 45–51, https://doi.org/10.1002/asl2.416, 2013.
Oliver, M. A. and Webster, R.: Basic Steps in Geostatistics: The Variogram
and Kriging, Springer International Publishing, Cham, 100 pp.,
https://doi.org/10.1007/978-3-319-15865-5, 2015.
Padarian, J., McBratney, A. B., and Minasny, B.: Game theory interpretation of digital soil mapping convolutional neural networks, SOIL, 6, 389–397, https://doi.org/10.5194/soil-6-389-2020, 2020.
Peng, J., Loew, A., Merlin, O., and Verhoest, N. E. C.: A review of spatial
downscaling of satellite remotely sensed soil moisture, Rev.
Geophys., 55, 341–366, https://doi.org/10.1002/2016rg000543, 2017.
Piles, M., Ballabrera-Poy, J., and Muñoz-Sabater, J.: Dominant Features
of Global Surface Soil Moisture Variability Observed by the SMOS Satellite,
Remote Sensing, 11, 95, https://doi.org/10.3390/rs11010095, 2019.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 20 April 2021), 2020.
Ribeiro, M. T., Singh, S., and Guestrin, C.: Model-Agnostic Interpretability
of Machine Learning, arXiv [preprint], arXiv:1606.05386, 16 June 2016.
Sabaghy, S., Walker, J. P., Renzullo, L. J., Akbar, R., Chan, S., Chaubell,
J., Das, N., Dunbar, R. S., Entekhabi, D., Gevaert, A., Jackson, T. J.,
Loew, A., Merlin, O., Moghaddam, M., Peng, J., Peng, J., Piepmeier, J.,
Rüdiger, C., Stefan, V., Wu, X., Ye, N., and Yueh, S.: Comprehensive
analysis of alternative downscaled soil moisture products, Remote Sens.
Environ., 239, 111586, https://doi.org/10.1016/j.rse.2019.111586, 2020.
Saleska, S. R., da Rocha, H. R., Huete, A. R., Nobre, A. D., Artaxo, P. E., and
Shimabukuro, Y. E.: LBA-ECO CD-32 Flux Tower Network Data Compilation,
Brazilian Amazon: 1999–2006, ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1174, 2013.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M.,
Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Change, 8,
421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018.
Senanayake, I. P., Yeo, I.-Y., Tangdamrongsub, N., Willgoose, G. R.,
Hancock, G. R., Wells, T., Fang, B., Lakshmi, V., and Walker, J. P.: An
in-situ data based model to downscale radiometric satellite soil moisture
products in the Upper Hunter Region of NSW, Australia, J. Hydrol.,
572, 820–838, https://doi.org/10.1016/j.jhydrol.2019.03.014, 2019.
Seneviratne, S. I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg,
A., Cheruy, F., Higgins, M. E., Meier, A., Brovkin, V., Claussen, M., Ducharne, A., Dufresne, J. L., Findell, K. L., Ghattas, J., Lawrence, D. M., Malyshev, S., Rummukainen, M., and Smith, B.: Impact of
soil moisture-climate feedbacks on CMIP5 projections: First results from the
GLACE-CMIP5 experiment, Geophys. Res. Lett., 40, 5212–5217,
https://doi.org/10.1002/grl.50956, 2013.
Singh, R. S., Reager, J. T., Miller, N. L., and Famiglietti, J. S.: Toward
hyper-resolution land-surface modeling: The effects of fine-scale topography
and soil texture on CLM4.0 simulations over the Southwestern U.S., Water
Resour. Res., 51, 2648–2667, https://doi.org/10.1002/2014WR015686, 2015.
Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C.,
Seneviratne, S. I., and Peñuelas, J.: Drought impacts on terrestrial
primary production underestimated by satellite monitoring, Nat.
Geosci., 12, 264–270, https://doi.org/10.1038/s41561-019-0318-6, 2019.
Tuttle, S. and Salvucci, G.: Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States, Science, 352, 825–828, https://doi.org/10.1126/science.aaa7185, 2016.
van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law,
B. E., Meir, P., Peters, W., Phillips, O. L., Reichstein, M.,
Chen, T., Dekker, S. C., Doubková, M., Friedl, M. A., Jung, M., van den Hurk, B. J. J. M., de Jeu, R. A. M., Kruijt, B., Ohta, T., Rebel, K. T., Plummer, S., Seneviratne, S. I., Sitch, S., Teuling, A. J., van der Werf, G. R., and Wang, G.:
Drought and ecosystem carbon cycling, Agr. Forest Meteorol.,
151, 765–773, https://doi.org/10.1016/j.agrformet.2011.01.018, 2011.
Vargas, R.: How a hurricane disturbance influences extreme CO2 fluxes and
variance in a tropical forest, Environ. Res. Lett., 7, 035704,
https://doi.org/10.1088/1748-9326/7/3/035704, 2012.
Wagner, F. H., Hérault, B., Rossi, V., Hilker, T., Maeda, E. E.,
Sanchez, A., Lyapustin, A. I., Galvão, L. S., Wang, Y., and Aragão,
L. E. O. C.: Climate drivers of the Amazon forest greening, edited by B.
Poulter, PLOS ONE, 12, e0180932, https://doi.org/10.1371/journal.pone.0180932, 2017.
Western, A. W., Grayson, R. B., and Blöschl, G.: Scaling of Soil
Moisture: A Hydrologic Perspective, Ann. Rev. Earth Planet.
Sc., 30, 149–180, https://doi.org/10.1146/annurev.earth.30.091201.140434, 2002.
Wieder, W. R., Boehnert, J., Bonan, G. B., and Langseth, M.: Regridded Harmonized World Soil Database v1.2 [Data set], Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1247, 2014.
Wilson, J. P.: Digital terrain modeling, Geomorphology, 137, 107–121,
https://doi.org/10.1016/j.geomorph.2011.03.012, 2012.
Yee, M. S., Walker, J. P., Monerris, A., Rüdiger, C., and Jackson, T. J.:
On the identification of representative in situ soil moisture monitoring
stations for the validation of SMAP soil moisture products in Australia,
J. Hydrol., 537, 367–381, https://doi.org/10.1016/j.jhydrol.2016.03.060,
2016.
Zhuo, L. and Han, D.: The Relevance of Soil Moisture by Remote Sensing and
Hydrological Modelling, Procedia Eng., 154, 1368–1375,
https://doi.org/10.1016/j.proeng.2016.07.499, 2016.
Zhou, W., Hui, D., and Shen, W.: Effects of Soil Moisture on the Temperature
Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation
Study, edited by S. Hu, PLoS ONE, 9, e92531,
https://doi.org/10.1371/journal.pone.0092531, 2014.
Short summary
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine learning approach to increase the spatial resolution of satellite-derived soil moisture information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated uncertainty for 28 years (1991–2018) across 15 km grids. This dataset has higher agreement with in situ soil moisture and precipitation measurements. Results show a decline of global annual soil moisture.
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine...
Altmetrics
Final-revised paper
Preprint