Articles | Volume 17, issue 7
https://doi.org/10.5194/essd-17-3315-2025
https://doi.org/10.5194/essd-17-3315-2025
Data description paper
 | 
10 Jul 2025
Data description paper |  | 10 Jul 2025

Integrating point sources to map anthropogenic atmospheric mercury emissions in China, 1978–2021

Yuying Cui, Qingru Wu, Shuxiao Wang, Kaiyun Liu, Shengyue Li, Zhezhe Shi, Daiwei Ouyang, Zhongyan Li, Qinqin Chen, Changwei Lü, Fei Xie, Yi Tang, Yan Wang, and Jiming Hao

Related authors

The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Tracking County-level Cooking Emissions and Their Drivers in China from 1990 to 2021 by Ensemble Machine Learning
Zeqi Li, Bin Zhao, Shengyue Li, Zhezhe Shi, Dejia Yin, Qingru Wu, Fenfen Zhang, Xiao Yun, Guanghan Huang, Yun Zhu, and Shuxiao Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-104,https://doi.org/10.5194/essd-2025-104, 2025
Revised manuscript accepted for ESSD
Short summary
Estimating the variability in NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
Atmos. Chem. Phys., 25, 3313–3326, https://doi.org/10.5194/acp-25-3313-2025,https://doi.org/10.5194/acp-25-3313-2025, 2025
Short summary
Accounting for the black carbon aging process in a two-way coupled meteorology–air quality model
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025,https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025,https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Energy and Emissions
Residential heating emissions for the Western Balkans
Christian Asker, Eef van Dongen, and Olivier Tasse
Earth Syst. Sci. Data, 17, 3283–3292, https://doi.org/10.5194/essd-17-3283-2025,https://doi.org/10.5194/essd-17-3283-2025, 2025
Short summary
Four-dimensional aircraft emission inventory dataset of the landing-and-takeoff cycle in China (2019–2023)
Jianlei Lang, Zekang Yang, Ying Zhou, Chaoyu Wen, and Xiaoqing Cheng
Earth Syst. Sci. Data, 17, 2489–2506, https://doi.org/10.5194/essd-17-2489-2025,https://doi.org/10.5194/essd-17-2489-2025, 2025
Short summary
A daily sunshine duration (SD) dataset in China from Himawari AHI imagery (2016–2023)
Zhanhao Zhang, Shibo Fang, and Jiahao Han
Earth Syst. Sci. Data, 17, 1427–1439, https://doi.org/10.5194/essd-17-1427-2025,https://doi.org/10.5194/essd-17-1427-2025, 2025
Short summary
Tracking County-level Cooking Emissions and Their Drivers in China from 1990 to 2021 by Ensemble Machine Learning
Zeqi Li, Bin Zhao, Shengyue Li, Zhezhe Shi, Dejia Yin, Qingru Wu, Fenfen Zhang, Xiao Yun, Guanghan Huang, Yun Zhu, and Shuxiao Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-104,https://doi.org/10.5194/essd-2025-104, 2025
Revised manuscript accepted for ESSD
Short summary
The global daily High Spatial–Temporal Coverage Merged tropospheric NO2 dataset (HSTCM-NO2) from 2007 to 2022 based on OMI and GOME-2
Kai Qin, Hongrui Gao, Xuancen Liu, Qin He, Pravash Tiwari, and Jason Blake Cohen
Earth Syst. Sci. Data, 16, 5287–5310, https://doi.org/10.5194/essd-16-5287-2024,https://doi.org/10.5194/essd-16-5287-2024, 2024
Short summary

Cited articles

AMAP/UNEP: AMAP/UNEP geospatially distributed mercury emissions dataset 2010v1 [data set], https://www.amap.no/work-area/document/862 (last access: 30 October 2023), 2013. 
AMAP/UNEP: Technical Background Report to the Global Mercury Assessment 2018, Geneva, Switzerland, https://www.unep.org/globalmercurypartnership/resources/report/technical-background-report-global-mercury-assessment-2018 (last access: 30 October 2023), 2019. 
Amos, H. M., Jacob, D. J., Streets, D. G., and Sunderland, E. M.: Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochem. Cy., 27, 410–421, https://doi.org/10.1002/gbc.20040, 2013. 
Angot, H., Rutkowski, E., Sargent, M., Wofsy, S. C., Hutyra, L. R., Howard, D., Obrist, D., and Selin, N. E.: Atmospheric mercury sources in a coastal-urban environment: a case study in Boston, Massachusetts, USA, Environ. Sci. Process. Imp., 23, 1914–1929, https://doi.org/10.1039/d1em00253h, 2021. 
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., and Zhu, W.: Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling, Sci. Total Environ., 721, 137647, https://doi.org/10.1016/j.scitotenv.2020.137647, 2020. 
Download
Short summary
We develop P-CAME, a long-term gridded emission inventory for China spanning from 1978 to 2021. P-CAME enhances the accuracy of emissions mapping, identifies potential pollution hotspots, and aligns with observed Hg0 concentration trends. With its improved spatial resolution and reliable long-term trends, P-CAME offers valuable support for global emissions modeling, legacy impact studies, and evaluations of the Minamata Convention.
Share
Altmetrics
Final-revised paper
Preprint