Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-823-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-823-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
EcoDes-DK15: high-resolution ecological descriptors of vegetation and terrain derived from Denmark's national airborne laser scanning data set
Ecoinformatics and Biodiversity, Department of Biology, Aarhus
University, Aarhus, 8000, Denmark
Jesper E. Moeslund
Biodiversity, Department of Ecoscience, Aarhus University, Rønde,
8410, Denmark
Urs A. Treier
Ecoinformatics and Biodiversity, Department of Biology, Aarhus
University, Aarhus, 8000, Denmark
Center for Sustainable Landscapes Under Global
Change, Department of BiologyAarhus University, Aarhus, 8000, Denmark
Signe Normand
Ecoinformatics and Biodiversity, Department of Biology, Aarhus
University, Aarhus, 8000, Denmark
Center for Sustainable Landscapes Under Global
Change, Department of BiologyAarhus University, Aarhus, 8000, Denmark
Related authors
No articles found.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023, https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Michal Hájek, Borja Jiménez-Alfaro, Ondřej Hájek, Lisa Brancaleoni, Marco Cantonati, Michele Carbognani, Anita Dedić, Daniel Dítě, Renato Gerdol, Petra Hájková, Veronika Horsáková, Florian Jansen, Jasmina Kamberović, Jutta Kapfer, Tiina Hilkka Maria Kolari, Mariusz Lamentowicz, Predrag Lazarević, Ermin Mašić, Jesper Erenskjold Moeslund, Aaron Pérez-Haase, Tomáš Peterka, Alessandro Petraglia, Eulàlia Pladevall-Izard, Zuzana Plesková, Stefano Segadelli, Yuliya Semeniuk, Patrícia Singh, Anna Šímová, Eva Šmerdová, Teemu Tahvanainen, Marcello Tomaselli, Yuliya Vystavna, Claudia Biţă-Nicolae, and Michal Horsák
Earth Syst. Sci. Data, 13, 1089–1105, https://doi.org/10.5194/essd-13-1089-2021, https://doi.org/10.5194/essd-13-1089-2021, 2021
Short summary
Short summary
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of diversity of wetlands) based on 7577 measurements. In comparison to the existing maps, we included much a larger data set from the regions rich in endangered wetland habitats, filled the apparent gaps in eastern and southeastern Europe, and applied geospatial modelling. The latitudinal and altitudinal gradients were rediscovered with much refined regional patterns, as is associated with bedrock variation.
Cited articles
Ackermann, F.: Airborne laser scanning – present status and future
expectations, ISPRS J Photogramm., 54, 64–67,
https://doi.org/10.1016/S0924-2716(99)00009-X, 1999.
ASPRS: LAS Specification Version 1.3 – R11, American Society for
Photogrammetry & Remote Sensing, Bethesda, Maryland, 2011.
ASPRS: LAS Specification 1.4 – R14, American Society for Photogrammetry and
Remote Sensing, Bethesda, Maryland, 2019.
Assmann, J. J., Moeslund, J. E., Treier, U. A., and Normand, S.: EcoDes-DK15: High-resolution ecological descriptors of vegetation and terrain derived from Denmark's national airborne laser scanning data set (1.1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.5752926, 2021.
Assmann, J. J., Moeslund, J. E., Treier, U. A., and Normand, S.: EcoDes-DK15 v1.1.0 Teaser Dataset (Husby Klit), Zenodo [data set], https://doi.org/10.5281/zenodo.6035188, 2022a.
Assmann, J. J., Moeslund, J. E., Treier, U. A., and Normand, S.:
jakobjassmann/ecodes-dk-lidar: EcoDes-DK15 v1.1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.6035002, 10 February 2022b.
Bakx, T. R. M., Koma, Z., Seijmonsbergen, A. C., and Kissling, W. D.: Use
and categorization of Light Detection and Ranging vegetation metrics in
avian diversity and species distribution research, Divers. Distrib., 25,
1045–1059, https://doi.org/10.1111/ddi.12915, 2019.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology / Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant, Hyrdol. Sci. B., 24,
43–69, https://doi.org/10.1080/02626667909491834, 1979.
Boelman, N. T., Holbrook, J. D., Greaves, H. E., Krause, J. S., Chmura, H.
E., Magney, T. S., Perez, J. H., Eitel, J. U. H., Gough, L., Vierling, K.
T., Wingfield, J. C., and Vierling, L. A.: Airborne laser scanning and
spectral remote sensing give a bird's eye perspective on arctic tundra
breeding habitat at multiple spatial scales, Remote Sens. Environ., 184,
337–349, https://doi.org/10.1016/j.rse.2016.07.012, 2016.
Böhner, J. and Selige, T.: Spatial Prediction Of Soil Attributes Using
Terrain Analysis And Climate Regionalisation, Göttinger Geographische
Abhandlungen, 115, 13–120, 2006.
Ceballos, A., Hernández, J., Corvalán, P., and Galleguillos, M.:
Comparison of Airborne LiDAR and Satellite Hyperspectral Remote Sensing to
Estimate Vascular Plant Richness in Deciduous Mediterranean Forests of
Central Chile, Remote Sens.-Basel, 7, 2692–2714,
https://doi.org/10.3390/rs70302692, 2015.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Coops, N. C., Tompaski, P., Nijland, W., Rickbeil, G. J. M., Nielsen, S. E.,
Bater, C. W., and Stadt, J. J.: A forest structure habitat index based on
airborne laser scanning data, Ecol. Indic., 67, 346–357,
https://doi.org/10.1016/j.ecolind.2016.02.057, 2016.
Coops, N. C., Tompalski, P., Goodbody, T. R. H., Queinnec, M., Luther, J.
E., Bolton, D. K., White, J. C., Wulder, M. A., van Lier, O. R., and
Hermosilla, T.: Modelling lidar-derived estimates of forest attributes over
space and time: A review of approaches and future trends, Remote Sens.
Environ., 260, 112477, https://doi.org/10.1016/j.rse.2021.112477, 2021.
Flatman, A., Rosenkranz, B., Evers, K., Bartels, P., Kokkendorff, S.,
Knudsen, T., and Nielsen, T.: Quality assessment report to the Danish
Elevation Model (DK-DEM), Agency for Data Supply and Efficiency, Copenhagen,
Denmark, 2016.
Freeman, T. G.: Calculating catchment area with divergent flow based on a
regular grid, Comput. Geosci., 17, 413–422,
https://doi.org/10.1016/0098-3004(91)90048-I, 1991.
Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G., and Obrist, M.
K.: From field surveys to LiDAR: Shining a light on how bats respond to
forest structure, Remote Sens. Environ., 175, 242–250,
https://doi.org/10.1016/j.rse.2015.12.038, 2016.
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software
Library, Open Source Geospatial Foundation, Zenodo [code],
https://doi.org/10.5281/zenodo.5884351, 2022.
Geodatastyrelsen: Dataspecifikation for Danmarks Højdemodel Punktsky,
Data version 2.0 – Januar 2015, Geodatastyrelsen, Copenhagen, https://kortforsyningen.dk/sites/default/files/old_gst/DOKUMENTATION/Data/dk_dhm_punktsky_v2_jan_2015.pdf (28 June 2021), 2015.
Grohmann, C. H.: Effects of spatial resolution on slope and aspect
derivation for regional-scale analysis, Comput. Geosci., 77,
111–117, https://doi.org/10.1016/j.cageo.2015.02.003, 2015.
Gruber, S. and Peckahm, S.: Land-Surface Parameters and Objects in
Hydrology, in: Geomorphometry: Concepts, Software, Applications,
edited by: Hengl, T. and Reuter, H. I., Elsevier, 33, 293–308, 2008.
Guo, X., Coops, N. C., Tompalski, P., Nielsen, S. E., Bater, C. W., and John
Stadt, J.: Regional mapping of vegetation structure for biodiversity
monitoring using airborne lidar data, Ecol. Inform., 38, 50–61,
https://doi.org/10.1016/j.ecoinf.2017.01.005, 2017.
Haralick, R. M.: Ridges and valleys on digital images, Comput. Vision Graph.,
22, 28–38, https://doi.org/10.1016/0734-189X(83)90094-4, 1983.
Horn, B. K. P.: Hill shading and the reflectance map, P. IEEE, 69, 14–47,
https://doi.org/10.1109/PROC.1981.11918, 1981.
Hyde, P., Dubayah, R., Peterson, B., Blair, J. B., Hofton, M., Hunsaker, C.,
Knox, R., and Walker, W.: Mapping forest structure for wildlife habitat
analysis using waveform lidar: Validation of montane ecosystems, Remote Sens.
Environ., 96, 427–437, https://doi.org/10.1016/j.rse.2005.03.005, 2005.
IPBES: Global assessment report on biodiversity and ecosystem services of
the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services., edited by: Brondizio, E. S., Díaz, S., and Settele, J.,
IPBES secretariat, Bonn, Germany, https://doi.org/10.5281/zenodo.3831673, 2019.
Kopecký, M., Macek, M., and Wild, J.: Topographic Wetness Index
calculation guidelines based on measured soil moisture and plant species
composition, Sci. Total Environ., 143785,
https://doi.org/10.1016/j.scitotenv.2020.143785, 2020.
Leiterer, R., Furrer, R., Schaepman, M. E., and Morsdorf, F.: Forest
canopy-structure characterization: A data-driven approach, Forest Ecol. Manage., 358, 48–61, https://doi.org/10.1016/j.foreco.2015.09.003,
2015.
Leutner, B. F., Reineking, B., Müller, J., Bachmann, M., Beierkuhnlein,
C., Dech, S., and Wegmann, M.: Modelling Forest α-Diversity and
Floristic Composition – On the Added Value of LiDAR plus Hyperspectral
Remote Sensing, Remote Sens.-Basel, 4, 2818–2845,
https://doi.org/10.3390/rs4092818, 2012.
Levin, G.: Basemap03. Technical documentation of the method for elaboration of a
land-use and land-cover map for Denmark. Aarhus University, DCE – Danish Centre
for Environment and Energy, Aarhus, Denmark, 86 pp., Technical Report No. 159,
http://dce2.au.dk/pub/TR159.pdf (last access: 10 February 2022), 2019.
Lin, Y., Vosselman, G., Cao, Y., and Yang, M. Y.: Active and incremental
learning for semantic ALS point cloud segmentation, ISPRS J Photogramm., 169,
73–92, https://doi.org/10.1016/j.isprsjprs.2020.09.003, 2020.
Lopatin, J., Dolos, K., Hernández, H. J., Galleguillos, M., and
Fassnacht, F. E.: Comparing Generalized Linear Models and random forest to
model vascular plant species richness using LiDAR data in a natural forest
in central Chile, Remote Sens. Environ., 173, 200–210,
https://doi.org/10.1016/j.rse.2015.11.029, 2016.
Madsen, B., Treier, U. A., Zlinszky, A., Lucieer, A., and Normand, S.:
Detecting shrub encroachment in seminatural grasslands using UAS LiDAR, Ecol.
Evol., 10, 4876–4902, https://doi.org/10.1002/ece3.6240, 2020.
Malmstrom, C. M., Butterfield, H. S., Planck, L., Long, C. W., and Eviner,
V. T.: Novel fine-scale aerial mapping approach quantifies grassland weed
cover dynamics and response to management, PLOS ONE, 12, e0181665,
https://doi.org/10.1371/journal.pone.0181665, 2017.
Manzanera, J. A., García-Abril, A., Pascual, C., Tejera, R.,
Martín-Fernández, S., Tokola, T., and Valbuena, R.: Fusion of
airborne LiDAR and multispectral sensors reveals synergic capabilities in
forest structure characterization, GISci. Remote Sens., 53, 723–738,
https://doi.org/10.1080/15481603.2016.1231605, 2016.
Mao, L., Dennett, J., Bater, C. W., Tompalski, P., Coops, N. C., Farr, D.,
Kohler, M., White, B., Stadt, J. J., and Nielsen, S. E.: Using airborne
laser scanning to predict plant species richness and assess conservation
threats in the oil sands region of Alberta's boreal forest, Forest Ecol.
Manag., 409, 29–37, https://doi.org/10.1016/j.foreco.2017.11.017, 2018.
McCune, B. and Keon, D.: Equations for potential annual direct incident
radiation and heat load, J. Veg. Sci., 13, 603–606,
https://doi.org/10.1111/j.1654-1103.2002.tb02087.x, 2002.
Meijer, C., Grootes, M. W., Koma, Z., Dzigan, Y., Gonçalves, R., Andela,
B., van den Oord, G., Ranguelova, E., Renaud, N., and Kissling, W. D.:
Laserchicken – A tool for distributed feature calculation from massive LiDAR
point cloud datasets, SoftwareX, 12, 100626,
https://doi.org/10.1016/j.softx.2020.100626, 2020.
Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T., Odgaard, M. V.,
Nygaard, B., and Svenning, J.-C.: Topographically controlled soil moisture
is the primary driver of local vegetation patterns across a lowland region,
Ecosphere, 4, art91, https://doi.org/10.1890/ES13-00134.1, 2013.
Moeslund, J. E., Zlinszky, A., Ejrnæs, R., Brunbjerg, A. K., Bøcher,
P. K., Svenning, J.-C., and Normand, S.: Light detection and ranging
explains diversity of plants, fungi, lichens, and bryophytes across multiple
habitats and large geographic extent, Ecol. Appl., 29, e01907,
https://doi.org/10.1002/eap.1907, 2019.
Montgomery, J., Brisco, B., Chasmer, L., Devito, K., Cobbaert, D., and
Hopkinson, C.: SAR and Lidar Temporal Data Fusion Approaches to Boreal
Wetland Ecosystem Monitoring, Remote Sens.-Basel, 11, 161,
https://doi.org/10.3390/rs11020161, 2019.
Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital terrain modelling:
A review of hydrological, geomorphological, and biological applications,
Hydrol. Process., 5, 3–30, https://doi.org/10.1002/hyp.3360050103, 1991.
Morgan-Wall, T.: rayshader: Create Maps and Visualize Data in 2D and 3D, https://www.rayshader.com (last access: 10 February 2022),
2020.
Moudrý, V., Lecours, V., Malavasi, M., Misiuk, B., Gábor, L.,
Gdulová, K., Šímová, P., and Wild, J.: Potential pitfalls
in rescaling digital terrain model-derived attributes for ecological
studies, Ecol. Inf., 54, 100987,
https://doi.org/10.1016/j.ecoinf.2019.100987, 2019.
Moudrý, V., Klápště, P., Fogl, M., Gdulová, K.,
Barták, V., and Urban, R.: Assessment of LiDAR ground filtering
algorithms for determining ground surface of non-natural terrain overgrown
with forest and steppe vegetation, Measurement, 150, 107047,
https://doi.org/10.1016/j.measurement.2019.107047, 2020.
Nord-Larsen, T., Riis-Nielsen, T., and Ottosen, M. B.: Forest resource map
of Denmark: Mapping of Danish forest resource using ALS from 2014–2015,
Department of Geosciences and Natural Resource Management, University of
Copenhagen, Copenhagen, Denmark, https://static-curis.ku.dk/portal/files/177147904/LiDAR2014_report.pdf (last access: 10 February 2022), 2017.
Pazúr, R., Huber, N., Weber, D., Ginzler, C., and Price, B.: A national extent map of cropland and grassland for Switzerland based on Sentinel-2 data, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-60, in review, 2021.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, 540, 418–422,
https://doi.org/10.1038/nature20584, 2016.
Peura, M., Silveyra Gonzalez, R., Müller, J., Heurich, M., Vierling, L.
A., Mönkkönen, M., and Bässler, C.: Mapping a `cryptic kingdom':
Performance of lidar derived environmental variables in modelling the
occurrence of forest fungi, Remote Sens. Environ., 186, 428–438,
https://doi.org/10.1016/j.rse.2016.09.003, 2016.
Pfeifer, N., Mandlburger, G., Otepka, J., and Karel, W.: OPALS – A
framework for Airborne Laser Scanning data analysis, Comput Environ Urban,
45, 125–136, https://doi.org/10.1016/j.compenvurbsys.2013.11.002, 2014.
Quinn, P., Beven, K., Chevallier, P., and Planchon, O.: The prediction of
hillslope flow paths for distributed hydrological modelling using digital
terrain models, Hydrol. Process., 5, 59–79,
https://doi.org/10.1002/hyp.3360050106, 1991.
Reback, J., McKinney, W., den Bossche, J. V., jbrockmendel, Augspurger, T.,
Cloud, P., gfyoung, Sinhrks, Klein, A., Tratner, J., She, C., Roeschke, M.,
Petersen, T., Ayd, W., Hayden, A., Hawkins, S., Schendel, J., Garcia, M.,
Jancauskas, V., Battiston, P., Seabold, S., chris-b1, h-vetinari, Hoyer, S.,
Overmeire, W., Mehyar, M., nouri, behzad, Kluyver, T., Whelan, C., and Chen,
K. W.: pandas-dev/pandas: v0.24.2, Zenodo,
https://doi.org/10.5281/zenodo.3509135, 2019.
Roussel, J.-R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R. H.,
Meador, A. S., Bourdon, J.-F., de Boissieu, F., and Achim, A.: lidR: An R
package for analysis of Airborne Laser Scanning (ALS) data, Remote Sens.
Environ., 251, 112061, https://doi.org/10.1016/j.rse.2020.112061, 2020.
SAGA-GIS Tool Library Documentation v7.8.2:
http://www.saga-gis.org/saga_tool_doc/7.8.2/index.html, last access: 28 June 2021.
Senf, C., Pflugmacher, D., Hostert, P., and Seidl, R.: Using Landsat time
series for characterizing forest disturbance dynamics in the coupled human
and natural systems of Central Europe, ISPRS J. Photogramm., 130, 453–463,
https://doi.org/10.1016/j.isprsjprs.2017.07.004, 2017.
Sithole, G. and Vosselman, G.: Experimental comparison of filter algorithms
for bare-Earth extraction from airborne laser scanning point clouds, ISPRS J.
Photogramm., 59, 85–101, https://doi.org/10.1016/j.isprsjprs.2004.05.004,
2004.
Thers, H., Brunbjerg, A. K., Læssøe, T., Ejrnæs, R., Bøcher,
P. K., and Svenning, J.-C.: Lidar-derived variables as a proxy for fungal
species richness and composition in temperate Northern Europe, Remote Sens.
Environ., 200, 102–113, https://doi.org/10.1016/j.rse.2017.08.011, 2017.
Tweedy, P. J., Moriarty, K. M., Bailey, J. D., and Epps, C. W.: Using fine
scale resolution vegetation data from LiDAR and ground-based sampling to
predict Pacific marten resting habitat at multiple spatial scales, Forest
Ecol. Manag., 452, 117556, https://doi.org/10.1016/j.foreco.2019.117556, 2019.
Valbuena, R., O'Connor, B., Zellweger, F., Simonson, W., Vihervaara, P.,
Maltamo, M., Silva, C. A., Almeida, D. R. A., Danks, F., Morsdorf, F.,
Chirici, G., Lucas, R., Coomes, D. A., and Coops, N. C.: Standardizing
Ecosystem Morphological Traits from 3D Information Sources, Trends Ecol.
Evol., 35, S0169534720300811, https://doi.org/10.1016/j.tree.2020.03.006, 2020.
Van Rossum, G. and Drake Jr., F. L.: Python reference manual, Centrum voor
Wiskunde en Informatica Amsterdam, https://ir.cwi.nl/pub/5008 (last access: 10 February 2022), 1995.
Vierling, K. T., Vierling, L. A., Gould, W. A., Martinuzzi, S., and Clawges,
R. M.: Lidar: shedding new light on habitat characterization and modeling,
Front Ecol. Environ., 6, 90–98, https://doi.org/10.1890/070001, 2008.
Vo, A.-V., Laefer, D. F., and Bertolotto, M.: Airborne laser scanning data
storage and indexing: state-of-the-art review, Int. J. Remote. Sens., 37,
6187–6204, https://doi.org/10.1080/01431161.2016.1256511, 2016.
Wagner, W., Ullrich, A., Ducic, V., Melzer, T., and Studnicka, N.: Gaussian
decomposition and calibration of a novel small-footprint full-waveform
digitising airborne laser scanner, ISPRS J. Photogramm., 60, 100–112,
https://doi.org/10.1016/j.isprsjprs.2005.12.001, 2006.
Wang, L. and Liu, H.: An efficient method for identifying and filling
surface depressions in digital elevation models for hydrologic analysis and
modelling, Int. J. Geogr. Inf. Sci., 20, 193–213,
https://doi.org/10.1080/13658810500433453, 2006.
Weiss, A.: Topographic position and landforms analysis, Poster
presentation, ESRI user conference, 9–13 July 2001, San Diego, CA, http://www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf (last access: 21 February 2022), 2001.
Xu, C., Manley, B., and Morgenroth, J.: Evaluation of modelling approaches
in predicting forest volume and stand age for small-scale plantation forests
in New Zealand with RapidEye and LiDAR, Int. J. Appl. Earth Obs., 73, 386–396,
https://doi.org/10.1016/j.jag.2018.06.021, 2018.
Yokoyama, R.: Visualizing Topography by Openness: A New Application of Image
Processing to Digital Elevation Models, Photogramm. Eng. Rem. S., 68, 257–265,
2002.
Zellweger, F., Baltensweiler, A., Ginzler, C., Roth, T., Braunisch, V.,
Bugmann, H., and Bollmann, K.: Environmental predictors of species richness
in forest landscapes: abiotic factors versus vegetation structure, J.
Biogeogr., 43, 1080–1090, https://doi.org/10.1111/jbi.12696, 2016.
Short summary
In 2014 and 2015, the Danish government scanned the whole of Denmark using laser scanners on planes. The information can help biologists learn more about Denmark's natural environment. To make it easier to access the outputs from the scan, we divided the country into 10 m x 10 m squares and summed up the information most relevant to biologists for each square. The result is a set of 70 maps describing the three-dimensional architecture of the Danish landscape and vegetation.
In 2014 and 2015, the Danish government scanned the whole of Denmark using laser scanners on...
Altmetrics
Final-revised paper
Preprint