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Abstract. Barium is widely used as a proxy for dissolved silicon and particulate organic carbon fluxes in seawa-
ter. However, these proxy applications are limited by insufficient knowledge of the dissolved distribution of Ba
([Ba]). For example, there is significant spatial variability in the barium–silicon relationship, and ocean chemistry
may influence sedimentary Ba preservation. To help address these issues, we developed 4095 models for predict-
ing [Ba] using Gaussian process regression machine learning. These models were trained to predict [Ba] from
standard oceanographic observations using GEOTRACES data from the Arctic, Atlantic, Pacific, and Southern
oceans. Trained models were then validated by comparing predictions against withheld [Ba] data from the In-
dian Ocean. We find that a model trained using depth, temperature, and salinity, as well as dissolved dioxygen,
phosphate, nitrate, and silicate, can accurately predict [Ba] in the Indian Ocean with a mean absolute percentage
deviation of 6.0 %. We use this model to simulate [Ba] on a global basis using these same seven predictors in the
World Ocean Atlas. The resulting [Ba] distribution constrains the Ba budget of the ocean to 122(±7)× 1012 mol
and reveals oceanographically consistent variability in the barium–silicon relationship. We then calculate the sat-
uration state of seawater with respect to barite. This calculation reveals systematic spatial and vertical variations
in marine barite saturation and shows that the ocean below 1000 m is at equilibrium with respect to barite. We
describe a number of possible applications for our model outputs, ranging from use in mechanistic biogeochem-
ical models to paleoproxy calibration. Our approach demonstrates the utility of machine learning in accurately
simulating the distributions of tracers in the sea and provides a framework that could be extended to other trace
elements. Our model, the data used in training and validation, and global outputs are available in Horner and
Mete (2023, https://doi.org/10.26008/1912/bco-dmo.885506.2).
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1 Introduction

Barium (Ba) is a Group II trace metal that is widely applied
in studies of modern and ancient marine biogeochemistry de-
spite lacking a recognized biochemical function (e.g., Horner
and Crockford, 2021). These applications of Ba are based on
two empirical correlations relating to its dissolved and par-
ticulate cycles. The first correlation relates to the dissolved
concentration of Ba, hereafter [Ba], which is strongly corre-
lated with that of the algal nutrient silicon (Si – as dissolved
silicic acid; Fig. 1; Chan et al., 1977). Unlike [Si], ambient
[Ba] concentrations are faithfully recorded by a number of
marine carbonates, such as planktonic (e.g., Hönisch et al.,
2011) and benthic foraminifera (e.g., Lea and Boyle, 1990),
surface (e.g., Gonneea et al., 2017) and deep-sea corals (e.g.,
Anagnostou et al., 2011; LaVigne et al., 2011), and mollusks
(e.g., Komagoe et al., 2018). Preservation of these signals
means that the Ba content of carbonates can be related to the
Ba content of seawater and, by extension, that of Si. Accord-
ingly, the Ba–Si proxy has been applied to understand ocean
nutrient dynamics on decadal (e.g., Lea et al., 1989) to mil-
lennial timescales (e.g., Stewart et al., 2021).

The nutrient-like distribution of dissolved Ba in seawa-
ter is thought to be sustained by the second empirical cor-
relation, relating to the cycling of particulate Ba. Particu-
late Ba in seawater occurs mostly in the form of discrete,
micron-sized crystals of the mineral barite (BaSO4(s), bar-
ium sulfate; e.g., Dehairs et al., 1980; Stroobants et al.,
1991). Pelagic BaSO4 is a ubiquitous component of marine
particulate matter (e.g., Light and Norris, 2021) and consti-
tutes the principal removal flux of dissolved Ba from seawa-
ter (Paytan and Kastner, 1996). Pelagic BaSO4 is thought to
precipitate within ephemeral particle-associated microenvi-
ronments that develop during the microbial oxidation of sink-
ing organic matter (e.g., Chow and Goldberg, 1960; Bishop,
1988). The flux of particulate BaSO4 to the seafloor is corre-
lated with the flux of exported organic matter (e.g., Dymond
et al., 1992; Eagle et al., 2003; Serno et al., 2014; Hayes et
al., 2021). This correlation means that the accumulation rate
of sedimentary BaSO4 – or its main constituent, Ba – can
be used to trace patterns of past organic matter export on
timescales ranging from millennia to millions of years (e.g.,
Bains et al., 2000; Paytan and Griffith, 2007; Schmitz, 1987;
Schroeder et al., 1997).

While the Ba-based proxies are valuable, their applications
are potentially limited by insufficient knowledge of the distri-
bution of [Ba]. For example, there is significant vertical and
spatial variability in the Ba–Si relationship (Sect. 3.3; Fig. 1),
which we quantify using Ba∗ (barium star; e.g., Horner et al.,
2015; Sect. 3.3):

Ba∗ = [Ba]in situ− [Ba]predicted, (1)

where [Ba]predicted is based on the Ba–Si linear regression
(Fig. 1):

[Ba]predicted = 0.54 · [Si]in situ+ 39.3. (2)

Here, [Si]in situ has units of micromoles per kilogram
(µmol kg−1) and [Ba]predicted nanomoles per kilogram
(nmol kg−1); therefore, Ba∗ also has units of nmol kg−1. The
vertical profile of Ba∗ is rarely conservative (Fig. 1d), and
these variations could introduce uncertainty in the recon-
struction of [Si] using Ba.

The relationship between sedimentary BaSO4 accumula-
tion rates and productivity also contains a significant degree
of scatter (e.g., Serno et al., 2014; Hayes et al., 2021). Some
of this scatter may relate to variability in BaSO4 preservation,
which is at least partially sensitive to the ambient saturation
state, �barite (e.g., Schenau et al., 2001; Singh et al., 2020;
Fig. 1). The saturation state of a parcel of water with respect
to BaSO4 is defined as follows:

�barite =Q/Ksp, (3)

where Q is the Ba and sulfate ion product, and Ksp is the in
situ BaSO4 solubility product. Discerning the importance of
�barite to BaSO4 preservation has hitherto been challenging
owing to the sparsity of in situ [Ba] measurements. Accu-
rately determining the global distribution of [Ba] would be
valuable for geochemists and oceanographers and would en-
able a more thorough investigation of the effects of preserva-
tion on BaSO4 fluxes and a refinement of the Ba–Si nutrient
proxy.

A powerful way of interrogating oceanic element distri-
butions is through modeling. Broadly, there are two mod-
eling approaches relevant for simulating [Ba]: mechanistic
(i.e., theory driven) and statistical modeling (i.e., data driven;
e.g., Glover et al., 2011). In mechanistic or process-based
modeling, model outputs are derived from sets of underly-
ing equations that are based on fundamental theory. As such,
mechanistic model outputs can be interrogated to obtain an
understanding of processes and their sensitivities. However,
creating a mechanistic model of the marine Ba cycle re-
quires embedding a biogeochemical model of BaSO4 cycling
within a computationally expensive global circulation model.
Although the computational cost associated with building
mechanistic models has been reduced by the development of
ocean circulation inverse models (e.g., DeVries, 2014; John
et al., 2020), this approach still requires detailed parameteri-
zations of the marine Ba cycle, which do not currently exist.
In contrast, statistical models are based on extracting patterns
from existing data and using those relationships to make pre-
dictions. Statistical models encompass a wide variety of ap-
proaches ranging from regression analysis to machine learn-
ing (ML). Of particular interest to our study are ML mod-
els, which can make predictions without any explicit param-
eterizations of causal relationships. Machine learning mod-
els are computationally efficient and can be highly accurate,
though they offer limited interpretability. Machine learning
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Figure 1. Distribution of barium in seawater. (a) Property–property plot showing the 4345 co-located, core-feature-complete dissolved data
used in ML model training (Sect. 2). Sample locations shown in Fig. 2. Dashed line shows best-fit linear regression through these data,
whereby [Ba] = 0.54 · [Si] + 39.3. Panels (b), (c), (d), and (e) show average Pacific Ocean dissolved depth profiles of [Si], [Ba], Ba∗, and
�barite, respectively. Solid line denotes the arithmetic mean, and the shaded region encompasses 1 standard deviation either side of the mean.
Dashed line indicates Ba∗ = 0 (d) and �barite = 1 (e).

is increasingly being used to solve problems in Earth and en-
vironmental sciences, including simulating the dissolved dis-
tribution of tracers in the sea (e.g., for cadmium, Roshan and
DeVries, 2021; copper, Roshan et al., 2020; iodine, Sherwen
et al., 2019; nitrogen isotopes of nitrate, Rafter et al., 2019;
and zinc, Roshan et al., 2018).

The goal of this study is to obtain an accurate global simu-
lation of [Ba], which ML makes possible even in the absence
of a process-level understanding of the marine Ba cycle.
We tested thousands of ML models that were trained using
quality-controlled GEOTRACES data from the Arctic, At-
lantic, Pacific, and Southern oceans, supplemented by Argo,
satellite chlorophyll, and bathymetry data products (Sect. 2).
Models were tested for their accuracy by simulating [Ba] in
the Indian Ocean and comparing predictions against obser-
vations made between 1977–2013. Since no Indian Ocean
data were seen by any of the models during training, we are
able to identify models with high generalization performance
(Sect. 3). We then identify an optimal set of predictor vari-
ables; calculate model uncertainties; and simulate [Ba], Ba∗,
and �barite on a global basis (Sect. 5). This result will be
valuable for researchers interested in marine Ba cycling and
demonstrates the utility of ML in tackling problems in ma-
rine biogeochemistry.

2 Training and testing data

Machine learning algorithms are adept at making accurate
predictions of a target variable by identifying relationships
between variables within large datasets. However, making
accurate predictions first requires that an ML algorithm is
trained on existing observations of that variable alongside a
number of other parameters. These other parameters, here-
after termed features, are an important part of model train-

ing. Features should encode information that may help the
ML algorithm predict [Ba]; otherwise their inclusion may
diminish model performance. Features should also be well
characterized in the global ocean, which allows ML mod-
els to make predictions in regions beyond the initial training
dataset. We selected 12 model features by considering the
trade-off between feature availability and presumed predic-
tive power (Table 1). While testing more features may have
resulted in a more accurate final model, we found that many
observations of [Ba] did not have corresponding data for
multiple features; thus, including more features would have
meant fewer training data. Moreover, we find that including
more than nine features can actually diminish model perfor-
mance. As such, we did not evaluate the predictive power of
other features beyond the 12 initially selected.

The 12 features used to predict [Ba] and their associated
data sources are summarized in Table 1 and described be-
low. The first three features (latitude, longitude, and depth)
record geospatial information that defines the location of an
observation in three-dimensional space. To avoid numerical
discontinuities, latitude and longitude were introduced into
the model as a hyperparameter consisting of the cosine and
sine of their respective values (in radians). Data for features
1–3 were included in the sample metadata. Features 4–9 en-
code physical (temperature and salinity) and chemical (oxy-
gen and nutrients) information that is routinely measured
alongside [Ba]. These data were generally available for the
same bottle as the [Ba] measurements; however, when that
was not the case, nutrient data were taken from the cor-
responding location during a separate cast or, in the case
of oxygen, from linearly interpolated sensor data. The fi-
nal three features are independent of depth, meaning that all
samples within a given vertical profile exhibit the same value
for MLD (mixed-layer depth), sea surface chlorophyll a, and
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Table 1. List of oceanographic parameters selected as model features. The features tested were selected based on their presumed predictive
power and high geospatial coverage.

No. Feature Abbreviation Units

1 Latitude Lat. Degrees north (◦ N)
2 Longitude Long. Degrees east (◦ E)
3 Sample collection depth z Meters (m)
4 Temperature T Degrees Celsius (◦C)
5 Salinity S Unitless but often written in “units” of PSU or PSS
6 Dissolved oxygen [O2] µmol kg−1

7 Dissolved nitrate [NO3] µmol kg−1

8 Dissolved phosphate [PO4] µmol kg−1

9 Dissolved silicon (as silicic acid) [Si] µmol kg−1

10 Maximum monthly mean mixed-layer depth MLD Meters (m)
11 Mean average annual surface chlorophyll Chl a mg m−3

12 Bathymetry Bathy. Meters (m)

bathymetry. Features 10–12 were drawn from several data
sources. A climatology of MLD (feature 10) was compiled
using the Argo database (Holte et al., 2017). We selected
maximum monthly mean MLD as the feature of interest as
this appears to be the spatiotemporal scale most relevant for
influencing [Ba] distributions (Bates et al., 2017). Feature 11
represents a blended Sea-viewing Wide Field-of-view Sensor
and Moderate Resolution Imaging Spectroradiometer clima-
tology of chlorophyll a that was obtained from the Coper-
nicus Marine Environment Monitoring Service (CMEMS,
2021). We calculated the mean annual chlorophyll a for each
grid cell in the data product and log-transformed the data
to reduce parameter weighting (e.g., Rafter et al., 2019).
Data for MLD and chlorophyll a were extracted at the lo-
cation of [Ba] observations using nearest-neighbor interpo-
lation, and their values were logged in the master record.
Bathymetric information (feature 12) was extracted from one
of two sources. Our preferred source was the sample meta-
data, which generally included a value for bathymetry. For
samples lacking bathymetric information, we used nearest-
neighbor interpolation to extract a value from the ETOPO5
Global Relief Model (National Geophysical Data Center,
1993). Occasionally, the ETOPO5-extracted bathymetry was
shallower than the deepest observation of [Ba] in a given ver-
tical profile. In such cases, the bathymetry logged in the mas-
ter record was set to 1.01 times the depth of the deepest ob-
servation in that profile.

The [Ba] data from the Indian Ocean were collected from
several, primarily pre-GEOTRACES sources (Table 2). As
such, these data were generally incomplete for the 12 fea-
tures used to train the ML models. Rather than using a mix-
ture of in situ and interpolated data, we decided to interpo-
late all Indian Ocean data for parameters 4–12. Data for pa-
rameters 4–9 were linearly interpolated from the nearest ver-
tical profile in the World Ocean Atlas 2018 (WOA; Boyer
et al., 2018; García et al., 2018a, b; Locarnini et al., 2018;
Zweng et al., 2018), and values for MLD and chlorophyll a

were extracted from the aforementioned data products using
nearest-neighbor interpolation. Bathymetric information was
obtained from either the WOA or ETOPO5. For the vast ma-
jority of the samples, bathymetry was taken as the arithmetic
mean of the maximum depth of the nearest vertical profile
in the WOA and the depth at the standard level below. For
example, if the maximum depth at a station was 950 m, the
bathymetry was recorded as 975 m, which is the mean of lev-
els 46 (950 m) and 47 (1000 m). For profiles with a maxi-
mum depth of 5500 m (level 102, the deepest in the WOA),
bathymetry was recorded as either 5550 m or the nearest-
neighbor-interpolated value from ETOPO5, whichever was
deeper.

This data ingestion process resulted in a master record
containing 5502 observations of [Ba] that also contained a
corresponding value for all 12 core features (Table 1). The
record was then split into a Pareto partition: the first par-
tition was used for ML model training (4345 observations,
79 % of data; Fig. 1a), and the second was used for model
testing (1157 data; 21 %). This partitioning was determined
based on the basin from which the sample was collected; data
from the Arctic, Atlantic, Pacific, and Southern oceans were
used in model training, whereas the 1157 [Ba] observations
from the Indian Ocean were reserved for model testing (Ta-
ble 2; Fig. 2). This location-based separation of training and
testing data was chosen to minimize overfitting, which can
occur when the training–testing separation is randomly as-
signed (see Sect. 3.2).

3 Methods

In the following subsections, we discuss details of the spe-
cific ML algorithm that was used for model development
(Sect. 3.1), explain the model training and testing process
(Sect. 3.2), and describe how a global prediction of [Ba] was
obtained and interrogated (Sect. 3.3).
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Table 2. Data sources. Information regarding the source of [Ba] incorporated into the master record.

Purpose Region Expedition ID Data source Data originators
(if unpublished)

Model training South Atlantic (meridional) GA02 GEOTRACES IDP
2017 (Schlitzer et al.,
2018)

Jose M. Godoy

North Atlantic (zonal) GA03 Rahman et al. (2022)

South Atlantic (zonal) GA10 Horner et al. (2015); Bates et al. (2017); Hsieh
and Henderson (2017); Bridgestock et
al. (2018)

Southern Ocean (meridional) GIPY04 GEOTRACES IDP
2017 (Schlitzer et al.,
2018)

Frank Dehairs

Southern Ocean (zonal) GIPY05 Hoppema et al. (2010)

Arctic GIPY11 Roeske et al. (2012)

GN01 Whitmore et al. (2022)

Pacific (meridional) GP15 GEOTRACES IDP
2021 (GEOTRACES
IDP Group, 2021)

Laura Whitmore,
Melissa Gilbert, Emilie
Le Roy, Tristan Horner,
Alan Shiller

Subtropical South Pacific (zonal) GP16 Rahman et al. (2022)

Model testing Indian Ocean GEOSECS Craig and Turekian (1980)

INDIGO 1 Jeandel et al. (1996)

INDIGO 2

INDIGO 3

SR3 Jacquet et al. (2004)

SS259 Singh et al. (2013)

Figure 2. Geographical distribution of the training and testing data. The 4345 items of core-feature-complete training data (red; Fig. 1) are
from the GEOTRACES 2021 Intermediate Data Product (GEOTRACES IDP Group, 2021); GEOTRACES expedition identifiers are noted
next to each section. The n= 1157 testing data items from the Indian Ocean are color-coded by expedition. Data sources listed in Table 2.
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3.1 Algorithm selection and training

We opted for supervised ML using a Gaussian process re-
gression learner, implemented in MATLAB. This particular
ML algorithm is non-parametric, kernel-based, and proba-
bilistic, which means that it does not make strong assump-
tions about the mapping function, can handle nonlinearities,
and takes into account the effect of random occurrences when
making predictions. Gaussian process regression algorithms
are widely used in geostatistics, where they are often referred
to as kriging (e.g., Cressie, 1993; Rasmussen and Williams,
2006; Glover et al., 2011). This type of algorithm is ideal
when working with continuous data that also contain a cer-
tain level of noise, such as from measurement uncertainty or
oceanographic variation. The MATLAB function fitrgp was
used for model training. A full list of the parameter selections
used in fitrgp is provided in Table S1 in the Supplement. All
predictors were normalized and standardized to have a mean
of zero and a standard deviation of unity. This process places
all parameters on the same relative range and reduces scale
dependencies.

A selection of the training data were used to train 4095
different machine learning models with the goal of finding
a model that could accurately simulate the global distribu-
tion of [Ba]. The number of models derives from the number
of features investigated, whereby each model uses a unique
combination of the 12 features in Table 1 and our testing fol-
lowed a factorial design whereby each feature was either en-
abled or disabled. This design yields a total of 212 unique fea-
ture combinations (i.e., levelsfeatures); however, since it is not
possible to train a model with zero features enabled, the final
number of unique, trainable, ML models with ≥ 1 features is
212–1= 4095. The full experiment list is provided in Horner
and Mete (2023). Each of the 4095 models was trained using
the same training dataset and with the same function param-
eters described in Table S1 in the Supplement.

3.2 Assessing model performance

Model performance – accuracy and generalizability – was as-
sessed during two phases: training and testing. During model
training, the 4345 observations of [Ba] from the Arctic, At-
lantic, Pacific, and Southern oceans were randomly split into
two folds: a training fold containing 80 % of the observations
and a holdout fold containing the other 20 %. Model accuracy
was assessed by comparing model-predicted [Ba] against ob-
served [Ba] for the 20 % of the data in the holdout fold. We
then performed additional testing to establish model gener-
alizability. A significant problem in supervised ML, and par-
ticularly in Gaussian process regression learning, is overfit-
ting: models may fit the noise in the training data, leading to
poor generalization performance (Rasmussen and Williams,
2006). Since our goal was to develop a global model of [Ba]
using regional training data, we deemed it especially impor-
tant to identify generalizable models. Generalizable models

were identified through a testing process involving regional
cross-validation; each trained model was used to predict [Ba]
for the 1157 samples from the Indian Ocean, and model pre-
dictions were again compared against observations. Impor-
tantly, no [Ba] data from the Indian Ocean were seen by any
of the models during training. This process helped to identify
models that may have been overfit to the training data and can
further be used to calculate generalization errors (Sect. 4.1).

The accuracy of trained models was determined by com-
paring ML model predictions against withheld data and cal-
culating the mean absolute error (MAE) and mean absolute
percentage error (MAPE), defined as follows:

MAE=

∑n
i=1

∣∣[Ba]predicted− [Ba]observed
∣∣

n
, (4)

and:

MAPE=
100%

n

∑n

i=1

∣∣∣∣ [Ba]predicted− [Ba]observed

[Ba]observed

∣∣∣∣ , (5)

respectively, where n is the sample size.
Models with lower accuracy exhibit higher errors, whereas

models with high accuracy have lower errors. We calculated
MAE and MAPE for every possible feature combination,
which enables quantification of how specific features affect
model performance. Likewise, we calculated errors for each
model based on predictions made during training (i.e., for the
holdout fold) and during model testing (i.e., during regional
cross-validation; Fig. 3). This information is used to quan-
tify generalization performance; low errors for both training
and testing indicate models that are both accurate and gen-
eralizable, whereas models with low training errors and high
testing errors might indicate models that are overfit to the
training data.

3.3 Global predictions

A select number of models with low MAE and MAPE were
used to simulate [Ba] on a global basis. The process by which
we selected these models is described in Sect. 5.1. Global
simulations were performed on the same grid as the WOA,
which was also used as the data source for features 1–9
(Boyer et al., 2018). The WOA is a 1◦× 1◦ resolution data
product with around 41 000 stations that contain up to 102
depth levels spanning 0–5500 m in 5, 25, 50, or 100 m in-
crements. Data for features 10–12 (MLD, chlorophyll a, and
bathymetry) were also resampled to the WOA grid using the
same sources and interpolation methods as described for the
Indian Ocean testing data in Sect. 2. Model outputs were vi-
sualized using Ocean Data View software (ODV; Figs. 5–8;
Schlitzer, 2023).

A selection of the most accurate models of [Ba] was used
to simulate Ba∗ and �barite. Star tracers, such as Ba∗, are
valuable for illustrating processes that influence the cycling
of elements in the ocean. First defined for N–P decoupling
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(N∗; Gruber and Sarmiento, 1997), star tracers show varia-
tions whenever there are differences in the sources and sinks
of the two elements being compared. If there are no differ-
ences in sources and sinks for either element, the tracer will
show conservative behavior because both elements share the
same circulation. Barium star is based on Ba–Si decoupling
and was first defined by Horner et al. (2015). The definition
of Ba∗ is shown in Eqs. (1) and (2). The coefficients in Eq. (2)
are based on data from the GEOTRACES 2021 Intermediate
Data Product and specifically the subset of these data shown
in Fig. 1. These coefficients differ from previous formula-
tions of Ba∗ that were based primarily on [Ba] and [Si] data
from the Southern and Atlantic oceans (e.g., Horner et al.,
2015; Bates et al., 2017). The global distribution of Ba∗ was
determined in two steps. First, [Si]in situ from the WOA 2018
(García et al., 2018b) was used to calculate [Ba]predicted using
Eq. (2). Next, values of [Ba]in situ were taken from ML model
output and Ba∗ calculated using Eq. (1).

Values of �barite were computed using the method de-
scribed by Rushdi et al. (2000), summarized in Eq. (3). The
numerator, Q, represents the in situ Ba and sulfate ion prod-
uct and, in this formulation, depends only on Ba and sulfate
molality. The denominator, Ksp, depends on T , S, and z (i.e.,
pressure) and is calculated in two steps: in situ T and S are
used to calculate the stoichiometric solubility product, and
then this value is modified by calculating the effect of pres-
sure on partial molal volume and compressibility, which are
functions of T and z. As with the calculation of Ba∗, val-
ues of in situ [Ba] were obtained from ML models, and co-
located data for T , S, and z were extracted from the WOA
(Locarnini et al., 2018; Zweng et al., 2018). Sulfate concen-
trations were assumed to be conservative with respect to S

using [sulfate]= 29.26 mmol kg−1 when salinity = 35 PSU.
This latter assumption likely breaks down in certain environ-
ments, such as where sulfate reduction occurs; accordingly,
our model is not used to predict �barite in restricted basins,
such as the Black Sea or Caspian Sea. Given that our es-
timates of �barite exhibit an MAE of 0.08 (Appendix), we
believe that values of �barite between 0.92 and 1.08 are in-
dicative of equilibrium between BaSO4 and seawater.

Output from the most accurate ML models was then used
to calculate mean [Ba] and �barite for each basin, for a series
of prescribed depth bins, and for the global ocean. This cal-
culation was performed by weighting each cell in the model
output by its volume, which ensures a fair comparison be-
tween any two points in the model output. We then subdi-
vided the global ocean into five sub-basins: Arctic, Atlantic,
Indian, Pacific, and Southern. Basin boundaries were defined
as per Eakins and Sharman (2010), though we merged the
Mediterranean and Baltic seas into the Atlantic and consid-
ered the South China Sea to be part of the Pacific Ocean. Nei-
ther [Ba] nor �barite was simulated in the Black or Caspian
seas, and thus these regions are not included in the global
mean calculations.

4 Results

4.1 Factors affecting model accuracy

Here we examine how model performance is influenced by
the number and nature of features included during training.
We consider model performance in terms of accuracy and
generalizability, which we quantify using MAE (Eq. 4). We
first explore how the number of features influences model
performance (Fig. 3). Here we see that increasing the number
of features generally improves the accuracy of trained mod-
els; however, the response differs depending on whether ac-
curacy is calculated based on comparison to the holdout fold
(i.e., during model training) or to the withheld Indian Ocean
data (i.e., during model testing). When considering only the
holdout fold, trained models predict [Ba] with a high level of
accuracy, with the mean, median, and most accurate trained
models achieve an MAE of 2.4, 1.7, and 1.3 nmol kg−1, re-
spectively. Similarly, increasing the number of features al-
most always improves model accuracy; the MAE of the most
accurate model for a given number of features decreases from
6.5 to 1.3 nmol kg−1 as the number of features is increased
from 1 to 9, at which point MAE plateaus between 1.4–
1.5 nmol kg−1 for models with 10–12 features (Fig. 3a).

Moving to the regional cross-validation, the overall per-
formance of models is lower; the same 4095 trained mod-
els achieve a mean, median, and most accurate MAE for the
Indian Ocean dataset of 8.8, 7.9, and 4.0 nmol kg−1, respec-
tively. For comparison, if [Ba] was estimated for these same
1157 Indian Ocean samples using the linear [Ba]–[Si] rela-
tionship (Fig. 1) and ambient [Si] as the only predictor, this
linear model would achieve an MAE of 6.8 nmol kg−1. Thus,
there are 1687 ML models that achieve a superior accuracy
compared to existing methods for estimating [Ba], offering
an improvement of as much as 41 % (Fig. 4). However, re-
gional cross-validation also shows that the addition of more
features may, in fact, degrade model performance. The MAE
of the most accurate model for a given number of features
decreases from 6.6 to 4.0 nmol kg−1 when the number of fea-
tures is increased from one to eight. When the number of fea-
tures is increased from 9 to 12, the MAE of the most accurate
models increases monotonically from 4.1 to 7.1 nmol kg−1.
The overall lower performance of trained models during re-
gional cross-validation – and the observation that many of the
feature-rich models perform worse than models with fewer
features – is indicative of certain models being overfit to
the training data. Together, these observations suggest that
the optimum number of features needed to accurately predict
[Ba] is between six and nine.

We also evaluated the nature of the predictors used to es-
timate [Ba]. The full factorial experiment design enables us
to perform comparisons between all models that contained a
certain feature and all of those that did not (Sect. 3.1). We
quantified the effect of adding a feature by comparing the
absolute and percentage change in MAE relative to the mean
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Figure 3. Effect of feature addition on ML model accuracy. Accu-
racy was quantified for each of the 4095 trained models and quan-
tified here using MAE (note log scale, which differs between pan-
els). The accuracy of trained models is shown for random holdout
cross-validation during training (a) and for regional cross-validation
during testing (b). Square indicates the performance of our favored
predictor model, no. 3080 (see Fig. 4, Sect. 5.1). The accuracy of
the Ba–Si linear regression benchmark is shown as a dashed line in
the lower panel (MAE = 6.8 nmol kg−1). To illustrate data density,
points have been randomly positioned within their respective bin
and plotted with 80 % transparency.

MAE of the two sets of models. This comparison was per-
formed three times: for all 4095 models based on the holdout
cross-folded training data, for all models using the regionally
cross-validated testing data, and again for the testing data but
only considering those 1687 models that achieved a superior
accuracy compared to the [Ba]–[Si] linear regression model
(Table 3).

This analysis yields three main results. When consider-
ing only the holdout cross-folded training data, the addition
of any of the 12 features improves model performance by
between −4.8 % and −56 %. Except for longitude, similar
across-the-board improvements were observed when consid-
ering only the testing data, though the improvements for most
features were more modest (between −3.0 % and −39 %).
When considering only the 1687 models that are superior to
the [Ba]–[Si] linear regression model, six features improved
model performance by −2.4 % to −8.3 % ([PO4], [NO3],
T , [O2], z, and [Si]), five degraded model performance by
+0.2 % to +22 % (bathy., Chl a, MLD, lat., and long.), and
salinity had no significant effect (Table 3).

Overall, our results indicate that between six and nine fea-
tures will result in an accurate and generalizable Gaussian
process regression ML model of [Ba] and that [PO4], [NO3],
T , [O2], z, [Si], and possibly S are likely to be included as
predictors in such a model.

4.2 Model outputs

Almost 1700 models achieved superior accuracy compared
to the Ba–Si linear regression benchmark of 6.8 nmol kg−1.
We winnow this list to a single model, no. 3080, in the next
section. We henceforth refer to model no. 3080 as our favored
predictor model, which achieves an MAE of 4.3 nmol kg−1

using z, T , S, [O2], [PO4], [NO3], and [Si] as predictors
(Fig. 4). Model no. 3080 is used to simulate [Ba], Ba∗, and
�barite on a global basis and to calculate whole-ocean aver-
ages. Surface plots showing the model outputs for the sea
surface, 1000, 2000, and 4000 m are shown in Figs. 5, 6, 7,
and 8, respectively.

Model no. 3080 contains 3 302 570 predictions each for
[Ba], Ba∗, and �barite (Horner and Mete, 2023). Assuming
that the MAPE and MAE are good estimates of the prediction
error, we estimate that modeled [Ba] and Ba∗ have uncertain-
ties of 6.0 % and 4.3 nmol kg−1, respectively. Uncertainties
on �barite were estimated by comparison to literature data,
which yields an MAE of 0.08. These uncertainty estimates
are discussed in more detail in Sect. 5.2 and the Appendix.

Modeled [Ba] ranges from 26.2 to 156.8 nmol kg−1, and
the data exhibit an unweighted mean of 72.0 nmol kg−1. The
range of model no. 3080 predictions is within the range of
[Ba] encountered in the 4345 items of training data (17.1–
159.8 nmol kg−1). This is an important consideration when
assessing the accuracy of Gaussian process regression mod-
els, and we provide additional discussion of this point in
the Supplement. Based on our formulation (Eqs. 1, 2), Ba∗

varies from −27.2 to +27.9 nmol kg−1 and possesses an un-
weighted mean of +2.4 nmol kg−1. Values of �barite vary
from 0.11 to 1.70 and exhibit an unweighted mean of 0.75.
To account for the different volumes represented by each cell
in the WOA grid, we constructed a volume-weighted mean
of [Ba] and �barite for the ocean as a whole, for each ocean
basin, and for a series of prescribed depth bins (Fig. 9). Look-
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Figure 4. Comparison of existing and ML methods to estimate [Ba] in seawater. Panel (a) shows the performance benchmark: predicted
[Ba] for the Indian Ocean testing data using the [Ba]–[Si] linear regression and ambient [Si] as the sole predictor. Panel (b) shows predicted
[Ba] using ML model 3080, which improves on existing methods by more than 37 %. Perfect correspondence between predictions and
observations is indicated by the dashed line marked 1 : 1. Data locations and sources are shown in Fig. 2 and Table 2, respectively; n refers
to the number of testing data for each campaign. Mean absolute error (MAE; Eq. 4) and mean absolute percentage error (MAPE; Eq. 5) are
noted for both models.

Table 3. Feature addition analysis. Effect of each feature on model performance for training and testing datasets. Model performance is
quantified using MAE; thus all columns have units of nanomoles per kilogram (nmol kg−1) unless otherwise shown. The testing analysis is
further subdivided into a comparison of all models and good models, meaning those that achieved superior accuracy compared to the Ba–Si
linear regression (Fig. 1).

Feature Training Testing

All models (n= 4095) All models (n= 4095) Good models (n= 1687)

Mean MAE of Mean MAE of Relative Mean MAE of Mean MAE of Relative Mean MAE of Mean MAE of Relative Share of
models with models without change in models with models without change in models with models without change in models with

feature feature MAE feature feature MAE feature feature MAE feature

[Si] 1.71 3.03 −56 % 7.08 10.6 −39 % 5.06 5.50 −8.3 % 63 %
z 1.83 2.90 −45 % 7.94 9.70 −20 % 5.05 5.44 −7.4 % 55 %
[O2] 2.03 2.71 −29 % 8.25 9.39 −13 % 5.14 5.33 −3.8 % 54 %
T 1.78 2.96 −50 % 7.61 10.0 −27 % 5.17 5.31 −2.8 % 59 %
[NO3] 2.09 2.65 −24 % 8.27 9.36 −12 % 5.16 5.30 −2.7 % 53 %
[PO4] 2.11 2.63 −22 % 8.24 9.40 −13 % 5.17 5.30 −2.4 % 53 %
S 2.02 2.72 −29 % 8.67 8.97 −3.5 % 5.23 5.23 0.0 % 53 %
Bathy. 2.30 2.44 −6.1 % 8.55 9.08 −6.0 % 5.23 5.22 0.2 % 51 %
Chl. 2.25 2.48 −10 % 8.67 8.97 −3.5 % 5.24 5.22 0.4 % 50 %
MLD 2.31 2.43 −4.8 % 8.69 8.95 −3.0 % 5.24 5.21 0.5 % 50 %
Lat. 2.16 2.58 −18 % 8.13 9.51 −16 % 5.32 5.11 4.0 % 54 %
Long. 2.17 2.57 −17 % 11.4 6.24 58 % 6.45 5.19 22 % 3.1 %

ing at the ocean as a whole, the probability density func-
tion of [Ba] roughly resembles a uniform distribution, with
a mean ocean [Ba] of 89 nmol kg−1 (Fig. 9a). Within this
mean is considerable spatial and vertical variation. For exam-
ple, the Arctic Ocean exhibits the lowest volume-weighted
mean [Ba] of 54 nmol kg−1, whereas mean Pacific [Ba] =
106 nmol kg−1. The Indian Ocean exhibits a similar mean
[Ba] (90 nmol kg−1) to the mean of the global ocean. At
depths shallower than 1000 m, [Ba] infrequently exceeds
100 nmol kg−1, whereas concentrations < 45 nmol kg−1 are
rare below 1000 m (Fig. 9b).

The probability density function of volume-weighted
�barite is more similar to a normal distribution, albeit with a

slight negative skew. Volume-weighted mean oceanic �barite
is 0.82. The Arctic, Atlantic, and Indian oceans are, on av-
erage, undersaturated with respect to BaSO4, all exhibit-
ing mean �barite ≤ 0.82. In contrast, the Pacific and South-
ern oceans are within uncertainty of saturation, with mean
�barite of 0.97 and 1.04, respectively (Fig. 9c). Values of
�barite < 0.2 are mostly restricted to the upper 250 m, whilst
values of �barite exceeding 1.5 are exceptionally rare, found
only in the upper 1000 m of the Southern Ocean. Lastly,
�barite tends to increase between the 0–250, 250–1000, and
1000–2000 m depth bins, increasing from 0.42 to 0.65 and
0.96, respectively. Average �barite in the deepest bin (2000–
5500 m) is slightly lower, with a mean value of 0.92 (Fig. 9d).
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Figure 5. Barium at the sea surface. Observed [Ba] between 0–50 m (a); model 3080 [Ba] (b), Ba∗ (c), and �barite (d). The dashed line in
panel (d) indicates the BaSO4 saturation horizon (i.e., �barite = 1.0). Panels (a) and (b) use the roma color map, whereas panels (c) and (d)
use vik and cork, respectively (Crameri, 2018). Color palettes and parameter ranges are the same for the respective panels in Figs. 6–8.

Figure 6. Barium at 1000 m. Observed [Ba] (a); model 3080 [Ba] (b), Ba∗ (c), and �barite (d). The dashed line in panel (d) indicates the
BaSO4 saturation horizon.

Given the accuracy of our model-derived �barite predictions
(0.08 to 0.10), the ocean between 1000–5500 m is at BaSO4
equilibrium, within uncertainty.

5 Discussion

5.1 Identification of the optimal predictor model

Choosing a single, optimal model configuration is challeng-
ing given the sheer number of skillful ML models. Below we
winnow the list from 4095 to a single model (no. 3080). We
base our winnowing primarily on the results of the regional

cross-validation performed in the Indian Ocean rather than
on the errors determined from random holdout cross-folding
of the training data. We believe that there are three strong
reasons for winnowing in this way. First, Gaussian process
regression learners tend to fit the noise in the training data,
meaning that the training error is significantly lower than
the generalization error (Rasmussen and Williams, 2006). In-
deed, trained models showed overall lower performance dur-
ing testing compared to during training, which we believe is
evidence of overfitting (Fig. 3, Table 3). Second, a generaliz-
able global model should be able to make predictions in re-
gions where it has not already learned anything about the tar-
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Figure 7. Barium at 2000 m. Observed [Ba] (a); model 3080 [Ba] (b), Ba∗ (c), and �barite (d). The dashed line in panel (d) indicates the
BaSO4 saturation horizon.

Figure 8. Barium at 4000 m. Observed [Ba] (a); model 3080 [Ba] (b), Ba∗ (c), and �barite (d). The dashed line in panel (d) indicates the
BaSO4 saturation horizon.

get variable. Our regional cross-validation approach satisfies
this consideration since no Indian Ocean data were seen dur-
ing model training. Third, the Indian Ocean is an ideal basin
for testing as it exhibits the full diversity of features expected
to influence [Ba] (riverine inputs, oxygen-minimum zones,
coastal upwelling, etc.) and constitutes ≈ 20 % of the global
ocean volume. Likewise, the Indian Ocean captures most of
the range in [Ba] seen elsewhere in the ocean (Fig. 9); this
likely reflects the input of Atlantic waters associated with the
Agulhas retroflection, the transport of old Pacific waters via
the Indonesian Throughflow, and the northward spreading of
mode and intermediate waters from the Southern Ocean. We

thus assume that the Indian Ocean testing errors are a good
approximation of the generalization error, which we now use
to winnow the list of models.

Our results show that 1687 of the 4095 ML models (41 %)
produce more accurate predictions of [Ba] than the bench-
mark Ba–Si linear regression using [Si] as the sole predictor
(Fig. 3, Table 3). We focus our winnowing on these 1687
models as they are superior compared to existing methods
for estimating [Ba] in seawater. Focusing only on these good
models reveals significant differences in the information con-
tent of the 12 features tested. For example, the inclusion
of spatial information in the form of latitude and longitude
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Figure 9. Stacked, volume-weighted histograms showing the relative frequency distribution of dissolved [Ba] (a, b) and �barite (c, d) in the
global ocean. The left column shows data grouped by basin, and the right column shows data grouped by a prescribed depth bin. Numbers in
each panel display the mean property value for that bin. Dashed line shows the global mean.

significantly degrades mean model performance by between
+4.0 % and +22 %, respectively. While bathymetry, chloro-
phyll a, and mixed-layer depth exhibited only minor influ-
ences, they were nonetheless deleterious to mean model per-
formance by between +0.2 % and +0.5 % (Table 3). Only
[PO4], [NO3], T , [O2], z, and [Si] consistently improved the
mean ML model, which corresponds to model no. 3112 (test-
ing MAE of 4.3 nmol kg−1). However, visual inspection of
model no. 3112 output reveals that it does not reproduce ex-
pected nearshore surface plumes of elevated [Ba] close to
certain major rivers (see Supplement). Though volumetri-
cally minor, riverine inputs are a geochemically important
component of the marine Ba cycle, and the existence of
nearshore Ba plumes underpins a major proxy application of
Ba. Nearshore riverine influence is easily discerned by low
S; we thus explored output from model no. 3080, which is
identical to model no. 3112 but includes S as a seventh fea-
ture during training. Model nos. 3080 and 3112 exhibit iden-
tical statistical performances for the testing data (MAE =
4.3 nmol kg−1; Fig. S1 in the Supplement) and make similar

predictions for mean marine [Ba] and �barite (89 nmol kg−1

and 0.82, respectively; see Supplement). The similar statis-
tics for the two models are consistent with S exerting a near-
negligible impact on overall model performance (Table 3).
Despite this small effect, model no. 3080 is better able to re-
produce riverine [Ba] plumes compared to model no. 3112
(see Supplement). We therefore consider model no. 3080 to
be our best estimate of marine [Ba]. Model no. 3080 achieves
a MAPE of 6.0 %, which represents a 39 % improvement
over existing methods for estimating [Ba] (Fig. 4). We hence-
forth consider model no. 3080 to be our optimal predictor
model, which we use to simulate [Ba], Ba∗, and �barite in
Figs. 5–9.

5.2 Model validation

We now explore the validity of model no. 3080 in terms of
its oceanographic consistency, the sources of uncertainty that
affect its accuracy, and potential limitations of the model out-
put. We find that model no. 3080 reproduces the major known
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features of the marine [Ba] distribution and makes testable
predictions for regions that are yet to be sampled.

5.2.1 Visual inspection of model output

Visual inspection of model output is an important compo-
nent of data analysis considering the limits of statistical tests
(see, e.g., Anscombe, 1973). Models may produce statisti-
cally satisfactory fits to the testing data, but the oceanic re-
alism of the output is also important to consider. Modeled
[Ba] should display patterns consistent with related oceano-
graphic properties and exhibit smooth vertical and spatial
variations (Boyle and Edmond, 1975). Predicted [Ba] from
model no. 3080 does indeed show smooth and systematic
spatial and vertical variations that also resemble sparse ob-
servations (Figs. 4–8).

Model no. 3080 also shows systematic increases in [Ba]
close to land, especially near the mouths of major rivers
(Fig. 4). This is reassuring given that elevated sea surface
[Ba] close to rivers is both widely reported and one of the ma-
jor proxy applications of Ba: reconstructing spatiotemporal
patterns of terrestrial runoff by measuring the Ba : Ca ratio
of carbonates (e.g., Sinclair and McCulloch, 2004; LaVigne
et al., 2016). For example, model no. 3080 correctly iden-
tifies elevated [Ba] near the Ganges–Brahmaputra (Singh et
al., 2013), Río de la Plata (GEOTRACES IDP Group, 2021),
and Yangtze outflows (Cao et al., 2021). Model no. 3080
also predicts elevated sea surface [Ba] in the Gulf of Guinea
where several rivers discharge, including the Niger River; in
the eastern tropical Atlantic associated with the Congo River
(Edmond et al., 1978; Zhang et al., 2023); and in the Gulf of
St. Lawrence (St. Lawrence River; see Supplement for addi-
tional details and figures). Except for the Congo River, these
predictions of elevated nearshore [Ba] await corroboration.
Interestingly, model no. 3080 does not predict elevated [Ba]
at all major river mouths; neither the Mississippi River nor
the Amazon River is associated with significant increases in
sea surface [Ba] (see Supplement). The reasons for the lack
of elevated [Ba] near the outflow of these two rivers is less
clear. It is possible that the model is simply inaccurate in
these regions, though we have no particular reason to believe
that this is the case. Alternatively, it may reflect seasonal vari-
ations in Ba release that are not captured by our mean annual
model (e.g., Joung and Shiller, 2014). It could also indicate
that these particular rivers are not major net sources of Ba to
the surface ocean, which might be the case if dissolved Ba
is being retained in the catchment (e.g., Charbonnier et al.,
2020) or estuary (e.g., Coffey et al., 1997).

Overall, model no. 3080 makes accurate, oceanographi-
cally consistent predictions of [Ba] in the Indian Ocean us-
ing input data from the WOA. Model no. 3080 also makes
a number of testable predictions of [Ba] in regions lacking
direct observations. Given that these predictions were made
using the same model and the same WOA inputs, we believe

that it is reasonable to assume that model no. 3080 output is
an accurate representation of mean annual global [Ba].

5.2.2 Quantifying uncertainties

We now describe and, where possible, quantify two pos-
sible sources of uncertainty with regard to our ML model
output. Before doing so, we describe how uncertainty is
quantified and the uncertainty of existing approaches. Cer-
tain ML models, such as Gaussian process regression, of-
fer low interpretability, meaning it is not possible to assess
uncertainty using a conventional error propagation. Thus,
all model uncertainties are assessed post hoc by comparing
predictions against observations. Our preferred metrics are
MAE and MAPE (Eqs. 4, 5). Existing approaches for esti-
mating [Ba] result in a wide range of uncertainties. At the
low end, the uncertainty associated with measuring [Ba] in
seawater represents a fundamental limit to the accuracy of
any model. A number of analysts report measurement un-
certainties in the range of 1 %–2 % (e.g., Pyle et al., 2018;
Cao et al., 2020). This level of intra-laboratory uncertainty
is typical for [Ba] data obtained using isotope dilution–
inductively coupled plasma mass spectrometry and applies
to GEOTRACES-era datasets and to much of the testing
data from the Indian Ocean. However, intra-laboratory uncer-
tainty is typically much smaller than inter-laboratory uncer-
tainty, which is often between 6 %–9 % (e.g., Hathorne et al.,
2013). At the upper end, the benchmark Ba–Si linear regres-
sion achieves a MAPE of 9.7 % in the Indian Ocean (Fig. 4).
Thus, useful ML models of [Ba] should achieve MAPE be-
tween 1 %–10 %. Indeed, our favored predictor model, no.
3080, achieves a MAPE of 6.0 %.

Now we consider two factors that contribute to the ob-
served 6.0 % uncertainty: realization uncertainty and uncer-
tainties in the training data. The realization uncertainty stems
from the fact that two models trained on the same training
dataset – even with the exact same subset of model features
– will produce slightly different predictions. This is due to
the holdout cross-folding process used during model train-
ing, which partitions the training dataset into random subsets
(Sect. 3.1). The training process therefore results in a slightly
different trained model each time the model is realized. We
quantified the realization uncertainty by training select mod-
els 100 times and calculating the relative standard deviation
of the different predictions of [Ba] for the 3.3 million values
in the output. This uncertainty is small: the median, mean,
and maximum realization uncertainties were 0.03 %, 0.04 %,
and 0.32 % variability in modeled [Ba].

Next we consider uncertainties in the training data. As
noted above, many labs report uncertainties in [Ba] measure-
ments of 1 %–2 %, while inter-laboratory differences may be
larger by up to a factor of 5. However, this does not con-
sider any uncertainties associated with the other physical and
chemical features used to predict [Ba]. In general, these sup-
porting measurement uncertainties should be small: all over-
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board sensors are regularly calibrated, and biogeochemical
properties in GEOTRACES are determined using established
methods that are based on GO-SHIP best practices (Hood
et al., 2010). Moreover, all GEOTRACES sections include
crossover stations that are intended to facilitate intercalibra-
tion of all parameters, including those used here to predict
[Ba] (Fig. 2; Cutter, 2013). The WOA, MLD, Chl a, and
bathymetry data products are similarly subjected to strin-
gent quality review, and so we consider it unlikely that these
data contribute systematic biases. We believe that the most
likely source of uncertainty relates to the fact that all predic-
tor information used for model testing in the Indian Ocean
was derived from time-averaged data products, whereas [Ba]
was derived from in situ measurements. We made the de-
cision to use time-averaged data products as predictors be-
cause the in situ data were incomplete for all 12 core features
(Table 1). This limitation would have necessitated interpola-
tion for some features and not others. Since all models were
tested using the same predictor information, the comparison
process should avoid systematic errors, though this does not
preclude temporal variability, described next.

5.2.3 Other considerations

We now consider four other factors that potentially con-
tribute to the uncertainty of the model output: short- and
long-term temporal variations, limitations of ML, and uncer-
tainties regarding the thermodynamic properties of BaSO4.
Short-timescale variability in [Ba] may affect how models
were evaluated, though this effect is difficult to quantify. All
the models were trained using in situ physical and chemical
data. Trained models should therefore be able to resolve sea-
sonal variations in [Ba], so long as the models are also pro-
vided with seasonally resolved predictor information. How-
ever, model predictions in the Indian Ocean were made using
annual average physical and chemical conditions and then
evaluated by comparing these predictions against in situ [Ba].
The temporal mismatch between Indian Ocean observations
and predictions is unlikely to be significant in the deep ocean,
where seasonal variations are minor and the Ba residence
time is longest (e.g., Hayes et al., 2018). Seasonal variations
are, however, likely to matter more for the surface ocean. We
were able to minimize some of the impact of these uncer-
tainties by using long-term averages of Chl a and the max-
imum monthly mean MLD during model training and test-
ing. Significant seasonal mismatches for other parameters
are unavoidable given that [Ba] data are too sparse to de-
velop a time-resolved model. We suspect that these variations
are most likely to be significant for boundary sources rather
than biogeochemical cycling of Ba; significant biogeochem-
ical drawdown of surface [Ba] over seasonal timescales ap-
pears to be rare (e.g., Esser and Volpe, 2002), whereas there
are large seasonal variations in river discharge that impact
nearshore [Ba] (e.g., Samanta and Dalai, 2016). These suspi-
cions could be tested using a model with a spatial resolution

better than 1×1◦, which – in theory – is possible with model
no. 3080 so long as similarly high-resolution data are pro-
vided for the seven predictors utilized by this model (z, T ,
S, [O2], [PO4], [NO3], and [Si]). While it is challenging to
precisely quantify seasonal uncertainties, we note that model
no. 3080 performs well at low [Ba], which is found mostly
near the surface, where seasonal variations should exhibit the
largest effects. Likewise, seasonal variations will have only
a minor effect on our calculations of global mean [Ba] or
�barite (Fig. 8).

Long-term variability in [Ba] may also influence model
performance since the testing data from the Indian Ocean
were collected between 1977 (GEOSECS) and 2008 (SS259;
Fig. 2). If secular changes in Indian Ocean [Ba] were oc-
curring, we might expect models to make accurate predic-
tions for some datasets at the expense of others. In contrast,
we note that model no. 3080 reproduces all testing datasets
similarly well, with the exception of a subset of samples
from SS259 in the deep Bay of Bengal. Here we observe
that model no. 3080 predicts 18 % higher [Ba] than that ob-
served by Singh et al. (2013) for the 42 samples between
1000–3000 m (Figs. 4b; 7a, b). Interestingly, model no. 3080
correctly predicts [Ba] at nearby GEOSECS stations 445 and
446, also in the Bay of Bengal, sampled some 31 years prior
to SS259. We briefly consider three possibilities for the ori-
gin of this regional model–data discrepancy. It may derive
from the fact that model no. 3080 does not include the fea-
tures needed to correctly predict [Ba] in these samples. We
view this as the least likely possibility as model no. 3080
performs well for other samples from the northern Indian
Ocean, including for samples shallower than 1000 m from
Singh et al. (2013). Another possibility is that it could reflect
an 18 % decrease in [Ba] in the deep Bay of Bengal since the
GEOSECS survey in the 1970s. Lastly, it could reflect differ-
ences in how in situ [Ba] was measured, noting that Singh et
al. (2013) opted for standard addition instead of isotope dilu-
tion. We currently lack the data needed to confidently distin-
guish between these latter two possibilities.

A third factor concerns the limitations of ML itself. We
note that no trained model was able to achieve a MAPE better
than∼ 6 %. This 6 % value may represent one of three things.
First, it may point toward an intrinsic limitation of Gaussian
process regression. Other types of ML, such as decision trees
or artificial neural networks, may be able to achieve supe-
rior accuracy, though this was not investigated. Second, it
may indicate that the 12 features investigated provide insuf-
ficient information about [Ba] to achieve higher accuracy. We
view this as unlikely given that our earlier analysis showed
that only 6–9 features were needed to accurately simulate
[Ba] and that the 12 features tested have proven useful in
other studies simulating dissolved tracer distributions (e.g.,
Rafter et al., 2019; Sherwen et al., 2019; Roshan and De-
Vries, 2021). However, this does not rule out the existence
of other features beyond the 12 that we tested and that are
more useful for predicting [Ba]; it is only that we did not
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investigate them. Third, it is possible that the lowest MAPE
of ∼ 6 % reflects the current limit of inter-laboratory uncer-
tainty in determining [Ba]. We note that inter-laboratory un-
certainties of 6 %–9 % were reported for the measurement of
Ba : Ca in carbonates (n= 10 labs; Hathorne et al., 2013). If
the ∼ 6 % MAPE derives from inter-laboratory uncertainty,
it is unlikely that further model refinements will improve the
accuracy of [Ba] predictions: the fundamental limitation is
the data, not the model.

A final source of uncertainty concerns the computation of
�barite, which contains two further sources of uncertainty: the
thermodynamic model and the solubility coefficients used to
calculate Ksp. We calculated �barite based on the computa-
tion described by Rushdi et al. (2000), and our approach
yields similar values to their study and several others (e.g.,
Jeandel et al., 1996; Monnin et al., 1999; see Appendix). The
model used by Rushdi et al. (2000) is based on BaSO4 sol-
ubility data from Raju and Atkinson (1988), who note good
agreement with the thermodynamic data of Blount (1977).
These solubility data were obtained based on experimenta-
tion with lab-made, coarse-grained BaSO4, which is unlikely
to be wholly representative of the microcrystalline BaSO4
precipitates found in seawater. Thus, the absolute values of
�barite calculated here may be subject to eventual revision;
however, the vertical (Fig. 1), spatial (Figs. 4–8), and whole-
ocean (Fig. 9) trends in �barite are robust. Should new ther-
modynamic data for marine-relevant micron-sized pelagic
BaSO4 become available, updated maps of �barite could be
recalculated using model-3080-derived [Ba] data. Given the
nature of these uncertainties, we opted to calculate prediction
uncertainties for �barite empirically by comparison to litera-
ture data (see Appendix). This yields a value between 0.08
and 0.10, which is similar to the 10 % prediction error re-
ported by Monnin et al. (1999).

5.3 Barium in seawater: a global perspective

Here we provide an overview of the main model features in
[Ba], Ba∗, and �barite, then outline three possible applica-
tions of the model output.

5.3.1 Dissolved distribution of [Ba]

Model no. 3080 predictions show several interesting fea-
tures in [Ba] (Figs. 5–8). The model reproduces the expected
nutrient-like distribution of [Ba] (Fig. 1c) and shows a gen-
eral increase in [Ba] along the meridional overturning circu-
lation: volume-weighted mean [Ba] increases from 67 to 90
to 106 nmol kg−1 from the Atlantic to Indian to the Pacific
Ocean, respectively. The model also predicts some variation
in shallow [Ba] that follows major surface water currents,
such as a region of elevated [Ba] associated with the North
Pacific Current, as well as low [Ba] in the western North
Atlantic associated with the Gulf Stream (Fig. 5b; Talley et

al., 2011). However, these features and the processes driving
them await corroboration.

Considering the ocean as a whole, we can use our model
to calculate the total Ba inventory of seawater. Using the
mean oceanic [Ba] of 89 nmol kg−1 and multiplying by the
mass of seawater (1.37× 1021 kg) yields a total inventory of
122± 7 Tmol Ba, whereby the uncertainty is based on the
MAPE of model no. 3080 (6.0 %). This estimate of the to-
tal oceanic Ba inventory is between 11 %–21 % lower than
existing estimates of 145 Tmol Ba (Dickens et al., 2003;
Carter et al., 2020). Given the range of probable global ma-
rine Ba fluxes between 18 (Paytan and Kastner, 1996) and
44 Gmol Ba yr−1 (Rahman et al., 2022), our inventory esti-
mate places the mean residence time of Ba in seawater be-
tween 2600–7200 years.

5.3.2 The Ba–Si relationship

We now quantify spatial and vertical variations in the Ba–
Si relationship, which we explore using Ba∗. Star tracers,
such as Ba∗, highlight the processes affecting the distribu-
tion of an element by comparing it to another tracer that
shares the same circulation. Originally described to explore
global patterns of nitrogen fixation and denitrification (Gru-
ber and Sarmiento, 1997), the concept has since been ex-
tended to study the processes affecting the distributions of
many other bioactive elements, including Si (Si∗, relative
to N; Sarmiento et al., 2004), cadmium (Cd∗, relative to P;
Baars et al., 2014), and zinc (Zn∗, relative to Si; Wyatt et
al., 2014). First defined by Horner et al. (2015) for Ba, Ba∗

is analogous to other star tracers: it is a measure of Ba–Si
decoupling whereby larger values indicate larger Ba–Si de-
viations relative to expected mean ocean behavior. Vertical
or spatial differences in Ba and Si sources or sinks will drive
variations in Ba∗, as will any Ba : Si fractionation occurring
during their combined cycling. Conversely, if all Ba and Si
cycling occurs in the same places (and with a fixed Ba : Si
ratio), no Ba–Si decoupling will occur, and Ba∗ will exhibit
conservative behavior. Since Ba and Si are cycled by differ-
ent processes and since there are large vertical and spatial
variations in the intensity of these processes (e.g., Bishop,
1989), significant variations in Ba∗ are possible. We now ex-
plore these variations.

In the surface ocean, patterns of Ba∗ generally resemble
those of [Ba] (Fig. 4). In large parts of the ocean, surface
[Si] approaches 0 µmol kg−1; thus, variations in Ba∗ derive
mostly from variations in [Ba]. This is most evident when ex-
amining regions with significant terrestrial input of Ba, such
as from major rivers (Sect. 5.2.1) and from rivers and con-
tinental shelves in the Arctic (e.g., Guay and Falkner, 1998;
Whitmore et al., 2022; Fig. 5a). The Southern Ocean also
exhibits positive Ba∗, though we suspect the mechanism is
different. Here we observe a belt of waters with positive Ba∗

≈+20 nmol kg−1 centered on the Polar Frontal Zone – the
region between the Antarctic Polar Front and the Subantarc-
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tic Front (Orsi et al., 1995; Fig. 5a). Silicic acid is intensely
stripped from waters that transit northward through this re-
gion (e.g., Sarmiento et al., 2004), potentially contributing to
elevated Ba∗ at the sea surface. Dissolved [Ba] and Ba∗ then
decrease to the north of the Subantarctic Front, partly driven
by extensive particulate Ba formation in the frontal region
(e.g., Bishop, 1989).

At 1000 m, the Atlantic, South Pacific, and southern Indian
oceans exhibit positive Ba∗ around +10 nmol kg−1, whereas
the North Pacific, Southern, and northern Indian oceans are
negative between −10 and −20 nmol kg−1 (Fig. 6c). The
positive anomalies are likely to be related to the northward
spreading of southern-sourced intermediate waters that orig-
inate within the Polar Frontal Zone and carry positive Ba∗

into the low latitudes (e.g., Bates et al., 2017). In the At-
lantic, these values are carried all the way to the north of
the basin and return as North Atlantic Deep Water with only
minor modifications to Ba∗ (≈+10 nmol kg−1; Figs. 6c, 7c,
8c). Negative Ba∗ in the North Pacific, Southern, and north-
ern Indian oceans at 1000 m likely reflects a mixture of hy-
drographic processes and in situ processes. For example,
the extensive region of negative Ba∗ in the North Pacific
is closely associated with North Pacific Intermediate Water,
which originates in the Sea of Okhotsk (Talley, 1991). While
the specific mechanism sustaining this particular Ba∗ feature
is unknown, it most likely reflects a combination of prefer-
ential removal of Ba relative to Si in the source water forma-
tion region (such as from particulate Ba formation) and weak
vertical mixing in the subsurface North Pacific relative to lat-
eral transports (e.g., Kawabe and Fujio, 2010). We suspect
that the negative Ba∗ values seen above 1000 m in the north-
ern Indian Ocean originate through processes occurring in-
ternally within this basin as the majority of the Indian Ocean
below 1000 m exhibits positive Ba∗. A possible mechanism
for these shallow negative Ba∗ anomalies may relate to the
relatively weak overturning transports (Talley, 2008) and the
strong particulate Ba cycle north of 30◦ S (Singh et al., 2013),
though this awaits more detailed investigation.

Lastly, the Southern Ocean exhibits negative Ba∗ between
−10 and −20 nmol kg−1 from ≈ 200 m water depth to the
seafloor. These negative anomalies in Ba∗ appear to be asso-
ciated with Circumpolar Deep Water and, below that, Antarc-
tic Bottom Water; the influence of the latter can also be seen
in near-bottom negative Ba∗ in the South Pacific, southern In-
dian, and South Atlantic oceans (Fig. 8c). As with the other
basins, the origin of the negative Ba∗ waters in the Southern
Ocean likely reflects a combination of in situ and circulation-
related phenomena. For example, in the Southern Ocean, Si
is only stripped at the very surface, whereas particulate Ba
formation is thought to be greatest in the mesopelagic (i.e.,
between 200–1000 m; e.g., Stroobants et al., 1991). Barite
formation is generally considered to be related to the regener-
ation of particulate organic matter (e.g., Chow and Goldberg,
1960), whereby the former consumes Ba, and the latter re-
leases Si. Thus, intense organic matter remineralization and

associated pelagic BaSO4 precipitation could contribute to
negative Ba∗ in the mesopelagic Southern Ocean. Similarly,
the Si cycle in the Southern Ocean tends to trap a significant
fraction of the global Si inventory in the waters circulating
close to Antarctica (e.g., Holzer et al., 2014). Since the cal-
culation of Ba∗ depends on both [Ba] and [Si], waters with
elevated [Si] will exhibit lower Ba∗ whether or not there is
increased Ba removal.

By 2000 m, almost all of the ocean north of 50◦ S exhibits
positive Ba∗ (Fig. 7c). By 4000 m, the areal extent of the
positive-Ba∗ waters shrinks to encompass the area north of
30◦ S (Fig. 8c). Despite covering a smaller area, the abyssal
ocean exhibits the most positive Ba∗ values outside of the
surface of the Southern Ocean. The driver of elevated and in-
creasing Ba∗ between the deep and abyssal oceans likely re-
flects a mixture of local and regional processes, and we offer
two speculative explanations for these patterns. First, Si trap-
ping in the Southern Ocean potentially renders most of the
low-latitude deep ocean deficient in Si relative to Ba. Thus,
much of the ocean may exhibit more positive Ba∗ than the
deep circum-Antarctic region due to processes unrelated to
Ba cycling. Second, the most positive Ba∗ values are gener-
ally found close to the seafloor rather than at the mid-depths,
especially in the North Pacific, the Peru and Chile basins, and
the Philippine Sea. This may indicate a mechanism that pref-
erentially removes Ba (relative to Si) from the mid-depths or
the input of Ba (relative to Si) close to the seafloor.

Systematic variations in Ba∗ arise due to differences in the
marine biogeochemical cycles of Ba and Si. While, in some
cases, the specific drivers of these variations remain unre-
solved, our model identifies multiple hotspots of Ba–Si de-
coupling that warrant additional study.

5.3.3 Barite saturation state of seawater

Here we show that our model can predict �barite with an
MAE of 0.08; that our output is in agreement with pub-
lished values; and that the deep ocean, below 1000 m, is at
saturation with respect to BaSO4. By comparison to litera-
ture data, we estimate that our model achieves a typical pre-
diction uncertainty with regard to �barite of 0.08 (see Ap-
pendix). Accordingly, values of �barite between 0.92–1.08
can be considered to be BaSO4 saturated, whereas values
of �barite < 0.92 or > 1.08 indicate under- or supersatura-
tion, respectively. Global patterns in �barite derived using our
model are similar to those reported by Monnin et al. (1999)
and Rushdi et al. (2000). Readers looking for detailed basin-
by-basin descriptions of �barite are directed to those stud-
ies. Briefly, our model shows that, with the exception of the
high latitudes, the surface ocean is undersaturated with re-
spect to BaSO4 (i.e., �barite < 0.92). The lowest values of
�barite in the open ocean are observed in the hot, salty cores
of the subtropical gyres (�barite between 0.1 and 0.2; Fig. 5d).
Conversely, the cold and fresh polar regions exhibit supersat-
uration at the sea surface, though there are important differ-
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ences between the Southern and Arctic oceans. The Southern
Ocean exhibits BaSO4 saturation to depths around 2000 m,
whereas the Arctic Ocean switches to undersaturated con-
ditions below the halocline (∼ 250 m). At 1000 m, most of
the North Pacific achieves saturation (or slight supersatu-
ration) with respect to BaSO4 (Fig. 6d), and at 2000 m al-
most all of the ocean exhibits �barite > 0.92. The main excep-
tions to this are the Atlantic Ocean, which is undersaturated
at all depths, and the southern Indian Ocean between 35–
50◦ S (Fig. 7d). The South Pacific and Indian oceans return
to undersaturated conditions by 4000 m, whereas parts of
the North and eastern equatorial Pacific remain saturated to
the seafloor (Fig. 8d). From a global perspective, the oceans
are slightly undersaturated with respect to BaSO4: volume-
weighted mean �barite = 0.82; however, the ocean between
1000–5500 m exhibits �barite ≥ 0.92 (Fig. 9). This result im-
plies that the deep ocean, as a whole, is close to chemical
equilibrium with respect to BaSO4.

5.3.4 Model applications

In the spirit of maximizing model utility, we suggest three
possible uses for model no. 3080 outputs. First, the out-
puts can be used for model intercomparison and intercali-
bration. For example, a number of statistical models, such
as the optimum multiparameter optimization, have been suc-
cessfully used to study Ba cycling in the North Atlantic (Le
Roy et al., 2018; Rahman et al., 2022), southeastern Pacific
(Rahman et al., 2022), and Mediterranean Sea (Jullion et al.,
2017). These models can apportion the relative contributions
of in situ biogeochemical cycling and conservative mixing
to observed [Ba]; however, accurate quantification of these
processes requires a priori knowledge of end-member water
mass [Ba], which model no. 3080 can provide. Our model
could also be used to benchmark output from process-based
models, such as ocean circulation inverse models (e.g., John
et al., 2020; Roshan and DeVries, 2021). Second, the out-
put can be used for interpolation purposes. Many groups in-
vestigated Ba partitioning into various types of marine car-
bonates (see Sect. 1 for examples); however, these investi-
gations are sometimes performed without a co-located mea-
surement of [Ba]. In these cases, output from model no. 3080
could be used to help calibrate specific substrates, such as
deep-sea corals or benthic forams. This also avoids the po-
tential for circular reasoning whereby [Si] is used to estimate
[Ba], which is then reconstructed from the Ba : Ca ratio of
carbonates to estimate [Si]. Third, the model output makes
testable predictions for regions of the ocean that have yet to
be sampled by GEOTRACES-style surveys. Several of these
regions, such as the Southern Ocean, exhibit sharp lateral and
vertical gradients in [Ba], Ba∗, and �barite. Such gradients
should be considered to be prime targets for future process-
oriented studies of marine Ba cycling.

6 Data availability

The Gaussian process regression machine learning
model, data used in model training and validation, and
global outputs are available in Horner and Mete (2023,
https://doi.org/10.26008/1912/bco-dmo.885506.2).

7 Conclusions

This study presents a spatially and vertically resolved global
model of [Ba] determined using Gaussian process regres-
sion machine learning. The model reproduces several known
features of the marine [Ba] distribution and makes testable
predictions in regions that are yet to be sampled. Analy-
sis of the model output reveals that the mean oceanic [Ba]
is 89 nmol kg−1, implying a total marine Ba inventory of
122±7 Tmol. Using predictors from the World Ocean Atlas,
we also estimate the global distribution of Ba∗ and �barite.
Both properties exhibit systematic gradients that could be
investigated in future studies. The mean oceanic �barite is
0.82, though between 1000–5500 m the mean is ≥ 0.92, im-
plying that the deep ocean is at equilibrium with respect to
barite. Our model output should prove valuable in studies of
Ba biogeochemistry, specifically for statistical- and process-
based model validation, for calibrating sedimentary archives,
and for identifying promising regions for further study. More
broadly, our study demonstrates the utility of using machine
learning to accurately simulate the distributions of trace el-
ements in seawater. With minor adjustments, our approach
could be employed to make predictions for other dissolved
tracers in the sea.

Appendix A

Here we compare our results with published profiles of
�barite. Our results were calculated using the thermodynamic
model of Rushdi et al. (2000); model no. 3080 [Ba]; and
WOA T , S, and pressure. Literature profiles of �barite were
calculated using one of three different thermodynamic mod-
els and in situ observations of [Ba], T , S, and pressure. In
general, there is strong agreement between modeled and in
situ �barite, whereby our model reproduces the shape of pub-
lished profiles (Fig. A1). There are, however, some small
systematic offsets between the various approaches, and we
suspect that these derive from differences in the underlying
thermodynamic models.

We compare our model output with literature data �barite
at two locations in two basins (Fig. A1). These locations were
chosen to ensure a fair comparison between studies; at each
location, at least two studies calculated profiles of �barite
using the same underlying in situ data for [Ba], T , S, and
pressure. Thus, any differences in modeled �barite should de-
rive from the thermodynamic model and not the input data.
Likewise, literature profiles at these locations were based on
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Figure A1. Comparison of literature- (symbols) and model-3080-derived (dashed line) values of �barite. Panels (a) and (b) show profiles of
�barite at GEOSECS st. 89 (60◦ 0′ S, 0◦ 2′ E). The other panels are from the Indian Ocean: (c) and (d) are from INDIGO 2 st. 36 (6◦ 9′ S,
50◦ 55′ E), and (e) is from GEOSECS st. 420 (0◦ 3′ S, 50◦ 55′ E), some ≈ 675 km north of INDIGO 2 st. 36.

calculations for pure, rather than strontian, BaSO4, as in our
study. Published profiles of �barite were extracted graphically
from each study using WebPlotDigitizer (Rohatgi, 2022).
This extraction process may introduce some minor scatter in
the literature data, though this is relatively minor compared
to the range of variation in �barite.

First, we examine profiles of �barite reported for
GEOSECS st. 89 in the Southern Ocean (Fig. A1; Monnin
et al., 1999; Rushdi et al., 2000). Modeled and published
profiles show supersaturation in the surface ocean and un-
dersaturation below 2000–2500 m. Profiles from Rushdi et
al. (2000) show excellent agreement with �barite calculated
from model no. 3080 [Ba] and WOA T , S, and pressure, with
our output offset by an MAE of 0.06 (n= 22). Given that we
use the same thermodynamic model as Rushdi et al. (2000),
the overall excellent agreement with their study is not sur-
prising. However, the result is nonetheless reassuring since
our study uses mean annual values for the various inputs,
whereas Rushdi et al. (2000) utilized in situ data. There is a
slightly larger offset between our profile of �barite and that
calculated by Monnin et al. (1999), with our respective pro-
file exhibiting an MAE of 0.13 (n= 41). This most likely
reflects differences in the underlying thermodynamic model
and not the in situ data since our model reproduces the same
overall profile shape as Monnin et al. (1999). Likewise, both
Monnin et al. (1999) and Rushdi et al. (2000) used the same
in situ input data, and their results are highly comparable,
albeit with an offset similar to that between our results and
Monnin et al. (1999).

Next we examine profiles of �barite in the Indian Ocean for
samples from INDIGO 2 st. 36 (Fig. A1; Jeandel et al., 1996;
Rushdi et al., 2000). Profiles of �barite show undersatura-
tion at the surface, moderate supersaturation between 2000–

3500 m, and then a return to undersaturated conditions down
to the seafloor. Our profile shows overall excellent agreement
with that of Jeandel et al. (1996), whereby a comparison of
�barite yields an MAE of 0.03 (n= 21). Our profile shows
similarly good agreement with Rushdi et al. (2000), whereby
a comparison between our respective values of �barite yields
an MAE of 0.04 (n= 20).

We also compared our results with data from st. 420 of
GEOSECS (Monnin et al., 1999), which is located≈ 675 km
north of INDIGO 2 st. 36 (Fig. 2). As with data from the
Southern Ocean (GEOSECS St. 89), our profile data are off-
set to higher �barite than those of Monnin et al. (1999), with
slightly larger MAE of 0.16 (n= 29). However, our modeled
�barite is generally in much closer agreement with Monnin et
al. (1999) above 1100 m compared to below, equivalent to an
MAE of 0.04 (n= 8) and 0.21 (n= 21), respectively. In this
case it is more challenging to ascribe a unique cause to the
differences in calculated �barite; these offsets could relate to
differences in the predictors or the thermodynamic model.

We can use these comparisons to estimate the prediction
uncertainty of our model-derived values of �barite. The MAE
of the 133 comparisons shown in Fig. A1 yields a value of
0.10. However, there are different numbers of points in each
profile; we thus believe it is more appropriate to average the
MAE calculated for each of the five profiles, which yields a
value of 0.08. Both values are similar to the 10 % prediction
uncertainty reported by Monnin et al. (1999).

Overall, our ML-derived profiles of �barite show excellent
agreement with in situ data, both in terms of profile shape
and values of �barite. We use this comparison to estimate
the prediction uncertainty of ML-derived values of �barite,
which we calculate as being between 0.08 and 0.10. Should a
revised thermodynamic model and/or improved BaSO4 sol-
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ubility coefficients become available, a new grid of �barite
could be calculated using model no. 3080 [Ba] and WOA T ,
S, and pressure data.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-4023-2023-supplement.
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