Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4023-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4023-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Barium in seawater: dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning
NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Department of Marine Chemistry and
Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Department of Earth Sciences, Dartmouth College, Hanover, NH
03755, USA
now at: Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
Adam V. Subhas
Department of Marine Chemistry and
Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Heather H. Kim
Department of Marine Chemistry and
Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Ann G. Dunlea
Department of Marine Chemistry and
Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Laura M. Whitmore
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Alan M. Shiller
School of Ocean Science and Engineering, University of Southern
Mississippi, Stennis Space Center, MS 39529, USA
Melissa Gilbert
School of Ocean Science and Engineering, University of Southern
Mississippi, Stennis Space Center, MS 39529, USA
William D. Leavitt
Department of Earth Sciences, Dartmouth College, Hanover, NH
03755, USA
Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
Tristan J. Horner
CORRESPONDING AUTHOR
NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Department of Marine Chemistry and
Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Related authors
No articles found.
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.1101/2023.11.05.565706, https://doi.org/10.1101/2023.11.05.565706, 2025
Short summary
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Adam V. Subhas, Jennie E. Rheuban, Zhaohui Aleck Wang, Daniel C. McCorkle, Anna P. M. Michel, Lukas Marx, Chloe L. Dean, Kate Morkeski, Matthew G. Hayden, Mary Burkitt-Gray, Francis Elder, Yiming Guo, Heather H. Kim, and Ke Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1348, https://doi.org/10.5194/egusphere-2025-1348, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a carbon removal approach in which alkaline materials are added to the marine environment, increasing the ocean's ability to store carbon dioxide. We conducted an open-water experiment releasing and tracking a fluorescent water tracer. Under the right conditions, in-water monitoring of OAE does appear to be possible. We conclude with a series of practical recommendations for open-water OAE monitoring.
Mohammed Hashim, Lukas Marx, Frieder Klein, Chloe Dean, Emily Burdige, Matthew Hayden, Daniel McCorkle, and Adam Subhas
EGUsphere, https://doi.org/10.5194/egusphere-2025-988, https://doi.org/10.5194/egusphere-2025-988, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a CO2 removal approach that involves the addition of alkaline substances to seawater that would allow it to absorb more atmospheric CO2. Increasing seawater alkalinity, however, can trigger mineral precipitation that decreases OAE efficiency. We conducted experiments to constrain the thermodynamic and kinetics of mineral precipitation.
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
Biogeosciences, 22, 1057–1076, https://doi.org/10.5194/bg-22-1057-2025, https://doi.org/10.5194/bg-22-1057-2025, 2025
Short summary
Short summary
This article presents data on iron and manganese, essential micronutrients for primary producers in the Arctic Laptev and East Siberian seas (LESS). There, observations were made through international cooperation with the Nansen and Amundsen Basin Observational System expedition during the late summer of 2021. The results from this study indicate that the major sources controlling the iron and manganese distributions on the LESS continental margins are river discharge and shelf sediment input.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Adam V. Subhas, Nadine Lehmann, and Rosalind E. M. Rickaby
State Planet, 2-oae2023, 8, https://doi.org/10.5194/sp-2-oae2023-8-2023, https://doi.org/10.5194/sp-2-oae2023-8-2023, 2023
Short summary
Short summary
In addition to emissions reductions, methods of actively removing carbon dioxide from the atmosphere must be considered. One of these methods, called ocean alkalinity enhancement, is currently being studied to evaluate its effectiveness and safety. This article details best practices for the study of natural systems to support the development of ocean alkalinity enhancement as a carbon dioxide removal strategy. Relevant Earth system processes are discussed, along with methods to study them.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Ann G. Dunlea, Liviu Giosan, and Yongsong Huang
Clim. Past, 16, 2533–2546, https://doi.org/10.5194/cp-16-2533-2020, https://doi.org/10.5194/cp-16-2533-2020, 2020
Short summary
Short summary
Over the past 20 Myr, there has been a dramatic global increase in plants using C4 photosynthetic pathways. We analyze C and H isotopes in fatty acids of leaf waxes preserved in marine sediment from the Bay of Bengal to examine changes in photosynthesis in the Core Monsoon Zone of the Indian Peninsula over the past 6 Myr. The observed increase in C4 vegetation from 3.5 to 1.5 Ma is synchronous with C4 expansions in northwest Australia and East Africa, suggesting regional hydroclimate controls
Cited articles
Anagnostou, E., Sherrell, R. M., Gagnon, A., LaVigne, M., Field, M. P., and
McDonough, W. F.: Seawater nutrient and carbonate ion concentrations
recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum
dianthus, Geochim. Cosmochim. Ac., 75, 2529–2543,
https://doi.org/10.1016/j.gca.2011.02.019, 2011.
Anscombe, F. J.: Graphs in Statistical Analysis, Am. Stat., 27, 17–21,
https://doi.org/10.1080/00031305.1973.10478966, 1973.
Baars, O., Abouchami, W., Galer, S. J., Boye, M., and Croot, P. L.:
Dissolved cadmium in the Southern Ocean: Distribution, speciation, and
relation to phosphate, Limnol. Oceanogr., 59, 385–399,
https://doi.org/10.4319/lo.2014.59.2.0385, 2014.
Bains, S., Norris, R. D., Corfield, R. M., and Faul, K. L.: Termination of
global warmth at the Palaeocene/Eocene boundary through productivity
feedback, Nature, 407, 171–174, https://doi.org/10.1038/35025035, 2000.
Bates, S. L., Hendry, K. R., Pryer, H. V., Kinsley, C. W., Pyle, K. M.,
Woodward, E. M. S., and Horner, T. J.: Barium isotopes reveal the role of
ocean circulation on barium cycling in the Atlantic, Geochim. Cosmochim.
Ac., 204, 286–299, https://doi.org/10.1016/j.gca.2017.01.043, 2017.
Boyer, T. P., García, H. E., Locarnini, R. A., Zweng, M. M., Mishonov,
A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Paver, C. R.,
Seidov, D., and Smolyar, I. V.: World Ocean Atlas 2018, NOAA National
Centers for Environmental Information [data set],
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 4 September 2023), 2018.
Bishop, J. K.: The barite–opal–organic carbon association in oceanic
particulate matter, Nature, 332, 341–343, https://doi.org/10.1038/332341a0,
1988.
Bishop, J. K. B.: Regional extremes in particulate matter composition and
flux: Effects on the chemistry of the ocean interior, in: Productivity of the Ocean. Present
and Past, edited by: Berger, W. H.,
Smetacek, V. S., and Wefer, G., Wiley, 117–137, ISBN-10 0471922463, 1989.
Blount, C. W.: Barite solubilities and thermodynamic quantities up to 300
degrees C and 1400 bars, Am. Mineral., 62, 942–957, 1977.
Boyer, T. P., García, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Weathers, K. A.,Baranova, O. K., Paver, C. R., Seidov, D., and Smolyar, I. V.: World Ocean Atlas 2018, NOAA National Centers for Environmental Information, [data set], https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 4 September 2023), 2018.
Boyle, E. and Edmond, J. M.: Copper in surface waters south of New Zealand,
Nature, 253, 107–109, https://doi.org/10.1038/253107a0, 1975.
Bridgestock, L., Hsieh, Y.-T., Porcelli, D., Homoky, W. B., Bryan, A., and
Henderson, G. M.: Controls on the barium isotope compositions of marine
sediments, Earth Planet. Sc. Lett., 481, 101–110,
https://doi.org/10.1016/j.epsl.2017.10.019, 2018.
Cao, Z., Li, Y., Rao, X., Yu, Y., Hathorne, E. C., Siebert, C., Dai, M., and
Frank, M.: Constraining barium isotope fractionation in the upper water
column of the South China Sea, Geochim. Cosmochim. Ac., 288, 120–137,
https://doi.org/10.1016/j.gca.2020.08.008, 2020.
Cao, Z., Rao, X., Yu, Y., Siebert, C., Hathorne, E. C., Liu, B., Wang, G., Lian, E., Wang, Z., Zhang, R., Gao, L., Wei, G., Yang, S., Dai, M., and Frank, M.:
Stable barium isotope dynamics during estuarine mixing, Geophys. Res. Lett.,
48, e2021GL095680, https://doi.org/10.1029/2021GL095680, 2021.
Carter, S. C., Paytan, A., and Griffith, E. M.: Toward an Improved
Understanding of the Marine Barium Cycle and the Application of Marine
Barite as a Paleoproductivity Proxy, Minerals, 10, 421,
https://doi.org/10.3390/min10050421, 2020.
Chan, L. H., Drummond, D., Edmond, J. M., and Grant, B.: On the barium data
from the Atlantic GEOSECS expedition, Deep-Sea Res., 24, 613–649,
https://doi.org/10.1016/0146-6291(77)90505-7, 1977.
Charbonnier, Q., Bouchez, J., Gaillardet, J., and Gayer, É.: Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin, Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, 2020.
Chow, T. J. and Goldberg, E. D.: On the marine geochemistry of barium,
Geochim. Cosmochim. Ac., 20, 192–198,
https://doi.org/10.1016/0016-7037(60)90073-9, 1960.
Coffey, M., Dehairs, F., Collette, O., Luther, G., Church, T., and Jickells,
T.: The Behaviour of Dissolved Barium in Estuaries, Estuar. Coast. Shelf
S., 45, 113–121, https://doi.org/10.1006/ecss.1996.0157, 1997.
Copernicus Marine Environment Monitoring Service: Global Ocean Chlorophyll,
PP and PFT (Copernicus-GlobColour) from Satellite Observations: Monthly and
Daily Interpolated (Reprocessed from 1997), Mercator Ocean
International [data set], https://doi.org/10.48670/MOI-00100, 2021.
Craig, H. and Turekian, K. K.: The GEOSECS program: 1976–1979, Earth
Planet. Sc. Lett., 49, 263–265,
https://doi.org/10.1016/0012-821X(76)90062-5, 1980.
Crameri, F.: Scientific colour maps, Zenodo [code],
https://doi.org/10.5281/zenodo.5501399, 2018.
Cressie, N. A. C.: Spatial Prediction and Kriging, in: Statistics for Spatial
Data, 105–209, https://doi.org/10.1002/9781119115151.ch3, 1993.
Cutter, G. A.: Intercalibration in chemical oceanography – getting the right
number, Limnol. Oceanogr.-Meth., 11, 418–424,
https://doi.org/10.4319/lom.2013.11.418, 2013.
Dehairs, F., Chesselet, R., and Jedwab, J.: Discrete suspended particles of
barite and the barium cycle in the open ocean, Earth Planet. Sc. Lett.,
49, 528–550, https://doi.org/10.1016/0012-821X(80)90094-1, 1980.
DeVries, T.: The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes,
and transports over the industrial era, Global Biogeochem. Cy., 28,
631–647, https://doi.org/10.1002/2013GB004739, 2014.
Dickens, G. R., Fewless, T., Thomas, E., and Bralower, T. J.: Excess barite
accumulation during the Paleocene-Eocene thermal Maximum: Massive input of
dissolved barium from seafloor gas hydrate reservoirs, in: Causes and consequences of
globally warm climates in the early Paleogene, edited by: Wing, S. L.,
Gingerich, P. D., Schmitz, B., and Thomas, E., Geological Society of
America, https://doi.org/10.1130/0-8137-2369-8.11, 2003.
Dymond, J., Suess, E., and Lyle, M.: Barium in Deep-Sea Sediment: A
Geochemical Proxy for Paleoproductivity, Paleoceanography, 7, 163–181,
https://doi.org/10.1029/92PA00181, 1992.
Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., and Murray, R. W.: A
comparison between excess barium and barite as indicators of carbon export,
Paleoceanography, 18, 1021, https://doi.org/10.1029/2002PA000793, 2003.
Eakins, B. W. and Sharman, G. F.: Volumes of the World's Oceans from
ETOPO1, NOAA National Geophysical Data Center [data set], Boulder, CO,
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html (last access: 4 September 2023), 2010.
Edmond, J. M., Boyle, E. D., Drummond, D., Grant, B., and Mislick, T.:
Desorption of barium in the plume of the Zaire (Congo) River, Neth. J. Sea
Res., 12, 324–328, https://doi.org/10.1016/0077-7579(78)90034-0, 1978.
Esser, B. K. and Volpe, A. M.: At-sea high-resolution chemical mapping:
Extreme barium depletion in North Pacific surface water, Mar. Chem., 79,
67–79, https://doi.org/10.1016/S0304-4203(02)00037-3, 2002.
García, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R.
A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J.
R.: World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent
Oxygen Utilization, and Dissolved Oxygen Saturation, edited by: Mishonov, A., NOAA Atlas NESDIS 83 [data set], 38 pp.,
http://www.nodc.noaa.gov/OC5/indprod.html (last access: 4 September 2023), 2018a.
García, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R.
A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J.
R.: World Ocean Atlas 2018, Vol. 4: Dissolved Inorganic Nutrients
(phosphate, nitrate and nitrate+nitrite, silicate), edited by: Mishonov, A., NOAA Atlas NESDIS 84 [data set], 35 pp.,
http://www.nodc.noaa.gov/OC5/indprod.html (last access: 4 September 2023), 2018b.
GEOTRACES Intermediate Data Product Group: The GEOTRACES Intermediate Data
Product 2021 (IDP2021), NERC EDS British Oceanographic Data Centre NOC [data set],
https://doi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd, 2021.
Glover, D., Jenkins, W., and Doney, S.: Modeling Methods for Marine Science,
Cambridge University Press, https://doi.org/10.1017/CBO9780511975721, 2011.
Gonneea, M. E., Cohen, A. L., DeCarlo, T. M., and Charette, M. A.:
Relationship between water and aragonite barium concentrations in aquaria
reared juvenile corals, Geochim. Cosmochim. Ac., 209, 123–134,
https://doi.org/10.1016/j.gca.2017.04.006, 2017.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen
fixation and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077, 1997.
Guay, C. K. and Falkner, K. K.: A survey of dissolved barium in the
estuaries of major Arctic rivers and adjacent seas, Cont. Shelf Res., 18,
859–882, https://doi.org/10.1016/S0278-4343(98)00023-5, 1998.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W.,
Caillon, N., Case, D., Cobb, K. M., Douville, E., deMenocal, P., Eisenhauer,
A., Garbe-Schönberg, D., Geibert, W., Goldstein, S., Hughen, K., Inoue,
M., Kawahata, H., Kölling, M., Cornec, F. L., Linsley, B. K., McGregor,
H. V., Montagna, P., Nurhati, I. S., Quinn, T. M., Raddatz, J., Rebaubier,
H., Robinson, L., Sadekov, A., Sherrell, R., Sinclair, D., Tudhope, A. W.,
Wei, G., Wong, H., Wu, H. C., and You, C.-F.: Interlaboratory study for
coral Sr/Ca and other element/Ca ratio measurements, Geochem. Geophys.
Geosy., 14, 3730–3750, https://doi.org/10.1002/ggge.20230, 2013.
Hayes, C. T., Anderson, R. F., Cheng, H., Conway, T. M., Edwards, R. L.,
Fleisher, M. Q., Ho, P., Huang, K.-F., John, S. G., Landing, W. M., Little,
S. H., Lu, Y., Morton, P. L., Moran, S. B., Robinson, L. F., Shelley, R. U.,
Shiller, A. M., and Zheng, X.-Y.: Replacement Times of a Spectrum of
Elements in the North Atlantic Based on Thorium Supply, Global Biogeochem.
Cy., 32, 1294–1311, https://doi.org/10.1029/2017GB005839, 2018.
Hayes, C. T., Costa, K. M., Anderson, R. F., Calvo, E., Chase, Z., Demina,
L. L., Dutay, J.-C., German, C. R., Heimbürger-Boavida, L.-E., Jaccard,
S. L., Jacobel, A., Kohfeld, K. E., Kravchishina, M. D., Lippold, J., Mekik,
F., Missiaen, L., Pavia, F. J., Paytan, A., Pedrosa-Pamies, R., Petrova, M.
V., Rahman, S., Robinson, L. F., Roy-Barman, M., Sanchez-Vidal, A., Shiller,
A., Tagliabue, A., Tessin, A. C., van Hulten, M., and Zhang, J.: Global
Ocean Sediment Composition and Burial Flux in the Deep Sea, Global
Biogeochem. Cy., 35, e2020GB006769,
https://doi.org/10.1029/2020GB006769, 2021.
Holte, J., Talley, L. D., Gilson, J., and Roemmich, D.: An Argo mixed layer
climatology and database, Geophys. Res. Lett., 44, 5618–5626,
https://doi.org/10.1002/2017GL073426, 2017.
Holzer, M., Primeau, F. W., DeVries, T., and Matear, R.: The Southern Ocean
silicon trap: Data-constrained estimates of regenerated silicic acid,
trapping efficiencies, and global transport paths, J. Geophys. Res.-Oceans,
119, 313–331, https://doi.org/10.1002/2013JC009356, 2014.
Hood, E. M., Sabine, C. L., and Sloyan, B. M. (Eds.): The GO-SHIP Repeat
Hydrography Manual: A Collection of Expert Reports and Guidelines, IOCCP
Report Number 14, ICPO Publication Series Number 134,
http://www.go-ship.org/HydroMan.html (last access: 4 September 2023), 2010.
Hönisch, B., Allen, K. A., Russell, A. D., Eggins, S. M., Bijma, J.,
Spero, H. J., Lea, D. W., and Yu, J.: Planktic foraminifers as recorders of
seawater Ba/Ca, Mar. Micropaleontol., 79, 52–57,
https://doi.org/10.1016/j.marmicro.2011.01.003, 2011.
Hoppema, M., Dehairs, F., Navez, J., Monnin, C., Jeandel, C., Fahrbach, E.,
and de Baar, H. J. W.: Distribution of barium in the Weddell Gyre: Impact of
circulation and biogeochemical processes, Mar. Chem., 122, 118–129,
https://doi.org/10.1016/j.marchem.2010.07.005, 2010.
Horner, T. J. and Crockford, P. W.: Barium Isotopes: Drivers, Dependencies,
and Distributions through Space and Time, 1st Edn., Cambridge University
Press, https://doi.org/10.1017/9781108865845, 2021.
Horner, T. J. and Mete, O. Z.: A spatially and vertically resolved global grid
of dissolved barium concentrations in seawater determined using Gaussian
Process Regression machine learning, Version 2, Biological and Chemical Oceanography
Data Management Office (BCO-DMO) [data set],
https://doi.org/10.26008/1912/bco-dmo.885506.2, 2023.
Horner, T. J., Kinsley, C. W., and Nielsen, S. G.: Barium-isotopic
fractionation in seawater mediated by barite cycling and oceanic
circulation, Earth Planet. Sc. Lett., 430, 511–522,
https://doi.org/10.1016/j.epsl.2015.07.027, 2015.
Hsieh, Y.-T. and Henderson, G. M.: Barium stable isotopes in the global
ocean: Tracer of Ba inputs and utilization, Earth Planet. Sc. Lett., 473,
269–278, https://doi.org/10.1016/j.epsl.2017.06.024, 2017.
Jacquet, S. H. M., Dehairs, F., and Rintoul, S.: A high-resolution transect
of dissolved barium in the Southern Ocean, Geophys. Res. Lett., 31, L14301,
https://doi.org/10.1029/2004GL020016, 2004.
Jeandel, C., Dupré, B., Lebaron, G., Monnin, C., and Minster, J.-F.:
Longitudinal distributions of dissolved barium, silica and alkalinity in the
western and southern Indian Ocean, Deep-Sea Res. Pt. I,
43, 1–31, https://doi.org/10.1016/0967-0637(95)00098-4, 1996.
John, S. G., Liang, H., Weber, T., DeVries, T., Primeau, F., Moore, K.,
Holzer, M., Mahowald, N., Gardner, W., Mishonov, A., Richardson, M. J.,
Faugere, Y., and Taburet, G.: AWESOME OCIM: A simple, flexible, and powerful
tool for modeling elemental cycling in the oceans, Chem. Geol., 533, 119403,
https://doi.org/10.1016/j.chemgeo.2019.119403, 2020.
Joung, D. and Shiller, A. M.: Dissolved barium behavior in Louisiana Shelf
waters affected by the Mississippi/Atchafalaya River mixing zone, Geochim.
Cosmochim. Ac., 141, 303–313, https://doi.org/10.1016/j.gca.2014.06.021,
2014.
Jullion, L., Jacquet, S. H. M., and Tanhua, T.: Untangling biogeochemical
processes from the impact of ocean circulation: First insight on the
Mediterranean dissolved barium dynamics, Global Biogeochem. Cy., 31,
1256–1270, https://doi.org/10.1002/2016GB005489, 2017.
Kawabe, M. and Fujio, S.: Pacific Ocean circulation based on observation,
J. Oceanogr., 66, 389–403, https://doi.org/10.1007/s10872-010-0034-8, 2010.
Komagoe, T., Watanabe, T., Shirai, K., Yamazaki, A., and Uematu, M.:
Geochemical and Microstructural Signals in Giant Clam Tridacna Maxima
Recorded Typhoon Events at Okinotori Island, Japan, J. Geophys. Res.-Biogeo., 123, 1460–1474, https://doi.org/10.1029/2017JG004082, 2018.
LaVigne, M., Hill, T. M., Spero, H. J., and Guilderson, T. P.: Bamboo coral
Ba/Ca: Calibration of a new deep ocean refractory nutrient proxy, Earth
Planet. Sc. Lett., 312, 506–515,
https://doi.org/10.1016/j.epsl.2011.10.013, 2011.
LaVigne, M., Grottoli, A. G., Palardy, J. E., and Sherrell, R. M.:
Multi-colony calibrations of coral Ba/Ca with a contemporaneous in situ
seawater barium record, Geochim. Cosmochim. Ac., 179, 203–216,
https://doi.org/10.1016/j.gca.2015.12.038, 2016.
Lea, D. W. and Boyle, E. A.: Foraminiferal reconstruction of barium
distributions in water masses of the glacial oceans, Paleoceanography, 5,
719–742, https://doi.org/10.1029/PA005i005p00719, 1990.
Lea, D. W., Shen, G. T., and Boyle, E. A.: Coralline barium records temporal
variability in equatorial Pacific upwelling, Nature, 340, 373–376,
https://doi.org/10.1038/340373a0, 1989.
Le Roy, E., Sanial, V., Charette, M. A., van Beek, P., Lacan, F., Jacquet, S. H. M., Henderson, P. B., Souhaut, M., García-Ibáñez, M. I., Jeandel, C., Pérez, F. F., and Sarthou, G.: The 226Ra–Ba relationship in the North Atlantic during GEOTRACES-GA01, Biogeosciences, 15, 3027–3048, https://doi.org/10.5194/bg-15-3027-2018, 2018.
Light, T. and Norris, R.: Quantitative visual analysis of marine barite
microcrystals: Insights into precipitation and dissolution dynamics, Limnol.
Oceanogr., 66, 3619–3629, https://doi.org/10.1002/lno.11902, 2021.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M.,
Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R., and
Smolyar, I. V.: World Ocean Atlas 2018, Volume 1: Temperature, NOAA Atlas
NESDIS 81 [data set], 52 pp., https://www.nodc.noaa.gov/OC5/indprod.html (last access: 4 September 2023), 2018.
Monnin, C., Jeandel, C., Cattaldo, T., and Dehairs, F.: The marine barite
saturation state of the world's oceans, Mar. Chem., 65, 253–261,
https://doi.org/10.1016/S0304-4203(99)00016-X, 1999.
National Geophysical Data Center: 5-minute Gridded Global Relief Data
(ETOPO5), NOAA National Geophysical Data Center [data set],
https://doi.org/10.7289/V5D798BF, 1993.
Orsi, A. H., Whitworth III, T., and Nowlin Jr., W. D.: On the meridional
extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Paytan, A. and Griffith, E. M.: Marine barite: Recorder of variations in
ocean export productivity, Deep-Sea Res. Pt. II, 54, 687–705,
https://doi.org/10.1016/j.dsr2.2007.01.007, 2007.
Paytan, A. and Kastner, M.: Benthic Ba fluxes in the central Equatorial
Pacific, implications for the oceanic Ba cycle, Earth Planet. Sc. Lett.,
142, 439–450, https://doi.org/10.1016/0012-821X(96)00120-3, 1996.
Pyle, K. M., Hendry, K. R., Sherrell, R. M., Legge, O., Hind, A. J., Bakker,
D., Venables, H., and Meredith, M. P.: Oceanic fronts control the
distribution of dissolved barium in the Southern Ocean, Mar. Chem., 204,
95–106, https://doi.org/10.1016/j.marchem.2018.07.002, 2018.
Rafter, P. A., Bagnell, A., Marconi, D., and DeVries, T.: Global trends in marine nitrate N isotopes from observations and a neural network-based climatology, Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019, 2019.
Rahman, S., Shiller, A. M., Anderson, R. F., Charette, M. A., Hayes, C. T.,
Gilbert, M., Grissom, K. R., Lam, P. J., Ohnemus, D. C., Pavia, F. J.,
Twining, B. S., and Vivancos, S. M.: Dissolved and particulate barium
distributions along the US GEOTRACES North Atlantic and East Pacific Zonal
Transects (GA03 and GP16): Global implications for the marine barium cycle,
Global Biogeochem. Cy., 36, e2022GB007330,
https://doi.org/10.1029/2022GB007330, 2022.
Raju, K. and Atkinson, G.: Thermodynamics of “scale” mineral solubilities.
1. Barium sulfate(s) in water and aqueous sodium chloride, J. Chem. Eng.
Data, 33, 490–495, https://doi.org/10.1021/je00054a029, 1988.
Rasmussen, C. E. and Williams, C. K. I.: Gaussian processes for machine
learning, MIT Press, https://doi.org/10.7551/mitpress/3206.001.0001, 2006.
Roeske, T., van der Loeff, M. R., Middag, R., and Bakker, K.: Deep water
circulation and composition in the Arctic Ocean by dissolved barium,
aluminium and silicate, Mar. Chem., 132–133, 56–67,
https://doi.org/10.1016/j.marchem.2012.02.001, 2012.
Rohatgi, A.: WebPlotDigitizer, Version: 4.6, Pacifica, CA, USA,
https://automeris.io/WebPlotDigitizer (last access: 4 September 2023), 2022.
Roshan, S. and DeVries, T.: Global Contrasts Between Oceanic Cycling of
Cadmium and Phosphate, Global Biogeochem. Cy., 35, e2021GB006952,
https://doi.org/10.1029/2021GB006952, 2021.
Roshan, S., DeVries, T., Wu, J., and Chen, G.: The internal cycling of zinc
in the ocean, Global Biogeochem. Cy., 32, 1833–1849,
https://doi.org/10.1029/2018GB006045, 2018.
Roshan, S., DeVries, T., and Wu, J.: Constraining the global ocean Cu cycle
with a data-assimilated diagnostic model, Global Biogeochem. Cy., 34,
e2020GB006741, https://doi.org/10.1029/2020GB006741, 2020.
Rushdi, A. I., McManus, J., and Collier, R. W.: Marine barite and celestite
saturation in seawater, Mar. Chem., 69, 19–31,
https://doi.org/10.1016/S0304-4203(99)00089-4, 2000.
Samanta, S. and Dalai, T. K.: Dissolved and particulate Barium in the Ganga
(Hooghly) River estuary, India: Solute-particle interactions and the
enhanced dissolved flux to the oceans, Geochim. Cosmochim. Ac., 195, 1–28,
https://doi.org/10.1016/j.gca.2016.09.005, 2016.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity, Nature, 427, 56–60,
https://doi.org/10.1038/nature02127, 2004.
Schenau, S. J., Prins, M. A., De Lange, G. J., and Monnin, C.: Barium
accumulation in the Arabian Sea: Controls on barite preservation in marine
sediments, Geochim. Cosmochim. Ac., 65, 1545–1556,
https://doi.org/10.1016/S0016-7037(01)00547-6, 2001.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 4 September 2023), 2023.
Schmitz, B.: Barium, equatorial high productivity, and the northward
wandering of the Indian continent, Paleoceanogr., 2, 63–77,
https://doi.org/10.1029/PA002i001p00063, 1987.
Schroeder, J. O., Murray, R. W., Leinen, M., Pflaum, R. C., and Janecek, T.
R.: Barium in equatorial Pacific carbonate sediment: Terrigenous, oxide, and
biogenic associations, Paleoceanogr., 12, 125–146,
https://doi.org/10.1029/96PA02736, 1997.
Serno, S., Winckler, G., Anderson, R. F., Hayes, C. T., Ren, H., Gersonde,
R., and Haug, G. H.: Using the natural spatial pattern of marine
productivity in the Subarctic North Pacific to evaluate paleoproductivity
proxies, Paleoceanogr., 29, 438–453, https://doi.org/10.1002/2013PA002594,
2014.
Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J., and Carpenter, L. J.: A machine-learning-based global sea-surface iodide distribution, Earth Syst. Sci. Data, 11, 1239–1262, https://doi.org/10.5194/essd-11-1239-2019, 2019.
Sinclair, D. J. and McCulloch, M. T.: Corals record low mobile barium
concentrations in the Burdekin River during the 1974 flood: Evidence for
limited Ba supply to rivers?, Palaeogeogr. Palaeoclim.,
214, 155–174, https://doi.org/10.1016/j.palaeo.2004.07.028, 2004.
Singh, A. K., Marcantonio, F., and Lyle, M.: An assessment of xsBa flux as a
paleoproductivity indicator and its water-depth dependence in the
easternmost equatorial Pacific Ocean, Paleoceanography and Paleoclimatology, 35,
e2020PA003945, https://doi.org/10.1029/2020PA003945, 2020.
Singh, S. P., Singh, S. K., and Bhushan, R.: Internal cycling of dissolved
barium in water column of the Bay of Bengal, Mar. Chem., 154, 12–23,
https://doi.org/10.1016/j.marchem.2013.04.013, 2013.
Stewart, J. A., Li, T., Spooner, P. T., Burke, A., Chen, T., Roberts, J.,
Rae, J. W. B., Peck, V., Kender, S., Liu, Q., and Robinson, L. F.:
Productivity and Dissolved Oxygen Controls on the Southern Ocean Deep-Sea
Benthos During the Antarctic Cold Reversal, Paleoceanography and Paleoclimatology,
36, e2021PA004288, https://doi.org/10.1029/2021PA004288, 2021.
Stroobants, N., Dehairs, F., Goeyens, L., Vanderheijden, N., and Van
Grieken, R.: Barite formation in the Southern Ocean water column, Mar.
Chem., 35, 411–421, https://doi.org/10.1016/S0304-4203(09)90033-0, 1991.
Talley, L. D.: An Okhotsk Sea water anomaly: implications for ventilation in
the North Pacific, Deep-Sea Res. Pt. I, 38, S171–S190,
https://doi.org/10.1016/S0198-0149(12)80009-4, 1991.
Talley, L. D.: Freshwater transport estimates and the global overturning
circulation: Shallow, deep and throughflow components, Prog. Oceanogr.,
78, 257–303, https://doi.org/10.1016/j.pocean.2008.05.001, 2008.
Talley, L. D., Pickard, G. L., and Emery, W. J. (Eds.): Descriptive physical
oceanography: An introduction, 6th Edn., Academic Press,
https://doi.org/10.1016/C2009-0-24322-4, 2011.
Whitmore, L. M., Shiller, A. M., Horner, T. J., Xiang, Y., Auro, M. E.,
Bauch, D., Dehairs, F., Lam, P. J., Li, J., Maldonado, M. T., Mears, C.,
Newton, R., Pasqualini, A., Planquette, H., Rember, R., and Thomas, H.:
Strong Margin Influence on the Arctic Ocean Barium Cycle Revealed by
Pan-Arctic Synthesis, J. Geophys. Res.-Oceans, 127, e2021JC017417,
https://doi.org/10.1029/2021JC017417, 2022.
Wyatt, N. J., Milne, A., Woodward, E. M. S., Rees, A. P., Browning, T. J.,
Bouman, H. A., Worsfold, P. J., and Lohan, M. C.: Biogeochemical cycling of
dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40 S,
Global Biogeochem. Cy., 28, 44–56,
https://doi.org/10.1002/2013GB004637, 2014.
Zhang, Z., Yu, Y., Hathorne, E. C., Vieira, L. H., Grasse, P., Siebert, C.,
Rahlf, P., and Frank, M.: Decoupling of Barium and Silicon at the Congo
River-dominated Southeast Atlantic Margin: Insights from Combined Barium and
Silicon Isotopes, Global Biogeochem. Cy., 37, e2022GB007610,
https://doi.org/10.1029/2022GB007610, 2023.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K. W., Paver, C.
R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 2: Salinity, A.
Mishonov, Tech. Ed., NOAA Atlas NESDIS 82 [data set], 50 pp.,
http://www.nodc.noaa.gov/OC5/indprod.html (last access: 4 September 2023), 2018.
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
We present results from a machine learning model that accurately predicts dissolved barium...
Altmetrics
Final-revised paper
Preprint