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Abstract. Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a soil mois-
ture pattern recognition framework to increase the spatial resolution and fill gaps of the ESA-CCI (European
Space Agency Climate Change Initiative v4.5) soil moisture dataset, which contains > 40 years of satellite soil
moisture global grids with a spatial resolution of ∼ 27 km. We use terrain parameters coupled with bioclimatic
and soil type information to predict finer-grained (i.e., downscaled) satellite soil moisture. We assess the im-
pact of terrain parameters on the prediction accuracy by cross-validating downscaled soil moisture with and
without the support of bioclimatic and soil type information. The outcome is a dataset of gap-free global mean
annual soil moisture predictions and associated prediction variances for 28 years (1991–2018) across 15 km
grids. We use independent in situ records from the International Soil Moisture Network (ISMN, 987 stations)
and in situ precipitation records (171 additional stations) only for evaluating the new dataset. Cross-validated
correlation between observed and predicted soil moisture values varies from r = 0.69 to r = 0.87 with root
mean squared errors (RMSEs, m3 m−3) around 0.03 and 0.04. Our soil moisture predictions improve (a) the
correlation with the ISMN (when compared with the original ESA-CCI dataset) from r = 0.30 (RMSE= 0.09,
unbiased RMSE (ubRMSE)= 0.37) to r = 0.66 (RMSE= 0.05, ubRMSE= 0.18) and (b) the correlation with
local precipitation records across boreal (from r =< 0.3 up to r = 0.49) or tropical areas (from r =< 0.3 to
r = 0.46) which are currently poorly represented in the ISMN. Temporal trends show a decline of global annual
soil moisture using (a) data from the ISMN (−1.5[−1.8,−1.24]%), (b) associated locations from the original
ESA-CCI dataset (−0.87[−1.54,−0.17]%), (c) associated locations from predictions based on terrain parame-
ters (−0.85[−1.01,−0.49]%), and (d) associated locations from predictions including bioclimatic and soil type
information (−0.68[−0.91,−0.45]%). We provide a new soil moisture dataset that has no gaps and higher gran-
ularity together with validation methods and a modeling approach that can be applied worldwide (Guevara et al.,
2020, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e).
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1 Introduction

Soil moisture data are essential for scientific inquiry in a vari-
ety of research areas. These data enable scientists to charac-
terize hydrological patterns (Greve and Seneviratne, 2015),
quantify the influence of soil moisture on terrestrial carbon
dynamics (van der Molen et al., 2011), identify trends in
global climate variability (Seneviratne et al., 2013), analyze
the response of ecosystems to moisture decline (Zhou et al.,
2014), or detect the impact of moisture on models of land–
atmosphere interactions (May et al., 2016). The integrity of
current soil moisture data is fundamental for a comprehen-
sive understanding of the global water cycle (Al-Yaari et al.,
2019).

The main sources of soil moisture data are in situ soil
moisture measurements through monitoring networks such
as the International Soil Moisture Network (ISMN; Dorigo
et al., 2011a) and satellite soil moisture measurements such
as those provided by the European Space Agency Climate
Change Initiative (ESA-CCI; Dorigo et al., 2017; Liu et al.,
2011). Both measurement techniques can quantify regional-
to-continental global soil moisture patterns and dynamics
(Gruber et al., 2020).

In situ soil moisture measurements assess soil moisture
within specific study sites at specific soil depths (e.g., 0–
5 cm). These measurements are fine-grained as soil moisture
sensors have a small and localized footprint, and despite na-
tional and international networks they are limited in much
of the world (Fig. 1). Collection of in situ soil moisture data
across large areas is expensive and time consuming; in many
cases, logistical challenges such as limited funding for data
collection and accessibility of soil moisture monitoring sites
make it impossible.

On the other hand, satellite soil moisture measurements
collected in the form of microwave radiometry using L band
(∼ 1.4–1.427 GHz) and C band (∼ 4–8 GHz) are more ef-
fective for larger regional-to-global soil moisture measure-
ments (Mohanty et al., 2017). As for most available in situ
soil moisture measurements, satellite soil moisture datasets
are representative for the first 0–5 cm of soil depth. Unlike
the fine-grained in situ measurements, satellite soil moisture
datasets are available at the global scale in coarse-grained
grids with spatial resolution ranging between 9 and 25 km
(Senanayake et al., 2019) and at the regional scale (e.g.,
the European continent) with a spatial resolution of 3 km
grids (Naz et al., 2020). A well-known satellite soil moisture
dataset is collected by ESA-CCI. The ESA-CCI dataset con-
tains more than 40 years of satellite soil moisture global grids
(from 1978 to 2019) with a spatial resolution of∼ 27 km (Liu
et al., 2011; Chung et al., 2018). This soil moisture dataset
is a synthesis from multiple soil moisture sources and has
been applied in long-term ecological and hydrological stud-
ies (Dorigo et al., 2017). The dataset covers a longer period
of time compared with other satellite-derived soil moisture

datasets (e.g., Soil Moisture Active Passive (Al-Yaari et al.,
2019).

Across large areas of the world, the ESA-CCI soil mois-
ture data have been validated and calibrated against in situ
soil moisture measurements (Al-Yaari et al., 2019; Dorigo
et al., 2011a). In addition, there are continuing efforts to
improve the spatial reliability of the satellite measurements
(Gruber et al., 2017), resulting in new dataset versions. How-
ever, even the most recent versions of ESA-CCI soil moisture
data (i.e., v4.5 to 5.0) still suffer from a too-coarse-grained
spatial resolution and substantial spatial gaps in their spatial
coverage (Llamas et al., 2020), making the data unsuitable to
tackle problems such as quantifying the implications of soil
moisture in water cycle across fine-grained scales or across
areas with spatial gaps. Scientists have developed empiri-
cal and physical modeling approaches for predicting miss-
ing satellite soil moisture data (Peng et al., 2017; Sabaghy
et al., 2020) and for evaluating the errors in soil moisture
satellite model predictions (Gruber et al., 2020). The spatial
resolution and coverage of these recent studies are still an
emergent challenge due to limited data across large areas of
the world (e.g., extremely dry, extremely wet, or frozen re-
gions) as well as the signal excessive noise and saturation
affecting the quality of satellite soil moisture records. Con-
sequently, there is a need for developing alternative model-
ing approaches and their validation methods to fill the gaps
of the ESA-CCI dataset, improving both the spatial resolu-
tion and the coverage. Recent soil moisture products across
Europe and the United States (Bauer-Marschallinger et al.,
2018, Guevara and Vargas, 2019) reveal the possibility of
developing high-spatial-resolution surface soil moisture esti-
mates that complement the coarse spatial granularity of avail-
able remote sensing products (e.g., ESA-CCI).

In this study we tackle the need to increase spatial gran-
ularity and provide gap-free global soil moisture predic-
tions. In doing so, we combine a pattern recognition tech-
nique called kernel-weighted k-nearest neighbors (or k-
KNN; Hechenbichler and Schliep, 2004) with the use of
independent covariate or prediction factors such as topo-
graphic parameters, bioclimatic features, and soil types. Our
approach enables us to augment both spatial resolution and
coverage in the ESA-CCI dataset despite limited data in large
areas of the world.

k-KNN is a machine learning (ML) algorithm that has
several benefits for predicting satellite soil moisture at the
global scale. First of all, k-KNN accounts for non-linearities
(e.g., local and regionally specific data patterns). Soil mois-
ture data (as a dependent variable) can be predicted as a func-
tion of the spatial variability of environmental data (indepen-
dent variables) with different spatial resolution and coverage
(Peng et al., 2017; Guevara and Vargas, 2019; Llamas et al.,
2020). k-KNN can take advantage of the spatial autocorre-
lation of training data such as the relation between variance
and distance between soil moisture observations (Llamas et
al., 2020; Oliver and Webster, 2015) and use it as ancillary
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Figure 1. Spatial distribution of available data from in situ monitoring sites. This information was only used for validating our soil moisture
predictions. The ISMN (green for all data sites and dark green for sites with available information at 0–5 cm), precipitation records (blue),
and soil moisture additional datasets from previous local studies (red).

information when spatial coordinates (e.g., latitude and lon-
gitude) are considered in the prediction approach (Hengl et
al., 2018; Behrens et al., 2018; McBratney et al., 2003). Sec-
ond, k-KNN can use kernel functions to weight the neighbors
according to their distances. Finally, by including spatial co-
ordinates in the predictions, k-KNN can consider geograph-
ical distances. In doing so, it is able to account for local and
regional variability in the feature space: each predicted value
is dependent on a unique combination of k neighbors in the
feature space that are weighted using kernel functions that
can be different from one place to another (see Sect. 2.2).

We use a diverse set of independent covariates or pre-
diction factors such as topographic parameters, bioclimatic
features, and soil types to augment the prediction of soil
moisture values with k-KNN. Topographic parameters are
based on physical principles related to the overall distribu-
tion of surface water across the landscape (Western et al.,
2002; Moeslund et al., 2013; Mason et al., 2016). We gener-
ate the topographic parameters from digital terrain analysis.
Digital terrain analysis involves calculations of land surface
characteristics that depend on topography (e.g., terrain slope
and aspect; Wilson, 2012). The impact of terrain parameters
on spatial variability of satellite soil moisture is supported
by previous studies that have provided evidence of a topo-
graphic signal in satellite soil moisture measurements from
local (Mason et al., 2016) to continental scales (Guevara and
Vargas, 2019). Other studies derive terrain parameters from
elevation data and use them to predict soil moisture across
a gradient of hydrological conditions (Western et al., 2002).
Topographic parameters have also been used for soil attribute
predictions (Moore et al., 1993) and for soil moisture map-
ping applications (Florinsky, 2016). All these studies suggest
that topography (represented by multiple terrain parameters)
is a useful predictor of surface soil moisture variability at the
global scale. Different types of terrain parameters exist, in-
cluding elevation data structures, topographic wetness, over-
land flow, and potential incoming solar radiation, among oth-
ers. Elevation data structures (i.e., point elevation data, eleva-

tion contour lines, or digital elevation models) quantitatively
represent topographic variability and are the basis of digi-
tal terrain analysis (i.e., geomorphometry). The topographic
wetness index is a terrain parameter that characterizes areas
where soil moisture increases by the effect of overland flow
accumulation (Moore et al., 1993). Overland flow and poten-
tial incoming solar radiation are two important topographic
drivers of the spatial distribution of soil moisture (Nicolai-
Shaw et al., 2015), its lags after precipitation events (Mc-
Coll et al., 2017), and its role as a dominant control of plant
productivity (Forkel et al., 2015). Bioclimatic features and
soil types account for hydroclimatic and soil variability af-
fecting soil moisture. We add bioclimatic features and soil
type classes as additional prediction factors to our approach
to determine if information beyond terrain parameters sub-
stantially improves soil moisture predictions. To validate our
dataset, we use independent in situ information (i.e., annual
soil moisture measurements) from local studies (n= 8 sta-
tions; Vargas, 2012; Saleska et al., 2013), from the ISMN
(n= 2185 stations), and from precipitation records across the
world (n= 171 stations, including tropical areas poorly rep-
resented in the ISMN).

The contributions of this paper are 2-fold: first, we inte-
grate the k-KNN algorithm and prediction factors into a mod-
eling approach to predict fine-grained, gap-free soil moisture
data with a resolution of 15 km; second, we generate a new
dataset that complements the ESA-CCI dataset and is com-
posed of soil moisture predictions from our modeling ap-
proach. With reference to our first contribution, we study the
effectiveness of k-KNN in downscaling satellite-derived soil
moisture using two prediction factor datasets: a first dataset
based only on topographic parameters and a second based on
topographic parameters, bioclimatic features, and soil types.
We compare the accuracy of the two types of fine-grained,
gap-free soil moisture models obtained using the two predic-
tion factor datasets. The comparison allows us to assess the
impact of the individual prediction factors. Specifically, we
address the impact of topographic parameters versus biocli-
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matic features and soil types. Previous studies have used a
variety of prediction factors for soil moisture, including veg-
etation indexes (from optical imagery), climate information
(Alemohammad et al., 2018), choropleth maps (i.e., land use
and land forms), thermal data, and soil information to im-
prove the spatial resolution and coverage of soil moisture
gridded datasets (Naz et al., 2020; Peng et al., 2017). In con-
trast to past efforts, our solution uses a comprehensive set of
factors for predicting satellite soil moisture data and indepen-
dently testing the model with in situ soil moisture data. Our
approach is computationally less expensive and prevents po-
tential spurious correlations when predicted soil moisture es-
timates are compared with climate, vegetation, or soil infor-
mation. With reference to our second contribution, we gen-
erate a dataset complementary to the ESA-CCI soil moisture
dataset that provides gap-free global mean annual soil mois-
ture predictions for 28 years (1991–2018) across a 15 km grid
(note that ESA-CCI has a grid of 27 km). Our soil moisture
dataset can be used for identifying spatial and temporal pat-
terns of soil moisture and its contributions to climate and veg-
etation feedbacks. The soil moisture predictions, the field soil
moisture validation dataset, and the set of prediction factors
for soil moisture are publicly available (Guevara et al., 2020).

2 Methodology

Our prediction approach has four key steps. First, we de-
fine training soil moisture datasets and define two differ-
ent datasets of prediction factors with a 15 km global grid
resolution: a dataset consisting only of terrain parameters
and a different dataset combining terrain parameters, bio-
climatic features, and soil type classes (Sect. 2.1). Second,
we build prediction models by feeding the prediction factors
and ESA-CCI satellite soil moisture data to the k-KNN algo-
rithm and using cross-validation for selecting the best mod-
els (Sect. 2.2). Third, we bootstrap the parameters to assess
variances of soil moisture predictions (Sect. 2.3). Last, we
validate our best predictions against independent in situ soil
moisture measurements when they are available (Sect. 2.4).

2.1 Training datasets and datasets of prediction factors

We generate a training dataset for each analyzed year
(n= 28). A training dataset consists of a table with the cen-
tral coordinates of each pixel in the ESA-CCI dataset and
the corresponding satellite-derived soil moisture values for a
given year. We use all available pixels with valid soil mois-
ture values reported in the ESA-CCI v4.5 and calculate (for
each pixel) the mean value of all available observations for a
given year. We do not consider a threshold value (e.g., a min-
imum number of pixels) to calculate the mean for each pixel
for a given year. There are large areas in the world (mainly
in the tropics or deserts) with missing information through-
out an entire year. After identifying the gaps for each year,
we observe that the years with the largest number of missing

values (i.e., data not available; NAs) are between years 2003
and 2006 (Appendix A, Fig. A1).

We generate and test two different datasets of prediction
factors with a 15 km grid resolution: (a) a dataset of only
digital terrain parameters and (b) a more complex dataset
that uses digital terrain parameters, static bioclimatic fea-
tures, and soil type information. The second dataset allows
us to differentiate between the impact of terrain parameters
in isolation and the impact of terrain parameters when aug-
mented with static bioclimatic features and soil type informa-
tion. The values of prediction factors are generated to over-
lap with the central coordinates (latitude and longitude) of
the original ESA-CCI soil moisture pixels following previ-
ous research (Guevara and Vargas, 2019).

Digital terrain parameters (described in Fig. 2) are de-
rived from a global digital elevation model using SAGA-GIS
(System for Automated Geoscientific Analysis GIS) (Con-
rad et al., 2015). The source of elevation data is a radar-
based digital elevation model (Becker et al., 2009). This dig-
ital elevation model is provided by Hengl et al. (2017), and
we re-sampled it (along with bioclimatic features and soil
type classes) to a spatial resolution of 15 km grids across
the world. We consider the following terrain parameters:
(a) terrain aspect (aspect), (b) specific catchment area (carea),
(c) channel network base level (chnl base), (d) distance to
channel network (chnl dist), (e) flow convergence index (con-
vergence), (f) horizontal curvature (hcurv), (g) digital eleva-
tion model (land), (h) length–slope factor (lsfactor), (i) rel-
ative slope position (rsp), (j) analytical hillshade (shade),
(k) smoothed elevation (sinks), (l) terrain slope (slope),
(m) valley depth index (vall depth), (n) vertical curvature
(vcurv), and (o) topographic wetness index (wetness). The
parameters are presented in Fig. 2, and a detailed descrip-
tion and units of the parameters can be found in Guevara and
Vargas (2019).

Static bioclimatic features are extracted from the Food
and Agriculture Organization Global Agro-Ecological Zones
project (FAO, 2013; baseline period: 1961–1990) to account
for hydroclimatic variability. Thus, these static bioclimatic
features consist of a spatial database of land mapping units
with the following categories: (1) boreal coniferous forest,
(2) boreal mountain system, (3) boreal tundra woodland, (4)
polar, (5) subtropical desert, (6) subtropical dry forest, (7)
subtropical humid forest, (8) subtropical mountain system,
(9) subtropical steppe, (10) temperate continental forest, (11)
temperate desert, (12) temperate mountain system, (13) tem-
perate oceanic forest, (14) temperate steppe, (15) tropical
desert, (16) tropical dry forest, (17) tropical moist decidu-
ous forest, (18) tropical mountain system, (19) tropical rain
forest, and (20) tropical shrubland.

These categories were developed for assessing global land
resources following a methodology has been jointly devel-
oped by FAO and the International Institute for Applied Sys-
tems Analysis (Fischer et al., 2000). Each category is ex-
pressed within independent maps of zeros and ones (absence
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Figure 2. Digital terrain parameters used as prediction factors for soil moisture. These parameters are derived from a digital elevation model
using SAGA-GIS. These terrain parameters are standardized by centering their means to zero and a variance unit for visualization purposes.
Legend: (a) terrain aspect (aspect), (b) specific catchment area (carea), (c) channel network base level (chnl base), (d) distance to channel
network (chnl dist), (e) flow convergence index (convergence), (f) horizontal curvature (hcurv), (g) digital elevation model (land), (h) length–
slope factor (lsfactor), (i) relative slope position (rsp), (j) analytical hillshade (shade), (k) smoothed elevation (sinks), (l) terrain slope (slope),
(m) valley depth index (vall depth), (n) vertical curvature (vcurv), and (o) topographic wetness index (wetness). For a detailed description
and units of these parameters see Guevara and Vargas (2019).

and presence, respectively, at each pixel), and this informa-
tion is considered as an independent quantitative predictor.

As soil type information, we include soil water retention
capacity classes (1: 150 mm water per meter of the soil unit;
2: 125 mm; 3: 100 mm; 4: 75 mm; 5: 50 mm; 6: 15 mm; 7:
0 mm) from the Regridded Harmonized World Soil Database
v1.2 (Wieder et al., 2014) to account for soil type variability
in our prediction framework. In this soil type map the dis-
tance between the above-mentioned water retention classes
is known (e.g., from high to low every 25 mm of water), and
it can be considered a quantitative predictor.

For each pixel with available soil moisture values in the
ESA-CCI dataset, we augment the spatial coordinates (i.e.,
latitude and longitude) and soil moisture value by adding the
tuple of the 15 terrain parameters for the first dataset and the
tuple of the 15 terrain parameters, the 19 bioclimatic features,
and the soil type classes for the second dataset. The pixels
without soil moisture values become our prediction targets.
Because the prediction factor datasets have a 15 km resolu-
tion while the ESA-CCI soil moisture pixels have a 27 km
resolution, we preprocess each prediction factor dataset to

extract the values to the corresponding locations of the ESA-
CCI pixels. By overlapping the original ESA-CCI dataset
with one of the two prediction factor datasets and extracting
the prediction factor values for the ESA-CCI pixel centers,
we generate two augmented ESA-CCI datasets. A similar
method was initially used for the conterminous United States
(Guevara and Vargas, 2019), and here we extend the method
to the entire world. In our mapping, we leverage observa-
tions from other work outlining the positive impact of spatial
structure (e.g., spatial distances and autocorrelation) on soil
attribute predictions (e.g., soil moisture) (see spatial coordi-
nate maps in Fig. A1) (Llamas et al., 2020; Møller et al.,
2020; Hengl et al., 2018; Behrens et al., 2018; McBratney et
al., 2003; Oliver and Webster, 2015). We include spatial co-
ordinates in our modeling framework (described in Sect. 2.2)
to account for the spatial structure of the ESA-CCI train-
ing data. To this end, we use spatial coordinates at multiple
oblique angles as suggested by recent work (Møller et al.,
2020, Appendix A, Fig. A2). This preprocessing is done us-
ing open-source R software functionalities for geographical
information systems (R Core Team, 2020; Hijmans, 2019).
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2.2 Building prediction models

To build prediction models of the soil moisture at a finer
spatial resolution (15 km) than the original ESA-CCI dataset
(27 km), we use the kernel-based method for pattern recog-
nition known as k-KNN (Hechenbichler and Schliep, 2004).
We build one model per year (n= 28 models). We observe
that the relationships among spatial coordinates, soil mois-
ture values, terrain parameters, bioclimatic classes, and soil
types are not linear. For example, south slope areas tend to
be dryer than north slopes areas. Moreover, there is a con-
trasting feedback of soil moisture and precipitation between
humid and dry areas (e.g., between the eastern and western
United States; Tuttle and Salvucci, 2016). We use k-KNN
because it allows us to account for the non-linear feedback
while providing a simple and fast prediction solution.

The k-KNN algorithm has two main settings: (a) the pa-
rameter k that determines the number of neighbors from
which information is considered for prediction and (b) a ker-
nel function that converts distances among neighbors into
weights, so the farther the neighbor, the smaller the weight
it will be assigned. We consider k neighbors with k ranging
from 2 to 50 soil moisture pixels and with close spatial co-
ordinates and similar prediction factors. In the case of the
first prediction factor dataset (i.e., only digital terrain param-
eters), distances among neighbors are computed among spa-
tial coordinates and terrain parameters; in the case of the sec-
ond dataset (i.e., digital terrain parameters, static bioclimatic
features, and soil type classes), distances among neighbors
are computed among spatial coordinates, terrain parameters,
static bioclimatic features, and soil type classes. The simi-
larity among neighbors is measured with the Minkowski dis-
tance (i.e., the statistical average of the neighbors’ value dif-
ference). We consider six different kernel functions (i.e., rect-
angular, triangular, Epanechnikov, Gaussian, rank, and opti-
mal).

Using the two augmented ESA-CCI datasets obtained by
overlapping the original ESA-CCI dataset with one of the
two prediction factor datasets and extracting the prediction
factor values for the ESA-CCI pixel centers (from Sect. 2.1),
we generate two sets of 28 prediction models, one for each of
the 28 years (i.e., 1991–2018) in the ESA-CCI soil moisture
dataset (v4.5). We feed the augmented ESA-CCI datasets
into the k-KNN algorithm and search for the most effec-
tive k neighbors’ values and kernel functions. To this end,
we use 10-fold cross-validation to select the values of the k

neighbors among the 48 possible values (i.e., k ranged from
2 to 50) and the kernel function from these six kernel func-
tions (i.e., rectangular, triangular, Epanechnikov, Gaussian,
rank, and optimal). We use cross-validation as a re-sampling
technique because it can prevent overfitting in ML methods
such as k-KNN and can generate multiple sets of indepen-
dent model residuals to evaluate the stability of prediction
outcomes. The use of cross-validation for searching for the
most effective k neighbors’ values and kernel function re-

quires us to randomly create multiple independent training
and testing datasets. Training and testing datasets generated
from one of our augmented ESA-CCI datasets are disjoined;
training data are used for building the models, and testing
data are used only for quantifying model residuals and eval-
uating soil moisture predictions.

As our cross-validation indicators (i.e., information crite-
ria about prediction), we use the Pearson correlation coeffi-
cient (r) and the root mean squared error (RMSE) for each
one of the prediction models. For each year we select the
model whose combination of k and kernel function has the
highest r and lowest RMSE. We use the model to predict an-
nual mean global soil moisture across 15 km global grids.

2.3 Assessing variances of model predictions

We study three sources of modeling variance. First, we assess
the sensitivity of the prediction models to variations in avail-
able training data over the entire world. Second, we assess
the relevance of the spatial coordinates and different predic-
tion factors by rebuilding the models using the k-KNN al-
gorithm with and without each prediction factor, once again
over the entire world. Third, we assess the effectiveness of
the k-KNN algorithm across selected areas of the world with
fewer data available for training the prediction models and
with different environmental and climate gradients.

To assess the sensitivity of the prediction models to varia-
tions in training data, we compute the variance of our soil
moisture predictions as surrogates of model-based uncer-
tainty. We rebuild the prediction models setting the k-KNN
algorithm to use different random subsets of available pix-
els (n= 1000) and 10-fold repeated cross-validation (n= 10)
to quantify the variance of soil moisture predictions. This
model variance enables us to identify geographical areas with
high or low sensitivity of prediction models to random vari-
ations in training data.

To assess the relevance of the different prediction factors,
we use the r and RMSE of modeling with all prediction fac-
tors as a reference, and we compare the r and RMSE with
the r and RMSE values of modeling without each one of
the prediction factors. We test the sensitivity of the spatial
coordinates and each prediction factor (i.e., terrain parame-
ters, bioclimatic features, and soil type classes) by systemat-
ically leaving out one prediction factor at a time and repeat-
ing our k-KNN algorithm and its respective cross-validation.
This process is repeated 10 times for each prediction factor
to capture a variance estimate. This empirical validation ap-
proach provides empirical insights of the relative importance
of prediction factors for the k-KNN algorithm predicting soil
moisture at the global scale.

To assess the effectiveness of the k-KNN algorithm across
specific areas of the world, we first test the k-KNN algorithm
in tropical areas (Appendix A, Fig. A3) with low availabil-
ity of data to train prediction models (e.g., greater distances
between k neighbors) and under homogeneous environmen-
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tal and climate conditions (e.g., higher water content above
ground than below ground). We extract the limits of tropical
areas from the Global Agro-Ecological Zones project (FAO,
2013; baseline period: 1961–1990; described in Sect. 2.1).
Second, we test the k-KNN algorithm using only the avail-
able ESA-CCI data across countries with large heterogenous
environmental and climate gradients, such as Canada, Aus-
tralia, and Mexico. We generate new training, testing, and
prediction factor datasets for these countries using geopo-
litical limits provided by the Global Administrative Areas
(GADM, 2021). We use the resulting model predictions to
explore modeling consistency in terms of r and RMSE values
across the selected areas and to visualize spatial patterns be-
tween the ESA-CCI soil moisture dataset and our soil mois-
ture predictions.

2.4 Validation against independent in situ data

We validate the ESA-CCI dataset and our predictions against
in situ soil moisture data reported in ISMN for each year.
Additionally, we compare soil moisture trends (i.e., changes
in soil moisture over time) by comparing either in situ soil
moisture or the ESA-CCI with our predictions.

We first augment the original ISMN (downloaded in Au-
gust of 2019) from the datasets with information from eight
stations with in situ soil moisture data from literature reviews
that are distributed in open-access data repositories: one sta-
tion was deployed in a tropical forest of Mexico with data
from 2006 to 2008 (Vargas, 2012), and seven stations across
Brazil’s tropical forests with data from 1999 to 2006 (Saleska
et al., 2013).

To perform the validation, we compute yearly means at
every available location of the ISMN dataset. Then, we or-
ganize for further comparisons these yearly means with the
yearly means of the combined ESA-CCI (v4.5) soil mois-
ture grids and our soil moisture predictions. Consequently,
further analyses are consistent in space (i.e., locations from
the ISMN and corresponding pixels in the ESA-CCI (v4.5)
and our predictions) and time (1991–2018). We first calcu-
late the yearly means using all available soil moisture values
per site in the ISMN (n= 2185 stations), and then we ex-
tract the sites containing information of soil moisture for the
0–5 cm for further analyses (n= 987 stations, 1996–2016).

To complement our validation strategy, we perform an ad-
ditional independent validation against in situ records of an-
nual precipitation (n= 171 stations). This information was
extracted from the global soil respiration database (Bond-
Lamberty and Thomson, 2018) and represented the years
2008 to 2018. Soil moisture and precipitation are closely re-
lated variables (McColl et al., 2017), and previous work has
recommended the use of soil-moisture-related information to
validate soil moisture predictions in the absence of in situ
soil moisture information (Gruber et al., 2020). The purpose
of including precipitation datasets is to enrich the spatial rep-
resentation of soil-moisture-related information for compar-

ative purposes between the ESA-CCI and our soil moisture
predictions.

We highlight that any potential bias associated with the
data in our augmented ISMN dataset (e.g., stations with low
number of records) has potentially the same impact on the
validation results of the three datasets (ESA-CCI and our two
prediction datasets). In other words, we assume biases are
randomly distributed across all observations, and thus they
are not accounted for in the outcome of our comparisons.
We summarize the validation results in a target diagram to il-
lustrate the accuracy of our soil moisture predictions. The
target diagram (presented in Appendix A, Fig. A4; Jolliff
et al., 2009) shows the relation between the variance and
magnitude of errors (i.e., unbiased root mean squared error,
or ubRMSE) (a) between the ESA-CCI and the augmented
ISMN dataset and (b) between our predictions and the aug-
mented ISMN dataset.

To compare trends in soil moisture over time for areas for
which we have in situ data, we perform a non-parametric
(median-based) trend detection test (i.e., Theil–Sen estima-
tor) to compare soil moisture trends at the locations of the
augmented ISMN dataset. This trend detection is done by
calculating the median value of the slopes and intercepts of
all possible combinations of pairs of points in the relationship
of soil moisture (response) and time (explanatory variable).
This resulting median slope and intercept estimates are unbi-
ased and resistant to outliers (Kunsch, 1989).

For those areas in which the ISMN dataset has multiple
gaps, we rely on the ESA-CCI and our prediction datasets
to generate a map of soil moisture trends. To this end, we
apply a pixel-wise trend detection test to the ESA-CCI and
prediction datasets to search for possible breakpoints (i.e.,
significant changes in soil moisture over time). We consider
two regression parameters (i.e., slopes and intercepts) before
and after any possible breakpoint to detect trends; in all the
tests, a minimum of 4 years is required between breakpoints
for detecting trends. To provide our study with robust trend
detection estimates, we do not consider segments between
breakpoints with fewer than eight observations. (Forkel et al.,
2013, 2015).

3 Results

In our assessment of the results, we first discuss the statis-
tical description of the observed and modeled soil moisture
datasets (Sect. 3.1). Second, we present the sensitivity of the
prediction models and the way they are generated to vari-
ations in available datasets (Sect. 3.2). Third, we measure
the relevance of the different prediction factors by rebuild-
ing the models using the k-KNN algorithm with and with-
out one prediction factor at the time over the entire world
(Sect. 3.3). Finally, we summarize results on soil moisture
for models that are trained in regions for which augmented
ISMN datasets exist (Sect. 3.4) and results on soil moisture
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for models that are trained in regions for which augmented
ISMN datasets do not exist, and thus we use either ESA-CCI
or our predictions as alternative datasets (Sect. 3.5).

3.1 Descriptive statistics

We first assess the statistical distributions of the observed
ESA-CCI dataset, our soil moisture model predictions us-
ing the k-KNN algorithm, and the augmented ISMN dataset
(Fig. 3). Comparing the statistical distribution between ob-
served datasets (i.e., ESE-CCI and ISMN datasets) and our
modeled soil moisture datasets allows us to identify if mod-
eled soil moisture falls within the expected range of observed
soil moisture values. The statistical distribution among dif-
ferent soil moisture datasets can be compared in terms of
differences in the mean and standard deviation. We present
the mean and standard deviation of the ESA-CCI dataset, our
modeled soil moisture predictions, and the augmented ISMN
dataset only at locations (latitude and longitude) where all
datasets have an observation or a prediction. We also restrain
the period of time for our comparisons between 1991 and
2016, which is the period of time with higher consistency of
data availability for both the ESA-CCI dataset and the aug-
mented ISMN dataset.

When comparing the statistical distribution of the soil
moisture datasets, we observe that the ESA-CCI dataset
has mean soil moisture values of 0.29 m3 m−3 and a stan-
dard deviation of 0.09 m3 m−3. The modeled soil moisture
predictions based only on digital terrain parameters have
mean soil moisture values of 0.24 m3 m−3 and a standard
deviation of 0.05 m3 m−3. Modeled soil moisture predic-
tions based on digital terrain parameters, bioclimatic fea-
tures, and soil type classes show the mean soil moisture value
is 0.24 m3 m−3 and standard deviation is 0.05 m3 m−3. The
augmented ISMN dataset shows a larger range of soil mois-
ture values (Fig. 3) when comparing all datasets: the dataset
values show a mean of 0.25 m3 m−3 and a standard deviation
of 0.07 m3 m−3. We have two key observations. First, we ob-
serve a consistent statistical distribution when comparing the
statistical distribution of the augmented ISMN with the sta-
tistical distribution of the ESA-CCI dataset (Fig. 3). Second,
and more importantly, the mean and standard deviation of our
modeled soil moisture predictions based on terrain parame-
ters only and based on terrain parameters, bioclimatic fea-
tures, and soil type classes as prediction factors show similar
agreement with the means and standard deviations of both
ESA-CCI and augmented ISMN datasets.

3.2 Prediction sensitivity for different datasets

We evaluate r and RMSE for 12 040 cross-validated soil
moisture models. The number of models is defined as fol-
lows. For each year (n= 28) we build a model with all pre-
diction factors (n= 42) and assess the variance of 10 model
replicas based on different random data subsets (n− 10 %

Figure 3. Statistical distribution of the ESA-CCI soil moisture
dataset (red), the predictions of soil moisture using the k-KNN al-
gorithm (gray and green), and the augmented ISMN dataset (black).
The lines represent the values of each dataset at the locations of all
existing datasets (locations reported in the augmented ISMN).

of data). We repeat the same process for each year, leaving
out each one of the prediction factors at the time, and assess
the prediction sensitivity for different datasets as explained
in Sect. 2.3. We compute the r and RMSE between obser-
vation and model prediction datasets. Our observations are
soil moisture values from the ESA-CCI dataset and from the
augmented ISMN as generated in Sect. 2.4. Our prediction
factors datasets (defined in Sect. 2.1) are the basis to generate
(a) the soil moisture predictions based on terrain parameters
only and (b) the soil moisture predictions based on terrain
parameters, bioclimatic features, and soil type classes.

We first report results for the entire world using ESA-
CCI as a training dataset for building prediction models
and repeated cross-validation for assessing the accuracy of
the model predictions (described in Sect. 2.2). The cross-
validated r of soil moisture predictions based on digital ter-
rain parameters only ranges from 0.69 to 0.81 across years
(1978–2019). The RMSE ranges from 0.03 to 0.04 m3 m−3.
The soil moisture predictions based on terrain parameters,
bioclimatic features, and soil type classes have a slightly
higher correlation between observed and predicted soil mois-
ture values (ranging between 0.78 and 0.85) and slightly
lower RMSE values (ranging from 0.02 to 0.04 m3 m−3).
Note that each soil moisture prediction contains a cross-
validation accuracy report (see Sect. 5). The small variations
of r and RMSE indicate a reliable prediction capacity of our
models.

For the entire world once again, we assess the sensitiv-
ity of our predictions (described in Sect. 2.3) in terms of
the models’ prediction variance, which ranges from < 0.001
to 0.18 m3 m−3. This prediction variance is higher in areas
with lower availability of training data from the ESA-CCI
(e.g., across the tropical areas and coastal areas). These vari-
ances also serve as surrogates for uncertainty; each file con-
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taining a soil moisture prediction model includes a file with
a soil moisture prediction variance (see Sect. 5). For exam-
ple, for the year 2018 (Fig. 4), soil moisture predictions vary
between ∼ 0.001 and ∼ 0.45 m3 m−3, while the prediction
variances range from ∼ 0.001 to 0.14 m3 m−3, indicating a
broader variability around the predicted values. Larger pre-
diction variances are the combined result of both the higher
possible values of soil moisture and the limited sample size
within the ESA-CCI to train the prediction models, such as
in tropical areas dominated by dense vegetation.

We provide an example of the sensitivity of our models
across tropical areas with low availability of data for train-
ing the models as described in Sect. 2.3. For tropical areas of
the world with limited information in the ESA-CCI datasets,
the cross-validated results of the model predictions showed
r values around 0.62 and RMSE values around 0.03 m3 m−3

using terrain parameters and soil type classes (Fig. A3). We
find that the model predictions based only on the limited
ESA-CCI soil moisture information available across tropi-
cal areas (Fig. A3) show a similar prediction variance to
the model predictions for the entire world, with values from
< 0.001 to < 0.12 m3 m−3 (Fig. A3). These result support the
effectiveness of our approach across areas with lower avail-
ability of information to train the k-KNN algorithm.

We additionally assess the sensitivity of the model pre-
dictions across areas of the world with heterogeneous en-
vironmental and climate gradients (i.e., geographical extent
of countries such as Mexico, Canada, and Australia), gen-
erated as described in Sect. 2.3. The ESA-CCI has rela-
tively better spatial coverage across these countries (Fig. 5)
compared with tropical areas (Fig. A3) but still has a lower
amount of training data compared with models generated for
the entire world. Comparing our soil moisture predictions
across 15 km grids with the original ESA-CCI soil moisture
dataset at 27 km grids (Fig. 8) for these areas, we observe that
our soil moisture predictions have consistently higher maxi-
mum values (> 0.04 m3 m−3) than the original ESA-CCI soil
moisture dataset (< 0.4 m3 m−3) (Fig. 5). We observe consis-
tent modeling accuracy across these countries and across the
entire world (in all cases r values > 0.6 and RMSE values
around 0.04 m3 m−3).

The last two sets of results for tropical areas with low
availability of data and areas of the world with heteroge-
neous environmental and climate gradients support the ef-
fectiveness of our approach across areas exhibiting unfea-
sible data collection and heterogeneous data characteristics,
respectively. The flexibility of our prediction models to gen-
erate consistent results on a country-specific basis could be
supported by the use of country-specific information (e.g., to-
pographic, bioclimatic, and soil information) to predict soil
moisture with higher spatial resolution (< 15 km grids) in fu-
ture research.

3.3 Relevance of the different prediction factors

Across the entire world, we assess the relevance of the dif-
ferent prediction factors defined in Sect. 2.1 (i.e., prediction
factors from terrain parameters, bioclimatic features, and soil
type classes) by rebuilding the prediction models using the
k-KNN algorithm and removing one prediction factor at a
time. By systematically removing one prediction factor at
a time and using repeated 10-fold cross-validation (n= 10),
we can measure the prediction factor impact on the accuracy
of each model generated for each year using the k-KNN algo-
rithm (Fig. 6). To this end, we compare the cross-validation
results (r and RMSE values) of each new model against a
reference model that we build by using all prediction fac-
tors. Each soil moisture prediction using all prediction fac-
tors for each year is accompanied by a reference accuracy
report containing the cross-validation results (see Sect. 5).
We sort the relevance of prediction factors based on the im-
pact of their absence on the cross-validation results (r and
RMSE values), compared with the reference models (using
all prediction factors) across each year. Specifically, for each
year (1991–2018) and for each factor that is removed at the
time (42 factors), we repeat the cross-validation 10 times as
explained in Sect. 2.2 and compute the mean accuracy. For
each factor, we count the number of times when the absence
of that factor causes a higher r and a lower RMSE compared
with the mean accuracy of the reference model generated for
each of the 28 years. Across the years we count the number
of positive and negative impacts and show the proportion of
times (or impact rate) when the absence of each prediction
factor results in a higher accuracy (i.e., higher r and lower
RMSE) versus the proportion of times when the absence re-
sults in a lower accuracy (i.e., lower r and higher RMSE)
(Fig. 6).

We sort the relevance of prediction factors based on the
impact of their absence on the cross-validation results (r and
RMSE values), compared with the reference models (using
all prediction factors) across each year: for r (Fig. 6a) a neg-
ative impact rate of a factor means that the model tends to
improve in accuracy (in terms of higher r) when including
that factor, and vice versa a positive impact means that the
correlation increased when the factor is removed. In contrast,
for RMSE (Fig. 6b) a positive impact means that the model
tends to improve accuracy (in terms of lower RMSE) when
including that factor, and vice versa a negative impact means
that the error decreased when the factor is removed.

We observe that spatial coordinates in rotated angles rang-
ing between 17 and 83◦ (Fig. A2) are coordinates with a pos-
itive impact on r and RMSE results across years (Fig. 6).
Considering each year in isolation, we observe that values
for r and RMSE are consistent across individual years. In
Fig. 7 we present the values for r and RMSE for 2018 as a
representative case. In 2018, we observe that spatial coordi-
nates rotated in an oblique angle between 33 and 50◦ (vari-
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Figure 4. Soil moisture mean (a) and variance (b) of the ESA-CCI soil moisture product v4.5 between 1991 and 2018. Prediction of soil
moisture (c) and prediction variance (5000× 5, d) based on topographic terrain parameters. Prediction of soil moisture (e) and prediction
variance (f) based on bioclimatic and soil type classes. Units: m3 m−3.

Figure 5. Examples of downscaled annual mean soil moisture across specific countries. Prediction of soil moisture, prediction variance,
and training data from the ESA-CCI across Canada (CAN; a–c), and their respective boxplots (showing their statistical distribution) for the
year 2018 (d). Prediction of soil moisture, prediction variance, and training data from the ESA-CCI across Australia (AUS; e–g), and their
respective boxplots for the year 2018 (h). Prediction of soil moisture, prediction variance, and training data from the ESA-CCI across Mexico
(MEX; i–k), and their respective boxplots for the year 2018 (l).
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Figure 6. Impact of each factor on (a) r and (b) RMSE values across years (1991–2018). The factors with code pi0.00, pi0.17, pi0.33,
pi0.50, pi0.67, and pi0.83 are the spatial coordinates rotated at multiple angles shown in Fig. A2. The rest of the factors are the digital terrain
parameters used to predict the ESA-CCI annual means as they are shown in Fig. 3 and described by Guevara and Vargas (2019): aspect:
terrain aspect; carea: specific catchment area; chnl base: channel network base level; chnl dist: distance to channel network; convergence: flow
convergence index; hcurv: horizontal curvature; land: digital elevation model; lsfactor: length–slope factor; rsp: relative slope position; shade:
analytical hillshade; sinks: smoothed elevation; slope: terrain slope; vall depth: valley depth index; vcurv: vertical curvature; and wetness:
topographic wetness index. The bioclimatic features in (a) tropical, (b) subtropical, (c) temperate, or (e) boreal environments are represented
by binomial variables (0–1). These variables are extracted by the Food and Agriculture Organization Global Agro-Ecological Zones project.
The available water storage capacity variable is represented by continuous classes available thanks to the Regridded Harmonized World Soil
Database.

ables pi0.33 and pi0.50, Fig. A2) have a high impact on r or
RMSE values (Fig. 7a).

Across all years, we find bioclimatic features have a higher
impact on r or RMSE values, followed by terrain param-
eters and soil classes (Fig. 6), which supports further find-
ings in our validation against in situ soil moisture data con-
tained in the augmented ISMN (in Sect. 3.4). We find that
the use of spatial coordinates has a similar impact on r and
RMSE values compared with terrain parameters or soil type
classes (Fig. 6). We observe a slightly higher (but statistically
similar) impact of bioclimatic features in cross-validation
results compared with terrain parameters (Fig. 6). Biocli-
matic features indicating presence or absence (0 or 1 bino-
mial variable, respectively) of tropical, subtropical, or tem-
perate desert (biological and climatological) conditions are
variables with a high impact on the cross-validation of pre-
diction models. The distance between the base of drainage
network channels and the closest highest point in the ground
(before elevation decreases again) (code in Fig. 6: chnl_base)
or the distance of each pixel to the closest drainage net-
work channel (code in Fig. 6: chnl_dist) are elevation-derived
(code in Fig. 6: land) terrain parameters with a high impact
on r and RMSE across all years. We observe for our example
with the year 2018 that terrain parameters such as chnl_base
and chnl_dist have a higher impact on r and RMSE values
consistently with our analysis across all years (1991–2018).

Bioclimatic features indicating the presence or absence (0
or 1 binomial variable, respectively) of temperate steppe cli-
mate conditions or the presence or absence of tropical shrub-
land climate conditions become top prediction factors for soil
moisture in this specific year (2018, Fig. 7). The impact of
terrain parameters has a different impact for predicting soil
moisture variability depending on the average amount of wa-
ter reaching the soil (via precipitation and runoff or over-
land flow) for each year, which is a process highly dependent
on bioclimatic conditions. Thus, we can expect to observe
variations in the impact of parameters to predict soil mois-
ture across specific years (e.g., in extremely dry versus ex-
tremely wet years). We provide a variable importance plot
for each year associated with each soil moisture prediction
(see Sect. 5).

3.4 Soil moisture trained for region for which augmented
ISMN datasets exist

To compare soil moisture values between our predictions and
the augmented ISMN, we follow two main steps. First, we
assess the r and RMSE values between the ESA-CCI dataset
and our soil moisture predictions against in situ soil moisture
using the augmented ISMN. Second, we report changes of
soil moisture over time using the augmented ISMN, the ESA-
CCI, and our soil moisture predictions.
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Figure 7. Impact of each factor on the (a) r and (b) RMSE values for the year 2018. The factors named pi0.00, pi0.17, pi0.33, pi0.50,
pi0.67, and pi0.83 are the spatial coordinates at multiple angles shown in Fig. A2. The digital terrain parameters are shown in Fig. 3 and
described by Guevara and Vargas (2019): aspect: terrain aspect; carea: specific catchment area; chnl base: channel network base level; chnl
dist: distance to channel network; convergence: flow convergence index; hcurv: horizontal curvature; land: digital elevation model; lsfactor:
length–slope factor; rsp: relative slope position; shade: analytical hillshade; sinks: smoothed elevation; slope: terrain slope; vall depth:
valley depth index; vcurv: vertical curvature; and wetness: topographic wetness index. The bioclimatic features divided into (a) tropical,
(b) subtropical, (c) temperate, or (d) boreal environments are represented by binomial variables (0–1). These variables are extracted by the
Food and Agriculture Organization Global Agro-Ecological Zones project. The available water storage capacity variable is represented by
continuous classes available thanks to the Regridded Harmonized World Soil Database.

Comparing the correlation between in situ and gridded
soil moisture datasets, we observe that the correlation of the
ESA-CCI (v4.5) with the augmented ISMN across the world
is lower compared to the correlation between soil moisture
predictions based on digital terrain analysis with the ISMN
or soil moisture predictions adding bioclimatic and soil type
classes (Fig. 8).

When all available data across all soil depths per site in the
augmented ISMN are considered (n= 2185 stations), the r

values show a mean of 0.50 between the ISMN and the ESA-
CCI, the predictions based on digital terrain parameters show
an r value of 0.56, and the predictions including bioclimatic
and soil type classes show an r value of 0.65. Similar levels
of RMSE against the ISMN are found with the models using
bioclimatic and soil type classes (∼ 0.05 m3 m−3) or mod-
els using only terrain parameters (∼ 0.05 m3 m−3). When
comparing the ISMN and the ESA-CCI, we observe a mean
RMSE of 0.09 m3 m−3. Confirming these results, by restrict-
ing our validation strategy only to the sites with available in-
formation for the first 0–5 cm of soil depth (n= 987 stations),
we observe correlation values varying from 0.46 for the ESA-
CCI (RMSE=∼ 0.05 m3 m−3) to 0.86 using topographic
prediction factors (RMSE=∼ 0.03 m3 m−3) and 0.74 using
bioclimatic and soil type classes (RMSE=∼ 0.05 m3 m−3)
as is shown in Fig. 8a–f. The target diagram presented in
Appendix A, Fig. A4, is also useful for visualizing the im-

provement of our approach over the original ESA-CCI soil
moisture dataset.

Across all analyzed years, our global soil moisture pre-
dictions represent an improvement as they reduce bias when
compared with the ISMN data and in situ precipitation
records. The variance around the prediction error (e.g., the
unbiased RMSE) estimated against the augmented ISMN
was also lower in our predictions compared with the ESA-
CCI soil moisture dataset (Appendix A, Fig. A4).

We confirm the effectiveness of the k-KNN algorithm for
modeling and predicting soil moisture considering changes
in soil moisture levels over time (soil moisture trends, Ta-
ble 1). There is a consistent soil moisture decline over time
across all soil moisture datasets (i.e., the augmented ISMN
and the ESA-CCI datasets; the soil moisture predictions
based on digital terrain analysis; and the predictions using
digital terrain analysis, bioclimatic, and soil type classes;
Table 1) at the specific locations of the augmented ISMN
dataset (Fig. 1). Supporting the effectiveness of the model
predictions, all datasets (observed and modeled soil mois-
ture) show negative soil moisture trends at locations where
all datasets exist (Table 1).
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Figure 8. Model evaluation plots (points vs. grids) of mean annual values of soil moisture across the world. ISMN against the ESA-CCI (a),
ISMN against the predictions based on terrain analysis (b), and ISMN against the predictions based on the model using bioclimatic and soil
type classes (c) for the sites with available information between 0–5 cm (n= 987 stations). We also show the correlation between the ESA-
CCI (d) and our predictions based on terrain parameters (e) or bioclimatic and soil type classes (f) using all available data in the ISMN across
all soil depths (n= 2185 stations). The panels below show the correlation between soil moisture grids and in situ mean annual precipitation
records and in situ precipitation against the ESA-CCI (g), in situ precipitation against predictions based on terrain analysis (h), and in situ
precipitation against predictions based on the model using bioclimatic and soil type classes (i).

3.5 Soil moisture trained for region with limited ISMN
dataset availability

To compare soil moisture values across the entire world, we
follow two main steps. First, we assess soil moisture trends
across areas with no available data in the augmented ISMN
using in situ precipitation data (Fig. 1, blue). Second, we as-
sess changes over time across the areas with available data in
the ESA-CCI dataset. Third, we assess changes of soil mois-
ture across the world using our soil moisture predictions.

Comparing the correlation of the ESA-CCI and our soil
moisture predictions, we observe that our predictions are bet-
ter correlated with in situ precipitation records across areas
with no available data in the augmented ISMN (Fig. 8g–i).
Aggregated in yearly means, we observe a correlation be-
tween precipitation data and the ESA-CCI of 0.63, a correla-
tion of 0.86 between precipitation data and the soil moisture

predictions based on terrain parameters, and a correlation of
0.75 between precipitation data and the soil moisture pre-
dictions based on bioclimatic and soil type classes. These
results support the model predictions across areas with low
availability of in situ soil moisture validation data.

When analyzing changes of soil moisture over time us-
ing the ESA-CCI dataset across the entire world (when avail-
able), we observe significant soil moisture increase (positive
trend) over time across ∼ 70 000 km2 of the global land area
(> 500 million km2) using a probability threshold of 0.05
with available data from 1991 and 2018. We also observe
a significant decline (negative trend) of soil moisture across
43 740 km2 of global land area (Fig. 9a–b). In contrast, across
the entire world, soil moisture based on terrain parameters
shows > 60 million km2 of global land area with negative
trends and 274 147 km2 with positive trends (Fig. 9c–d).
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Figure 9. Trends of the ESA-CCI annual means (a) and their respective probability values (b). Trends of the soil moisture predictions based
on digital terrain parameters (c) and their respective probability values (d). Trends of soil moisture predictions using terrain parameters,
bioclimatic features, and soil type features (e) and their respective probability values (f).

Table 1. The slope and slope uncertainties of soil moisture trends at
the locations where all datasets exist. We show the dataset, the slope
(%), and the lower and upper confidence interval (CI). We report
negative trends considering all available data across all soil depths
(n= 2185 stations) and across sites with information available only
between 0–5 cm of soil depth (n= 987 stations).

Slope Soil
Dataset (%) CI 1 % CI 99 % depth

ESA-CCI v4.5 −0.4 −0.69 −0.01 All
Topography −0.58 −0.92 −0.17 All
Bioclimatic and soil −0.68 −0.91 −0.45 All
Augmented ISMN −1.7 −1.9 −1.4 All
ESA-CCI v4.5 −0.92 −1.07 −0.74 0–5 cm
Topography −1.49 −1.58 −1.46 0–5 cm
Bioclimatic and soil −1.47 −1.6 −1.3 0–5 cm
Augmented ISMN −2.28 −2.4 −2.1 0–5 cm

The soil moisture predictions based on terrain parameters
and bioclimatic and soil type features show significant nega-
tive trends (probability threshold < 0.05) across 216 246 km2

and positive trends across 85 991 km2 (Fig. 9e–f) of global
land area. Discrepancies between the ESA-CCI and our
downscaled datasets are in part because our results predict
soil moisture decline across areas with large gaps in the ESA-
CCI, such as tropical areas. For example, with our soil mois-
ture predictions we observe emergent negative trends of soil
moisture across tropical rain forests of the Amazon Basin and
the Congo region.

4 Discussion

We present a regression approach coupling k-KNN and
digital terrain analysis for improving the spatial resolution
(i.e., improving spatial granularity) of ESA-CCI satellite soil
moisture estimates by nearly 50 % and providing a gap-free
global annual mean soil moisture dataset (with associated
prediction variances) for the years 1991–2018. In this sec-
tion we interpret and describe the significance of the new
soil moisture datasets (based on terrain continuous param-
eters, soil and climate classes) in light of what was already
known thanks to state-of-the-art satellite soil moisture (e.g.,
from the ESA-CCI) about the research problem of accuracy,
coarse granularity, and spatial gaps of soil moisture informa-
tion at the global scale (i.e., incomplete global coverage).

We outline the key findings and insights organized in terms
of their impact. First, we highlight the main improvements of
the new soil moisture dataset over the ESA-CCI soil mois-
ture product. Second, we discuss the role of terrain parame-
ters in the accuracy of the newly generated dataset. Third,
we discuss emergent soil moisture trends before and after
taking our new datasets into consideration. Fourth, we dis-
cuss potential sources of variance and discrepancy between
soil moisture datasets (e.g., augmented ISMN, ESA-CCI, our
predictions). Fifth, we provide information about the main
limitations of the new dataset. Sixth, we discuss opportuni-
ties for future work.

We highlight the main improvements of the new soil mois-
ture dataset over the ESA-CCI soil moisture product. Our
predictions of soil moisture against the ESA-CCI soil mois-
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ture product show an improvement in the reduction of bias
when compared with in situ soil moisture datasets (i.e., with
the ISMN; Fig. 8 and Appendix A, Fig. A4). Improving
the accuracy and spatial resolution of satellite-derived soil
moisture is an ongoing challenge that requires different ap-
proaches. For example, recent soil moisture remote sensing
datasets (Entekhabi et al., 2010; Piles et al., 2019) are able
to provide information across areas with spatial gaps in the
ESA-CCI; however, only recent years have full soil mois-
ture coverage (e.g., 2010 to date). Our results represent a
long-term (1991–2018) and gap-free soil moisture dataset
and represent a response to the need of alternative global-to-
regional soil moisture datasets (An et al., 2016; Colliander
et al., 2017b; Dorigo et al., 2011b; Minet et al., 2012; Mo-
hanty et al., 2017; Yee et al., 2016). This dataset has implica-
tions for further analyses on soil moisture patterns (Berg and
Sheffield, 2018), global hydrological models (Zhuo and Han,
2016), climate change predictions (Samaniego et al., 2018),
carbon cycling models (Green et al., 2019), and food security
assessments (Mishra et al., 2019).

We now discuss the role of terrain parameters in the pre-
diction accuracy of the newly generated dataset. We have
demonstrated the role of topographic terrain parameters
as a parsimonious and effective approach for downscaling
satellite-derived soil moisture in terms of r (Fig. 6) or RMSE
(Fig. 7). Terrain parameters are available nowadays with un-
precedented levels of spatial resolution (i.e., meters), and our
approach is potentially applicable to specific areas or coun-
tries (Fig. 5) and higher spatial resolution (Guevara and Var-
gas, 2019). Our results support the value of terrain param-
eters as the basis for downscaling soil moisture satellite es-
timates in future research across specific areas or periods of
time. The exclusive use of terrain parameters in our algorithm
implementation (Sect. 2.2) can help to reduce model com-
plexity and computational expenses of more complex mod-
els using an extensive set of prediction factors for represent-
ing soil variability (e.g., Hengl et al., 2017). A soil mois-
ture dataset independent of bioclimatic and soil information
is useful for preventing potential spurious correlations in fur-
ther studies. This is specifically important for studies deal-
ing with the problem of interpreting machine learning frame-
works or better understanding the use of data by the algo-
rithms to generate accurate model predictions (Padarian et
al., 2020; Ribeiro et al., 2016). On the other hand, predicting
soil moisture considering tacit knowledge (i.e., expert opin-
ion) on variable selection (e.g., manually combining multi-
ple combinations of prediction factors and discussing with
experts the resulting maps) may also be useful to comple-
ment the assessment of model accuracy and to develop in-
terpretable and parsimonious models for global soil mois-
ture mapping. Our results suggest that a parsimonious model
based on topography shows comparable accuracy to a more
complex model including bioclimatic and soil type classes
(Figs. 6–8, Appendix A, Fig. A4) and similar negative trends
(Table 1). Although ML approaches generally benefit from

using multiple prediction factors to represent patterns, we
advocate for simpler models. The parsimonious approach
(based on topography) does not necessarily reduce predic-
tion capacity when compared with a more complex model
adding bioclimatic and soil type classes, and both datasets
show a similar trend of soil moisture levels over time.

Our trend detection analysis reveals changes of soil mois-
ture over time at the global scale, across areas with lim-
ited information in the ESA-CCI dataset or areas where the
augmented ISMN does not exist. We observe consistent soil
moisture decline at the global scale using both the soil mois-
ture predictions based on topography and the predictions
based on topography, bioclimatic features, and soil classes.
The soil moisture trend of the augmented ISMN dataset was
also negative (Table 1). These soil moisture trends have po-
tential implications for the calibration of future projections
of the water cycle, for identifying regions of strong land–
atmosphere coupling (Lorenz et al., 2015), and for quantify-
ing the contribution of soil moisture for land surface models
(Singh et al., 2015). The negative soil moisture trends found
in this study (Fig. 9) are consistent with recent soil moisture
monitoring efforts (Albergel et al., 2013; Gu et al., 2019a).
It has been shown that soil moisture decline can be inten-
sified by land warming (Samaniego et al., 2018), land use
change (Chen et al., 2016; Garg et al., 2019), agricultural
practices (Bradford et al., 2017), or transformations to vege-
tation cover that directly affect primary productivity, evapo-
transpiration rates, and drought (Stocker et al, 2019; Martens
et al., 2018). Furthermore, contiguous information on soil
moisture trends is increasingly needed to quantify the con-
sequences of soil moisture decline in ecosystem processes
such as soil respiration (Bond-Lamberty et al., 2018). Our
results complement the ESA-CCI soil moisture dataset as
they identify soil moisture decline across the Congo region
or the Amazon Basin (Fig. 9). These results are consistent
with previous studies that have identified soil moisture de-
cline across the Congo region associated with reduction of
precipitation rates (Nogherotto et al., 2013) and across the
Amazon Basin, where climate signals in plant productivity
could be due to changes in soil moisture conditions (Wag-
ner et al., 2017). Further studies are needed to fully interpret
the influence of surface or deeper soil moisture on ecologi-
cal processes (Morton et al., 2014), but we argue that surface
soil moisture trends are critical to identify potentially vulner-
able regions across the world. Our examples of surface soil
moisture predictions across tropical areas (using the avail-
able ESA-CCI information) or across specific countries with
heterogeneous environmental gradients (e.g., Fig. 5) are con-
sistent in terms of prediction accuracy, suggesting that our
approach is applicable to any country or region in the world,
including areas with limited information with which to feed
prediction algorithms.

Limitations of our approach include (a) the propagation of
measurement errors of the ESA-CCI dataset used to train the
k-KNN algorithm, (b) the propagation of measurement er-
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rors (and quality) of the digital elevation dataset used for cal-
culating terrain parameters, and (c) the prediction errors of
the k-KNN algorithm (e.g., random errors, systematic errors,
spatially autocorrelated errors). It is known that satellite-
derived soil moisture estimates fail to measure extremely dry
or extremely wet conditions (McColl et al., 2017; Liu et al.,
2019); consequently, this lack of information influences the
prediction capacity of our downscaling framework, and there
is a need to improve modeling and measurements of these
extremes. In addition, the quality of the prediction factors
impacts the quality of final prediction outcomes. Thus, the
prediction algorithm is not able, in any case, to generate a
perfect model. Therefore, it is important to provide predic-
tion variances around soil moisture predictions that are use-
ful for identifying areas with high or low model consistency
(Fig. 4). The variance associated with soil moisture predic-
tions provides novel information with which to assess the
strength of the relationship between the covariate space (e.g.,
terrain parameters, bioclimatic and/or soil type features) and
predicted soil moisture. Consequently, large prediction vari-
ances (Fig. A3) remain across areas less represented in both
field measurements (Fig. 1) and across extremely dry or ex-
tremely wet conditions affecting the spatial representation of
satellite soil moisture datasets (Fig. 4a). Our prediction vari-
ances also provide insights for future research efforts where
alternative techniques are needed to provide information to
better constrain model predictions and to reduce prediction
variances.

We discuss potential sources of prediction variance be-
tween soil moisture predictions and datasets. Prediction vari-
ances are indicators of discrepancy levels between soil mois-
ture datasets (augmented ISMN, ESA-CCI, our predictions).
Discrepancy between the augmented ISMN and satellite-
derived soil moisture or our downscaled datasets can be as-
sociated with differences in the spatial representativeness of
point measurements and grid surfaces (Gruber et al., 2020).
This scale mismatch has been previously identified when
testing different soil moisture patterns (Nicolai-Shaw et al.,
2015) as field soil moisture records are usually representa-
tive of < 1 m3 of soil, while satellite and modeling estimates
vary from several meters to multiple kilometers. Soil mois-
ture measurements (from satellites and in situ measurements)
across both water-limited environments and tropical areas
are extremely limited (Liu et al., 2019), a condition that in-
creases prediction variances (and consequently also increases
model uncertainty). Thus, alternative modeling and evalua-
tion frameworks and model evaluation statistics are required
to provide more information to better interpret the spatial
variability and dynamics of soil moisture global estimates
(Gruber et al., 2020). To this end, we used in situ annual
precipitation as a proxy to evaluate soil moisture estimates
and found that our predicted soil moisture was better corre-
lated than the original ESA-CCI dataset. This higher corre-
lation may be useful for further analyses and evaluations, in-
cluding soil moisture and precipitation feedbacks (McColl et

al., 2017), as precipitation decline has been associated with
soil moisture decline in previous studies (Nogherotto et al.,
2013).

Future work should include predicting global soil mois-
ture patterns across finer pixel sizes (e.g., 1 km or < 1 km)
and higher temporal resolutions (e.g., monthly or daily), as
has been done at regional to continental scales (Naz et al.,
2020; Llamas et al., 2020; Guevara and Vargas, 2019). The
current version of the downscaled soil moisture predictions
is provided on an annual basis because it is a temporal reso-
lution useful for multiple ecological and hydrological stud-
ies related to large-scale ecological processes and climate
change (Green et al., 2019). We recognize that there is an in-
creasing need for soil moisture datasets with higher temporal
resolutions to analyze the seasonal and short-term memory
soil moisture effects after precipitation events (McColl et al.,
2017). A spatial resolution of 15 km is still a coarse pixel size
for detailed analysis of hydro-ecological patterns (e.g., at the
hillslope scale), but the main focus of this study was to test
the potential of digital terrain analysis for increasing the spa-
tial resolution of the original ESA-CCI soil moisture dataset.
Our decision for selecting a 15 km pixel size was driven
by the reproducibility of our approach by multiple groups
without the need for high-performance computing (HPC) in-
frastructure. HPC is increasingly required for modeling soil
moisture patterns with unprecedented levels of spatial reso-
lution across continental scales (e.g., 3 km grids, RMSE of
0.04 to 0.06 m3 m−3; Naz et al., 2020) that show comparable
accuracy to our 15 km grids (Fig. 8a–c). Additionally, the in-
crease of nearly 50 % in spatial resolution suggests a larger
range of predicted soil moisture values compared with the
ESA-CCI, possibly associated with scale-dependent patterns
of soil moisture (Fig. 5), which can be analyzed in future
work.

In conclusion, to downscale (i.e., increase spatial resolu-
tion) coarse satellite soil moisture grids, we used k-KNN
to combine satellite soil moisture data with terrain parame-
ters (as surrogates of topographic variability) and bioclimatic
and soil type classes. The validation of our soil moisture
model predictions against multiple field data sources (Fig. 1)
and multiple combinations of prediction factors supports the
notion that digital terrain analysis can be used as a parsi-
monious approach for improving the spatial resolution of
the ESA-CCI soil moisture dataset (Appendix A, Fig. A4).
We provide a new gap-free and annual soil moisture dataset
for 28 years provided across 15 km grids on an annual ba-
sis (1991–2018). Our results provide a global soil moisture
benchmark to address the increasing need for soil moisture
datasets with higher temporal and spatial resolution at the
global scale.
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5 Data availability

We provide a publicly available soil moisture dataset includ-
ing working codes and information useful for replicating our
results. We follow global validation standards for modeled
soil moisture estimates (Gruber et al., 2020). We also provide
the prediction variance maps derived from bootstrapping the
results of each modeled year (as surrogates of prediction un-
certainty) and user guidance for interpreting and reproducing
our results. The sources of information required to develop
this study are as follows:

– The soil moisture training dataset used in this study
is available thanks to the ESA-CCI (https://www.
esa-soilmoisture-cci.org/, last access: 20 April 2021,
Dorigo et al., 2017; Liu et al., 2011)

– The soil moisture validation dataset used in this study is
available thanks to the ISMN (https://ismn.geo.tuwien.
ac.at/en/, last access: 20 April 2021, Dorigo et al.,
2011a)

– The downscaled soil moisture predictions gen-
erated in this study are available in Gue-
vara et al. (2020, https://doi.org/10.4211/hs.
9f981ae4e68b4f529cdd7a5c9013e27e)

– The soil moisture predictions are provided in rasters
(n= 28 per folder, 1991–2018) that can be im-
ported into any GIS, and they contain an ac-
curacy report from the cross-validation for each
model/year in a *.csv file.

– We include a raster stack with 28 layers containing
the prediction variances for each model year (1991–
2018) derived from bootstrapping the k-KNN mod-
els.

– The prediction factors for soil moisture across
15 km grids are also available in an R spatial pixel
data frame, containing values for each pixel of

a. terrain parameters calculated in SAGA-
GIS http://www.saga-gis.org/ (last access:
20 April 2021),

b. bioclimatic classes from http://www.fao.org/nr/
gaez/en/ (last access: 20 April 2021) trans-
formed into a binary presence or absence (1 or
0, respectively) code and

c. the continuous classes (1: 150 mm water per
m of the soil unit; 2: 125 mm; 3: 100 mm; 4:
75 mm; 5: 50 mm; 6: 15 mm; and 7: 0 mm)
from the Regridded Harmonized World Soil
Database v1.2 (available here: https://daac.
ornl.gov/SOILS/guides/HWSD.html, last ac-
cess: 20 April 2021, Wieder et al., 2014).

– In the same data repository, we provide the ISMN
(downloaded in August of 2019) annual dataset that

we used for validating (Fig. 1, green) our soil mois-
ture predictions in a native R spatial object.

• Figure A5 of this dataset includes a summary
of soil moisture values per contributing net-
work in the ISMN. All contributing networks
can be found at https://ismn.geo.tuwien.ac.at/
en/networks/ (last access: 20 April 2021) thanks
to the ISMN initiative.

– The precipitation dataset used as alternative valida-
tion data (Fig. 1, blue) is available here: https://
daac.ornl.gov/SOILS/guides/SRDB_V4.html (last ac-
cess: 20 April 2021, Bond-Lamberty,and Thomson,
2018).

– Additional soil moisture data from local studies
(Fig. 1, red) across tropical areas are available here:
https://iopscience.iop.org/article/10.1088/1748-9326/7/
3/035704 (last access: 20 April 2021, Vargas, 2012) and
https://daac.ornl.gov/LBA/guides/CD32_Brazil_Flux_
Network.html (last access: 20 April 2021, Saleska et
al., 2013).

– The R code used (a) to develop our soil moisture
modeling and validation approach and (b) to generate
the base figures in this paper is available here: https:
//github.com/vargaslab/Global_Soil_Moisture (last ac-
cess: 20 April 2021).

As this paper is the result of an active line of research, we
will continue updating our soil moisture predictions and our
results as new input data (ESA-CCI future versions) become
available. The current version covers the period of time be-
tween 1991 and 2018, and it is based on the ESA-CCI version
4.5.
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Appendix A

A1 Data gaps per year during research period

Figure A1. Number of data gaps or not available values (NAs) ×
100 in the ESA-CCI v4.5 across years during the analyzed period.
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A2 Maps of spatial coordinates

We present the maps of the spatial coordinates used in our
prediction approach. We developed these maps following the
recently proposed method by Møller et al. (2020). In this
method, latitude and longitude across the area of interest
(e.g., the entire world) are rotated along several (e.g., n= 6)
axes tilted at oblique angles (Fig. A1) and used as prediction
factors for soil attributes (e.g., soil moisture).

Figure A2. The variables pi0.00 (a), pi0.17 (b), pi0.33 (c), pi0.50 (d), pi0.67 (e), and pi0.83 (f) are spatial coordinates of the global 15 km
grids tilted at multiple angles (n= 6) used as ancillary information in order to explicitly account for the spatial structure of available soil
moisture values in the geographical space.
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A3 Data availability in the ESA-CCI soil moisture

We present the availability of data in the ESA-CCI soil mois-
ture data for a given year (e.g., 2018) across tropical areas
of the world (Fig. A2a). Using this limited information only
(the ESA-CCI data across the tropics), we improve the spa-
tial representativeness of satellite soil moisture data follow-
ing our prediction approach (Fig. A2b). Our approach con-
siders the model prediction variance after n model realiza-
tions (Fig. A2c).

Figure A3. Soil moisture across tropical rain forests of the world
based on the data available in the ESA-CCI soil moisture product
(4.5) for the year 2018 (a). We show the soil moisture prediction (b)
and the soil moisture prediction variance using only the data avail-
able for tropical rain forests (c). Note that the correlation between
observed and predicted decreased to 0.62, most likely due to the
limited information for modeling these ecosystems; however the
root mean squared error is comparable with a model using all global
data (e.g., < 0.04).

A4 Summary of soil moisture validation

We present a summary of our validation of soil moisture pre-
dictions in the form of a target diagram (Fig. A3). A target
diagram is derived from the relation between the unbiased
RMSE, MBE (mean bias error), and RMSE. In a Cartesian
coordinate system, the x axis represents the unbiased RMSE
(variance of the error), and the y axis represents the MBE.
Therefore, the distance from any point to the origin is equal
to the RMSE. Because the unbiased RMSE is always posi-
tive, the left area of the coordinate system is empty with this
scheme. With additional information this region may be also
used: the unbiased RMSE is multiplied by the sign of the
difference between the standard deviations of model and ob-
servations. The diagram provides three different measures:
whether the model overestimates or underestimates (positive
or negative values of the MBE on the y axis, respectively),
whether the model standard deviation is larger or smaller
than the standard deviation of the measurements (positive or
negative values on the x axis, respectively), and the error per-
formance as quantified by the RMSE represented as the dis-
tance to the coordinates origin (see Jolliff et al., 2009).

Figure A4. Target diagram showing the performance of our soil
moisture predictions. The x axis represents the unbiased RMSE
(variance units of the error), and the y axis represents the MBE.
This figure shows that our soil moisture predictions using terrain pa-
rameters (esa_cci_terrain) and the predictions using terrain parame-
ters and bioclimatic and soil type classes (esa_cci_terrain_bio_soil)
show lower error levels when compared with field data (from the
ISMN) than the ESA-CCI soil moisture product (esa_cci).
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A5 Summary of soil moisture values

We present a summary of soil moisture values per contribut-
ing network in the ISMN.

Figure A5. A list of contributing networks across the analyzed period of time (organized into three main periods to simplify the figure) and
soil moisture values used to compare the ESA-CCI v4.5 and our soil moisture predictions. General information of each network can be found
at https://ismn.geo.tuwien.ac.at/en/networks/ (last access: 20 April 2021) thanks to the ISMN initiative.
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