Articles | Volume 13, issue 4
https://doi.org/10.5194/essd-13-1711-2021
https://doi.org/10.5194/essd-13-1711-2021
Data description paper
 | 
27 Apr 2021
Data description paper |  | 27 Apr 2021

Gap-free global annual soil moisture: 15 km grids for 1991–2018

Mario Guevara, Michela Taufer, and Rodrigo Vargas

Related authors

The impact of drought on soil moisture trends across Brazilian biomes
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021,https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary

Cited articles

Albergel, C., Dorigo, W., H, R. R., Balsamo, G., de Rosnay, P, MuñozSabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing, J. Hydrometeorol., 14, 1259–1277, 2013. 
Alemohammad, S. H., Kolassa, J., Prigent, C., Aires, F., and Gentine, P.: Global downscaling of remotely sensed soil moisture using neural networks, Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, 2018. 
Al-Yaari, A., Wigneron, J.-P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y. H., and De Lannoy, G.: Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements, Remote Sens. Environ., 224, 289–303, https://doi.org/10.1016/j.rse.2019.02.008, 2019. 
An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J., Shen, X., Gao, W., Huang, L., Zhao, Y., and Ke, Z.: Validation of the ESA CCI soil moisture product in China, Int. J. Appl. Earth Observ. Geoinf., 48, 28–36, https://doi.org/10.1016/j.jag.2015.09.009, 2016. 
Bauer-Marschallinger, B., Paulik, C., Hochstöger, S., Mistelbauer, T., Modanesi, S., Ciabatta, L., Massari, C., Brocca, L., and Wagner, W.: Soil Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with Temporal Filtering, Remote Sens., 2018, 1030, https://doi.org/10.3390/rs10071030, 2018. 
Download
Short summary
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine learning approach to increase the spatial resolution of satellite-derived soil moisture information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated uncertainty for 28 years (1991–2018) across 15 km grids. This dataset has higher agreement with in situ soil moisture and precipitation measurements. Results show a decline of global annual soil moisture.
Share
Altmetrics
Final-revised paper
Preprint