Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-25-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-15-25-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TiP-Leaf: a dataset of leaf traits across vegetation types on the Tibetan Plateau
Yili Jin
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Haoyan Wang
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Jie Xia
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Kai Li
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Ying Hou
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Jing Hu
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Linfeng Wei
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Kai Wu
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Haojun Xia
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Borui Zhou
College of Chemistry and Life Sciences, Zhejiang Normal University,
Jinhua 321004, China
Related authors
No articles found.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025, https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary
Short summary
We present global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21 000 years, which are suitable for the evaluation of Earth-system-model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic and Tibetan Plateau areas during the Last Glacial Maximum and early deglaciation and in northern Africa and the Mediterranean region during the Holocene.
Mengna Liao, Kai Li, Yili Jin, Lina Liu, Xianyong Cao, and Jian Ni
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-71, https://doi.org/10.5194/essd-2025-71, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a modern pollen dataset of 555 pollen count records from 307 sites on the Tibetan Plateau (28–40° N and 75–103° E). Our open-access dataset holds various potential applications in paleoecological and paleoclimatic researches. It offers a scientific foundation for reconstructing changes in climate and vegetation over time and enables the assessment of the reliability of pollen assemblages in representing the dynamics of vegetation cover, functional traits, and plant diversity.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Mengna Liao, Kai Li, Weiwei Sun, and Jian Ni
Clim. Past, 17, 2291–2303, https://doi.org/10.5194/cp-17-2291-2021, https://doi.org/10.5194/cp-17-2291-2021, 2021
Short summary
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
Xianyong Cao, Fang Tian, Kai Li, Jian Ni, Xiaoshan Yu, Lina Liu, and Nannan Wang
Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, https://doi.org/10.5194/essd-13-3525-2021, 2021
Short summary
Short summary
The Tibetan Plateau is quite remote, and it is difficult to collect samples on it; the previous modern pollen data are located on a nearby road, and there is a large geographic gap in the eastern and central Tibetan Plateau. Our novel pollen data can fill the gap and will be valuable in establishing a complete dataset covering the entire Tibetan Plateau, thus helping us to get a comprehensive understanding. In addition, the dataset can also be used to investigate plant species distribution.
Cited articles
Angiosperm Phylogeny Group: An update of the Angiosperm Phylogeny Group
classification for the orders and families of flowering plants: APG IV, Bot.
J. Linn. Soc., 181, 1–20, https://doi.org/10.1111/boj.12385, 2016.
Berzaghi, F., Wright, I. J., Kramer, K., Oddou-Muratorio, S., Bohn, F. J.,
Reyer, C. P. O., Sabate, S., Sanders, T. G. M., and Hartig, F.: Towards a
New Generation of Trait-Flexible Vegetation Models, Trends Ecol. Evol., 35,
191–205, https://doi.org/10.1016/j.tree.2019.11.006, 2020.
Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R.,
Fazayeli, F., Banerjee, A., Atkin, O. K., Kattge, J., Amiaud, B., Blonder,
B., Boenisch, G., Bond-Lamberty, B., Brown, K. A., Byun, C., Campetella, G.,
Cerabolini, B. E. L., Cornelissen, J. H. C., Craine, J. M., Craven, D., de
Vries, F. T., Diaz, S., Domingues, T. F., Forey, E., Gonzalez-Melo, A.,
Gross, N., Han, W. X., Hattingh, W. N., Hickler, T., Jansen, S., Kramer, K.,
Kraft, N. J. B., Kurokawa, H., Laughlin, D. C., Meir, P., Minden, V.,
Niinemets, U., Onoda, Y., Penuelas, J., Read, Q., Sack, L., Schamp, B.,
Soudzilovskaia, N. A., Spasojevic, M. J., Sosinski, E., Thornton, P. E.,
Valladares, F., van Bodegom, P. M., Williams, M., Wirth, C., and Reich, P.
B.: Mapping local and global variability in plant trait distributions, P. Natl. Acad. Sci. USA,
114, E10937–E10946, https://doi.org/10.1073/pnas.1708984114, 2018.
Chang, D. H. S.: The Tibetan Plateau in relation to the vegetation of China,
Ann. Mo. Bot. Gard., 70, 564–570, https://doi.org/10.2307/2992087, 1983.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne,
A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12,
351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x, 2009.
Chen, D. L., Xu, B. Q., Yao, T. D., Guo, Z. T., Cui, P., Chen, F. H., Zhang,
R. H., Zhang, X. Z., Zhang, Y. L., Fan, J., Hou, Z. Q., and Zhang, T. H.:
Assessment of past, present and future environmental changes on the Tibetan
Plateau, Chin. Sci. Bull., 60, 3025–3035,
https://doi.org/10.1360/N972014-01370, 2015.
Cheng, Q., Wu, X. Q., Wei, L. F., Hu, X. F., and Ni, J.: 30-year average
monthly/1-km climate variables dataset of China (1951–1980, 1981–2010),
Digital J. Global Change Data Repository [data set],
https://doi.org/10.3974/geodb.2022.06.03.V1, 2022.
Commissione Redactorum Flora Xinjiangensis: Flora Xinjiangensis, 6 volumes, Xinjiang
Science & Technology & Hygiene Publishing House, Ürümqi, 1992–1996.
Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann,
N., Gurvich, D. E., Reich, P. B., ter Steege, H., Morgan, H. D., van der
Heijden, M. G. A., Pausas, J. G., and Poorter, H.: A handbook of protocols
for standardised and easy measurement of plant functional traits worldwide,
Aust. J. Bot., 51, 335–380, https://doi.org/10.1071/BT02124, 2003.
Díaz, S. and Cabido, M.: Vive la différence: plant functional
diversity matters to ecosystem processes, Trends Ecol. Evol., 16, 646–655,
https://doi.org/10.1016/S0169-5347(01)02283-2, 2001.
Díaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanoves, F.,
Milchunas, D. G., Skarpe, C., Rusch, G., Sternberg, M., Noy-Meir, I.,
Landsberg, J., Zhang, W., Clark, H., and Campbell, B. D.: Plant trait
responses to grazing – a global synthesis, Glob. Change Biol., 13,
313–341, https://doi.org/10.1111/j.1365-2486.2006.01288.x, 2007.
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel,
S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I. C., Garnier, E.,
Bonisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie,
J., Gillison, A. N., Zanne, A. E., Chave, J., Wright, S. J., Sheremet'ev, S.
N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B.,
Kirkup, D., Casanoves, F., Joswig, J. S., Gunther, A., Falczuk, V., Ruger,
N., Mahecha, M. D., and Gorne, L. D.: The global spectrum of plant form and
function, Nature, 529, 167–171, https://doi.org/10.1038/nature16489, 2016.
Ding, W. N., Ree, R. H., Spicer, R. A., and Xing, Y. W.: Ancient orogenic
and monsoon-driven assembly of the world's richest temperate alpine flora,
Science, 369, 578–581, https://doi.org/10.1126/science.abb4484, 2020.
Editorial Committee of the Flora of China: Flora Reipublicae Popularis Sinicae, 80
volumes, Science Press, Beijing, 1959–2004.
Editorial Committee of the Flora of Gansu: Flora of Gansu, Volume 2, Gansu Science and
Technology Press, Lanzhou, ISBN 9787542410075, 2005.
Editorial Committee of the Flora Qinghaiica: Flora Qinghaiica, 4 volumes, Qinghai
People’s Publishing House, Xining, 1996–1999.
Editorial Committee
of Vegetation Map of China, the Chinese Academy of Sciences (ECVMC): Vegetation of
China and its Geographical Pattern – Illustration of the Vegetation Map of the People's
Republic of China (1:1 000 000), Geology Press, Beijing, ISBN 9787116051461, 2007a.
Editorial Committee
of Vegetation Map of China, the Chinese Academy of Sciences (ECVMC): Vegetation Map of the People's Republic of China (1:1 000 000), Geology Press, Beijing,
ISBN 9787116045132, 2007b.
Fang, J. B., Pang, R. L., Guo, L. L., Xie, H. Z., Li, J., Luo, J., Yu, H.,
Liu, Y., and Wu, F. K.: Determination of nitrogen,
phosphorus and potassium in plants, China Agriculture Press, Beijing, NY/T 2017–2011,
2011.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner M., Oskin, M., Burbank, D., and Alsdorf, D.:
The shuttle radar topography mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Gallego-Sala, A. V., Clark, J. M., House, J. I., Orr, H. G., Prentice, I.
C., Smith, P., Farewell, T., and Chapman, S. J.: Bioclimatic envelope model
of climate change impacts on blanket peatland distribution in Great Britain,
Clim. Res., 45, 151–162, https://doi.org/10.3354/cr00911, 2010.
Geng, Y., Wang, L., Jin, D. M., Liu, H. Y., and He, J. S.: Alpine climate
alters the relationships between leaf and root morphological traits but not
chemical traits, Oecologia, 175, 445–455,
https://doi.org/10.1007/s00442-014-2919-5, 2014.
Guerrero-Ramírez, N. R., Mommer, L., Freschet, G. T., Iversen, C. M.,
McCormack, M. L., Kattge, J., Poorter, H., van der Plas, F., Bergmann, J.,
Kuyper, T. W., York, L. M., Bruelheide, H., Laughlin, D. C., Meier, I. C.,
Roumet, C., Semchenko, M., Sweeney, C. J., van Ruijven, J.,
Valverde-Barrantes, O. J., Aubin, I., Catford, J. A., Manning, P., Martin,
A., Milla, R., Minden, V., Pausas, J. G., Smith, S. W., Soudzilovskaia, N.
A., Ammer, C., Butterfield, B., Craine, J., Cornelissen, J. H. C., de Vries,
F. T., Isaac, M. E., Kramer, K., Konig, C., Lamb, E. G., Onipchenko, V. G.,
Penuelas, J., Reich, P. B., Rillig, M. C., Sack, L., Shipley, B., Tedersoo,
L., Valladares, F., van Bodegom, P., Weigelt, P., Wright, J. P., and
Weigelt, A.: Global root traits (GRooT) database, Global Ecol. Biogeogr.,
30, 25–37, https://doi.org/10.1111/geb.13179, 2021.
He, J. S., Wang, Z. H., Wang, X. P., Schmid, B., Zuo, W. Y., Zhou, M.,
Zheng, C. Y., Wang, M. F., and Fang, J. Y.: A test of the generality of leaf
trait relationships on the Tibetan Plateau, New Phytol., 170, 835–848,
https://doi.org/10.1111/j.1469-8137.2006.01704.x, 2006.
He, J. S., Wang, X. P., Schmid, B., Flynn, D. F. B., Li, X. F., Reich, P.
B., and Fang, J. Y.: Taxonomic identity, phylogeny, climate and soil
fertility as driver of leaf traits across Chinese grassland biomes, J. Plant.
Res., 123, 551–561, https://doi.org/10.1007/s10265-009-0294-9, 2010.
He, N. P., Liu, C. C., Piao, S. L., Sack, L., Xu, L., Luo, Y. Q., He, J. S.,
Han, X. G., Zhou, G. S., Zhou, X. H., Lin, Y., Yu, Q., Liu, S. R., Sun, W.,
Niu, S. L., Li, S. G., Zhang, J. H., and Yu, G. R.: Ecosystem traits linking
functional traits to macroecology, Trends Ecol. Evol., 34, 200–210,
https://doi.org/10.1016/j.tree.2018.11.004, 2019.
He, N. P., Liu, Y., Liu, C. C., Xu, L., Li, M. X., Zhang, J. H., He, J. S.,
Tang, Z. Y., Han, X. G., Ye, Q., Xiao, C. W., Yu, Q., Liu, S. R., Sun, W.,
Niu, S. L., Li, S. G., Sack, L., and Yu, G. R.: Plant trait networks:
improved resolution of the dimensionality of adaptation, Trends Ecol. Evol.,
35, 908–918, https://doi.org/10.1016/j.tree.2020.06.003, 2020.
Hutchinson, M. F. and Xu, T. B.: ANUSPLIN Version 4.4 User Guide, Fenner School of Environment and Society, the Australian
National University, Canberra, 2013.
Integrated Scientific Expedition to Qinghai-Tibet Plateau, Chinese Academy of Sciences:
Flora Xizangica, 5 volumes, Science Press, Beijing, 1983–1987.
Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., Freschet,
G. T., Kattge, J., Roumet, C., Stover, D. B., Soudzilovskaia, N. A.,
Valverde-Barrantes, O. J., van Bodegom, P. M., and Violle, C.: A global
Fine-Root Ecology Database to address below-ground challenges in plant
ecology, New Phytol., 215, 15–26, https://doi.org/10.1111/nph.14486, 2017.
Jin, Y., Wang, H., Xia, J., Ni, J., Li, K., Hou, Y., Hu, J., Wei, L., Xia,
H., and Zhou, B.: A dataset of leaf traits on the Tibetan Plateau
(2018–2021), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Terre.tpdc.272516, 2022a.
Jin, Y. L., Wang, H. Y., Wei, L. F., Hu, J., Wu, K., Xia, H. J., Xia, J.,
Zhou, B. R., Li, K., and Ni, J.: A plot dataset of plant community of
Qingzang Plateau, Chin. J. Plant Ecol., 46, 846–854, https://doi.org/10.17521/cjpe.2022.0174, 2022b.
Liu, Y. X.: Flora in Desertis Reipublicae Populorum Sinarum, 3 volumes, Science Press,
Beijing, 1985–1992.
Lu, L. M., Mao, L. F., Yang, T., Ye, J. F., Liu, B., Li, H. L., Sun, M.,
Miller, J. T., Mathews, S., Hu, H. H., Niu, Y. T., Peng, D. X., Chen, Y. H.,
Smith, S. A., Chen, M., Xiang, K. L., Le, C. T., Dang, V. C., Lu, A. M.,
Soltis, P. S., Soltis, D. E., Li, J. H., and Chen, Z. D.: Evolutionary
history of the angiosperm flora of China, Nature, 554, 234–238,
https://doi.org/10.1038/nature25485, 2018.
Luo, T. X., Luo, J., and Pan, Y. D.: Leaf traits and associated ecosystem
characteristics across subtropical and timberline forests in the Gongga
Mountains, Eastern Tibetan Plateau, Oecologia, 142, 261–273,
https://doi.org/10.1007/s00442-004-1729-6, 2005.
Ma, Z. Q., Guo, D. L., Xu, X. L., Lu, M. Z., Bardgett, R. D., Eissenstat, D.
M., McCormack, M. L., and Hedin, L. O.: Evolutionary history resolves global
organization of root functional traits, Nature, 555, 94–97,
https://doi.org/10.1038/nature26163, 2018.
Maes, S. L., Perring, M. P., Depauw, L., Bernhardt-Romermann, M., Blondeel,
H., Brumelis, G., Brunet, J., Decocq, G., den Ouden, J., Govaert, S.,
Hardtle, W., Hedl, R., Heinken, T., Heinrichs, S., Hertzog, L., Jaroszewicz,
B., Kirby, K., Kopecky, M., Landuyt, D., Malis, F., Vanneste, T., Wulf, M.,
and Verheyen, K.: Plant functional trait response to environmental drivers
across European temperate forest understorey communities, Plant Biol., 22,
410–424, https://doi.org/10.1111/plb.13082, 2020.
Mariano, E., Gomes, T. F., Lins, S. R. M., Abdalla- Filho, A. L.,
Soltangheisi, A., Araújo, M. G. S., Almeida, R. F., Augusto, F. G.,
Canisares, L. P., Chaves, S. S. F., Costa, C. F. G., Diniz-Reis, T. R.,
Galera, L. A., Martinez, M. G., Morais, M. C., Perez, E. B., Reis, L. C.,
Simon, C. D., Mardegan, S. F., Domingues, T. F., Miatto, R. C., Oliveira, R.
S., Reis, C. R. G., Nardoto, G. B., Kattge, J., and Martinelli, L. A.:
LT-Brazil: A database of leaf traits across biomes and vegetation types in
Brazil, Global Ecol. Biogeogr., 30, 2136–2146,
https://doi.org/10.1111/geb.13381, 2021.
Meng, T. T., Ni, J., and Harrison, S. P.: Plant morphometric traits and
climate gradients in northern China: a meta-analysis using quadrat and flora
data, Ann. Bot., 104, 1217–1229, https://doi.org/10.1093/aob/mcp230, 2009.
Meng, T.-T., Wang, H., Harrison, S. P., Prentice, I. C., Ni, J., and Wang, G.: Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts, Biogeosciences, 12, 5339–5352, https://doi.org/10.5194/bg-12-5339-2015, 2015.
Moles, A. T., Ackerly, D. D., Tweddle, J. C., Dickie, J. B., Smith, R.,
Leishman, M. R., Mayfield, M. M., Pitman, A., Wood, J. T., and Westoby, M.:
Global patterns in seed size, Global Ecol. Biogeogr., 16, 109–116,
https://doi.org/10.1111/j.1466-8238.2006.00259.x, 2007.
Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W.,
Zanne, A. E., Pitman, A., Hemmings, F. A., and Leishman, M. R.: Global
patterns in plant height, J. Ecol., 97, 923–932,
https://doi.org/10.1111/j.1365-2745.2009.01526.x, 2009.
Myers-Smith, I. H. Thomas, H. J. D., and Bjorkman, A. D.: Plant traits
inform predictions of tundra responses to global change, New Phytol., 221,
1742–1748, https://doi.org/10.1111/nph.15592, 2019.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S.,
Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine,
J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter,
L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C.,
Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K.,
Morgan, H. D., ter Steege, H., van der Heijden, M. G. A., Sack, L., Blonder,
B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S.,
and Cornelissen, J. H. C.: New handbook for standardised measurement of
plant functional traits worldwide, Aust. J. Bot., 61, 167–234,
https://doi.org/10.1071/BT12225, 2013.
Piao, S. L., Zhang, X. Z., Wang, T., Liang, E. Y., Wang, S. P., Zhu, J. T.,
and Niu, B.: Responses and feedback of the Tibetan Plateau's alpine
ecosystem to climate change, Chin. Sci. Bull., 64, 2842–2855,
https://doi.org/10.1360/TB-2019-0074, 2019.
Reich, P. B. and Oleksyn, J.: Global patterns of plant leaf N and P in
relation to temperature and latitude, P. Natl. Acad. Sci. USA, 101, 11001–11006,
https://doi.org/10.1073/pnas.0403588101, 2004.
Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.:
Linking plant and ecosystem functional biogeography, P. Natl. Acad. Sci. USA, 111, 13697–13702,
https://doi.org/10.1073/pnas.1216065111, 2014.
Roddy, A. B., Martínez-Perez, C., Teixido, A. L., Cornelissen, T. G.,
Olson, M. E., Oliveira, R. S., and Silveira, F. A. O.: Towards the flower
economics spectrum, New Phytol., 229, 665–672,
https://doi.org/10.1111/nph.16823, 2021.
Shi, W. Q., Wang, G. A., and Han, W. X.: Altitudinal variation in leaf
nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan
Plateau, China, Plos One, 7, e44628,
https://doi.org/10.1371/journal.pone.0044628, 2012.
Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. A., and Laurance, W.
F.: Remaining natural vegetation in the global biodiversity hotspots, Biol.
Conserv., 177, 12–24, https://doi.org/10.1016/j.biocon.2014.05.027, 2014.
Taseski, G. M., Beloe, C. J., Gallagher, R. V., Chan, J. Y., Dalrymple, R.
L., and Cornwell, W. K.: A global-growth form database for 143,616 vascular
plant species, Ecology, 100, e02614, https://doi.org/10.1002/ecy.2614, 2019.
Tavşanoğlu, Ç., and Pausas, J. G.: A functional trait database
for Mediterranean Basin plants, Sci. Data, 5, 180135,
https://doi.org/10.1038/sdata.2018.135, 2018.
van Bodegom, P. M., Douma, J. C., and Verheijen, L. M.: A fully traits-based
approach to modeling global vegetation distribution, P. Natl. Acad. Sci. USA, 111, 13733–13738,
https://doi.org/10.1073/pnas.1304551110, 2014.
Vandvik, V., Halbritter, A. H., Yang, Y., He, H., Zhang, L., Brummer, A. B.,
Klanderud, K., Maitner, B. S., Michaletz, S. T., Sun, X. Y., Telford, R. J.,
Wang, G. X., Althuizen, I. H. J., Henn, J. J., Garcia, W. F. E., Gya, R.,
Jaroszynska, F., Joyce, B. L., Lehman, R., Moerland, M. S., Nesheim-Hauge,
E., Nordås, L. H., Peng, A., Ponsac, C., Seltzer, L., Steyn, C.,
Sullivan, M. K., Tjendra, J., Xiao, Y., Zhao, X. X., and Enquist, B. J.:
Plant traits and vegetation data from climate warming experiments along an
1100 m elevation gradient in Gongga Mountains, China, Sci. Data, 7, 189,
https://doi.org/10.1038/s41597-020-0529-0, 2020.
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I.,
and Garnier, E.: Let the concept of trait be functional!, Oikos, 116,
882–892, https://doi.org/10.1111/j.0030-1299.2007.15559.x, 2007.
Wang, C. S., Lyu, W. W., Jiang, L. L., Wang, S. P., Wang, Q., Meng, F. D.,
and Zhang, L. R.: Changes in leaf vein traits among vein types of alpine
grassland plants on the Tibetan Plateau, J. Mt. Sci., 17, 2161–2169,
https://doi.org/10.1007/s11629-020-6069-4, 2020.
Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J.,
Cornwell, W. K., Evans, B. J., and Peng, C. H.: Towards a universal model
for carbon dioxide uptake by plants, Nat. Plants, 3, 734–741,
https://doi.org/10.1038/s41477-017-0006-8, 2017.
Wang, H., Harrison, S. P., Prentice, I. C., Yang, Y. Z., Bai, F., Togashi,
H. F., Wang, M., Zhou, S. X., and Ni, J.: The China Plant Trait Database:
toward a comprehensive regional compilation of functional traits for land
plants, Ecology, 99, p. 500, https://doi.org/10.1002/ecy.2091, 2018.
Wang, H., Wang, R. X., Harrison, S. P., and Prentice, I. C.: Leaf
morphological traits as adaptations to multiple climate gradients, J. Ecol.,
110, 1344–1355, https://doi.org/10.1111/1365-2745.13873, 2022.
Wang, Q. and Hong, D. Y.: Understanding the plant diversity on the roof of
the world, The Innovation, 3, 100215,
https://doi.org/10.1016/j.xinn.2022.100215, 2022.
Wei, L. F., Hu, X. F., Cheng, Q., Wu, X. Q., and Ni, J.: A dataset of
spatial distribution of bioclimatic variables inChina at 1 km resolution,
China Sci. Data [data set], https://doi.org/10.11922/11-6035.csd.2022.0003.zh, 2022.
Weigelt, P., König, C., and Kreft, H.: GIFT – A Global Inventory of
Floras and Traits for macroecology and biogeography, J. Biogeogr., 47,
16–43, https://doi.org/10.1111/jbi.13623, 2019.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z.,
Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer,
M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont,
B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets,
Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov,
V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and
Villar, R.: The worldwide leaf economics spectrum, Nature, 428, 821–827,
https://doi.org/10.1038/nature02403, 2004.
Wu, D. X.: Protocols for Standard Biological Observation and Measurement in Terrestrial
Ecosystems, China Environmental Science Press, Beijing, ISBN 9787511141071, 2007.
Wullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami,
S., Iversen, C. M., Kattge, J., Norby, R. J., van Bodegom, P. M., and Xu, X.
F.: Plant functional types in Earth system models: past experiences and
future directions for application of dynamic vegetation models in
high-latitude ecosystems, Ann. Bot., 114, 1–16,
https://doi.org/10.1093/aob/mcu077, 2014.
Xu, H. Y., Wang, H., Prentice, I. C., Harrison, S. P., Wang, G. X., and Sun,
X. Y.: Predictability of leaf traits with climate and elevation: a case
study in Gongga Mountain, China, Tree Physiol., 41, 13360–1352,
https://doi.org/10.1093/treephys/tpab003, 2021.
Xu, T. B. and Hutchinson, M. F.: New developments and applications in the
ANUCLIM spatial climatic and bioclimatic modelling package, Environ. Modell.
Softw., 40, 267–279, https://doi.org/10.1016/j.envsoft.2012.10.003, 2013.
Yan, Y. J., Yang, X., and Tang, Z. Y.: Patterns of species diversity and
phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau,
Ecol. Evol., 3, 4584–4595, https://doi.org/10.1002/ece3.847, 2013.
Yao, T. D., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X.
X., Duan, K. Q., Zhao, H. B., Xu, B. Q., Pu, J. C., Lu, A. X., Xiang, Y.,
Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric
circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2,
663–667, https://doi.org/10.1038/nclimate1580, 2012.
Zhang, X. Z., Yang, Y. P., Piao, S. L., Bao, W. K., Wang, S. P., Wang, G.
X., Sun, H., Luo, T. X., Zhang, Y. J., Shi, P. L., Liang, E. Y., Shen, M.
G., Wang, J. S., Gao, Q. Z., Zhang, Y. L., and Ouyang, H.: Ecological change
on the Tibetan Plateau, Chin. Sci. Bull., 60, 3048–3056,
https://doi.org/10.1360/N972014-01339, 2015.
Short summary
The TiP-Leaf dataset was compiled from direct field measurements and included 11 leaf traits from 468 species of 1692 individuals, covering a great proportion of species and vegetation types on the highest plateau in the world. This work is the first plant trait dataset that represents all of the alpine vegetation on the TP, which is not only an update of the Chinese plant trait database, but also a great contribution to the global trait database.
The TiP-Leaf dataset was compiled from direct field measurements and included 11 leaf traits...
Special issue
Altmetrics
Final-revised paper
Preprint