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Model initialization and validation 

 

Specific parameters used in model training 

 

Table S1. Function parameters specified for the function used to train ML models. The MATLAB 
function fitrgp was used to perform model training (MathWorks, 2023). Each option, its purpose, the 
value assigned, and a justification for the value chosen are shown. 

Option Description of option Value selected Description of the value 
selected 

Fit Method Method to estimate 
parameters of the GPR model  

‘sd’ Subset of data points 
approximation (i.e., selects a 
smaller subset of training 
data points and computes the 
inverse of the covariance 
matrix only for that subset, 
while the remaining data 
points are used to estimate 
the hyperparameters of the 
model.) 

Basis 
Function 

Explicit basis in the GPR 
model 

‘constant’ H=1 

(n-by-1 vector of 1s, where 
n is the number of 
observations, i.e., sets the 
mean of the GPR model to 
be a constant value, which is 
equal to the mean of the 
training output data and is 
applied to all observations in 
the training data 
 

Beta Initial value of the 
coefficients 

 Inferred from the data, thus 
changes with each run. 

Sigma Initial value for the noise 
standard deviation of the 
Gaussian process model 

std(y)/sqrt(2) Depends on the response 
data, thus changes with each 
run. 

Constant 
Sigma 

Constant value of Sigma for 
the noise standard deviation 
of the Gaussian process 
model 

false allows the noise standard 
deviation to vary across 
different input points 
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Sigma Lower 
Bound 

Lower bound on the noise 
standard deviation 

1e-2*std(y)  Depends on the response 
data, thus changes with each 
run. 

Categorical 
Predictors 

Categorical predictors list logical vector of length 
p where each element is 
false and p is the 
number of predictors 

None of our predictors are 
categorical. 

Standardize Specify whether or not the 
data should be standardized 
using mean and standard 
deviation 

true When true, each predictor is 
centered and scaled to have 
a mean of zero and a 
standard deviation of unity. 

Kernel 
Function 

Form of the covariance 
function 

‘exponential’ sets an exponential kernel 
function (i.e., a type of 
radial basis function that 
computes the similarity or 
covariance between two 
input vectors based on their 
distance or proximity in the 
input space) to be used to 
model the covariance 
between the input variables. 

Distance 
Method 

Method for computing inter-
point distances 

‘fast’ e.g., (x−y)2 is computed as 
x2 +y2−2∗x∗y when the 
distance method is fast.  

Active Set When specified, the active set 
indicates the observations to 
be used in model training. If 
the active set is 
predetermined, ActiveSetSize 
and ActiveSetMethod are not 
used. 

[] We do not assign a 
predetermined active set and 
let the model chose a 
random active set  

Active Set 
Method 

selection method for the 
Active Set 

‘random’ random selection of active 
set 

Random 
Search Size 

Random search set size 59 MATLAB default value 

Tolerance 
Active Set 

Relative tolerance for 
terminating active set 
selection 

1e-6 
Controls the convergence 
tolerance level for the active 
set algorithm used in the 
"subset of data points" 
fitting method. 

Predict 
Method 

Method used to make 
predictions 

‘exact’ Specifies that the exact 
method should be used to 
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make predictions with the 
trained GPR model 

Optimizer Optimizer to use for parameter 
estimation 

‘quasinewton’ Sets a quasi-Newton method 
(i.e., a gradient-based 
optimization algorithm) to 
estimate the 
hyperparameters or other 
parameters of the GPR 
model. 

Initial Step 
Size 

Initial step size  [] Empty. Initial step size is 
not used to determine the 
initial Hessian 
approximation. 

Holdout A cross-validation method 
where a fraction of the data is 
used for validation. 

0.2 Use 20% of training data for 
validation and 80% for 
training.  

 

Effect of salinity 

The feature significance analysis described in the main text indicates that S is not, on average, a 
strong predictor of [Ba]. However, models lacking S tend not to reproduce the elevated [Ba] in 
nearshore environments associated with riverine discharge. Though volumetrically minor, riverine 
discharge is a geochemically important aspect of the marine Ba cycle, and the existence of 
nearshore Ba plumes underpins a major proxy application of Ba.  

To explore the importance of S in predicting [Ba], we compared the output from two models with 
similar performance whereby the only difference was whether S was included as a feature during 
training. This analysis helps to isolate the effects of S on the accuracy of [Ba] predictions. We 
focused on comparing models #3112 (z, T, [O2], [PO4], [NO3], and [Si]) and #3080 (z, T, S, [O2], 
[PO4], [NO3], and [Si]), noting that S is the only difference between the two models. An overview 
of model performance is shown in Fig. S3.  
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Figure S1. Comparison of model #3112 and model #3080 outputs for the Indian Ocean testing data. 
Model #3112 was trained using six features: z, T, [O2], [PO4], [NO3], and [Si]. These are the same features 
as in model #3080, minus S. The statistical performance of the two models is highly similar, though model 
#3112 misses important geochemical features, discussed in the text.  

 

Statistical comparison of output from models #3112 and #3080 reveals that both are highly adept 
at predicting [Ba] in the Indian Ocean testing data (Fig. S1). Both models exhibit essentially 
identical performance and yield similar estimates of mean ocean [Ba] (89 nmol kg–1) and Ωbarite 
(0.82). However, visual inspection of the output reveals stark differences in the model performance 
that are easily missed by statistical methods. Results of the visual comparison are shown in Figs. 
S2–S8, below. Within each figure, [Ba] data from model #3080 and #3112 are plotted using the 
same color scale; however, the scales differ when comparing different geographic regions. Mean 
annual sea-surface salinity from the WOA 2018 (Zweng et al., 2018) is also shown to assist the 
reader in identifying regions that are influenced by riverine discharge; note that the salinity scale 
bars also differ between regions. 

 

Figure S2. Seawater chemistry in the Bay of Bengal and Andaman Sea. Left and center panels show 
[Ba] at the sea surface from model #3080 and #3112, respectively. Right panel shows sea-surface salinity. 
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Figure S3. Seawater chemistry in the Southwest Atlantic close to the Río de la Plata outflow. Left 
and center panels show [Ba] at the sea surface from model #3080 and #3112, respectively. Right panel 
shows sea-surface salinity. 

 

Model #3080 correctly identifies elevated sea-surface [Ba] in the Bay of Bengal and Andaman 
Seas (Fig. S4), in the Southwest Atlantic close to the Río de la Plata outflow (Fig. S5), and in the 
East China Sea close to the Yangtze outflow (Fig. S6). Likewise, model #3080 predicts higher-
than-background [Ba] in the Northwest Atlantic associated with the St. Lawrence River (Fig. S7) 
and in the Gulf of Guinea (Fig. S8), though we are not aware of any corroborating data for these 
latter two regions. In contrast, outputs from model #3112 do not show any nearshore increases in 
[Ba] associated with river outflow (Figs. S4–10). Since model #3112 did not encounter any 
information regarding S during training, we infer that S must be an important feature for predicting 
near-shore elevated [Ba] associated with river discharge. 

 

 

Figure S4. Seawater chemistry in the East China Sea. Left and center panels show [Ba] at the sea 
surface from model #3080 and #3112, respectively. Right panel shows sea-surface salinity. 
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Figure S5. Seawater chemistry in the Northwest Atlantic. Left and center panels show [Ba] at the sea 
surface from model #3080 and #3112, respectively. Right panel shows sea-surface salinity. 

 

 

Figure S6. Seawater chemistry in the Gulf of Guinea. Left and center panels show [Ba] at the sea surface 
from model #3080 and #3112, respectively. Right panel shows sea-surface salinity. 

 

Interestingly, model #3080 does not predict elevated sea-surface [Ba] at the mouths of all major 
rivers. For example, there is no obvious [Ba] feature associated with the outflows of either the 
Amazon (Fig. S8) or Mississippi Rivers (Fig. S9). The reason for the lack of a near-shore [Ba] 
feature in these regions is unclear, and we speculate on some geochemical possibilities in the main 
text. It is also possible that the lack of a surface [Ba] feature relates to the overall higher salinity 
in these regions (>33), whereas the largest [Ba] anomalies manifest only when mean annual sea-
surface salinity ≤32 (cf. Figs. S4–S8, Figs. S9–10). As with model #3080, model #3112 does not 
predict surface [Ba] plumes at either the Amazon or Mississippi outflows. 
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Figure S7. Seawater chemistry in the Western Tropical Atlantic. Left and center panels show [Ba] at 
the sea surface from model #3080 and #3112, respectively. Right panel shows sea-surface salinity. 

 

 

Figure S8. Seawater chemistry in the Gulf of Mexico. Left and center panels show [Ba] at the sea surface 
from model #3080 and #3112, respectively. Right panel shows sea-surface salinity. 

 

Overall, this analysis highlights that S is an important predictor of [Ba] in certain coastal 
environments. The importance of S is only revealed by visual inspection of model output, which 
is an important component of data analysis (see e.g., Anscombe, 1973). Since the statistical 
performance of model #3080 is identical, within uncertainty, to model #3112 (Fig. S1), and model 
#3080 reproduces known riverine [Ba] features, we select model #3080 as our preferred model for 
making global predictions of [Ba].  

 

 

Reducing the range of the training data 

Gaussian Process Regression (GPR) models are highly adept at making accurate geospatial 
predictions of a target variable, particularly when the training data contain a certain level of noise. 
However, GPR models are oftentimes less accurate than other methods when making predictions 
beyond the ranges encountered during training (Cressie, 1993). To investigate whether our 
preferred predictor model was subject to similar biases, we analyzed the performance of model 
#3080 when provided with a narrower range of training data. This meant restricting the range of 
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[Ba] values seen during model training and comparing these outputs against those generated by 
model #3080 when trained on the full training dataset. 

To achieve this, we identified the bottom (51.4) and top (98.9 nmol kg–1) sextile in the Indian 
Ocean testing data and removed all [Ba] observations from the training data that were outside of 
this range (i.e., only samples with [Ba] between 51.4–98.9 nmol kg–1 were included). This reduced 
the number of [Ba] observations in the training data from 4,345 to 2,295. We then retrained model 
#3080 (z, T, S, [O2], [PO4], [NO3], and [Si]) on these 2,295 data and used this retrained model 
(hereafter model #3080N) to predict [Ba] for the Indian Ocean and on a global basis. A comparison 
of [Ba] predictions made using model #3080N and from model #3080 are shown below in Figs. 
S9 and S10.  

 

 

Figure S9. Comparison of model #3080N and model #3080 outputs for the Indian Ocean testing data. 
Model #3080 was trained using a narrowed version of the training data compared to model #3080, which 
saw the full training database. 
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Figure S10. Boxplot of [Ba] values for training, testing, and ML model predictions. Each box shows 
a five-number summary for the relevant dataset: median (horizontal line), the 75th and 25th percentiles (top 
and bottom of box, respectively), and the maximum and minimum non-outlier values (upper and lower 
whiskers, respectively). Statistical outliers are indicated by ‘+’. Boxes labeled ‘observations’ summarize the 
in situ data used in model training and testing, respectively. The next two boxes show model #3080 
predictions for the global ocean and the testing data. The final three boxes show the distribution of [Ba] 
values in the ‘narrow’ training data and the resultant spread of [Ba] predicted by model #3080N, which was 
trained using only these data. 

 

This analysis shows that model #3080N reproduces the median and interquartile range of the 
Indian Ocean testing data (Figs. S9) as well as for the global predictions (Fig. S10). Likewise, 
model #3080N can predict values of [Ba] outside of the ranges encountered in model training, but 
only by between 5–10 %. As such, model #3080N underestimates the true range of [Ba] values 
seen in the ocean and achieves a lower overall accuracy of [Ba] predictions compared to model 
#3080 (#3080N MAPE = 8.8 % vs 6.0 %; Fig. S9). We conclude that the output from model #3080, 
and likely other models, is most accurate when it falls within the range of [Ba] encountered during 
training. Since model #3080 was trained on [Ba] data spanning 17.1–159.8 nmol kg–1, the entire 
range of model #3080 predictions (26.2–156.8 nmol kg–1; Fig. S10) falls within the range seen 
during training. Thus, we conclude that the results from model #3080 are generally robust as the 
model did not extrapolate beyond the range of [Ba] encountered during training.  
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