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Abstract. Biodiversity studies could strongly benefit from three-dimensional data on ecosystem structure de-
rived from contemporary remote sensing technologies, such as light detection and ranging (lidar). Despite the
increasing availability of such data at regional and national scales, the average ecologist has been limited in
accessing them due to high requirements on computing power and remote sensing knowledge. We processed
Denmark’s publicly available national airborne laser scanning (ALS) data set acquired in 2014/15, together with
the accompanying elevation model, to compute 70 rasterised descriptors of interest for ecological studies. With
a grain size of 10 m, these data products provide a snapshot of high-resolution measures including vegetation
height, structure and density, as well as topographic descriptors including elevation, aspect, slope and wetness
across more than 40 000 km2 covering almost all of Denmark’s terrestrial surface. The resulting data set is com-
paratively small (∼ 94 GB, compressed 16.8 GB), and the raster data can be readily integrated into analytical
workflows in software familiar to many ecologists (GIS software, R, Python). Source code and documentation
for the processing workflow are openly available via a code repository, allowing for transfer to other ALS data
sets, as well as modification or re-calculation of future instances of Denmark’s national ALS data set. We hope
that our high-resolution ecological vegetation and terrain descriptors (EcoDes-DK15) will serve as an inspiration
for the publication of further such data sets covering other countries and regions and that our rasterised data set
will provide a baseline of the ecosystem structure for current and future studies of biodiversity, within Denmark
and beyond. The full data set is available on Zenodo: https://doi.org/10.5281/zenodo.4756556 (Assmann et al.,
2021); a 5 MB teaser subset is also available: https://doi.org/10.5281/zenodo.6035188 (Assmann et al., 2022a).

1 Introduction

Over the last decades, airborne laser scanning (ALS) has be-
come an established data source for providing fine-resolution
measures of terrain and vegetation structure in ecological re-
search (Moeslund et al., 2019; Guo et al., 2017; Zellweger et
al., 2016). Despite its informative potential and the increas-
ing number of openly available ALS data sets with regional
and national extents (Vo et al., 2016), the uptake of these
data sets for large-scale ecological research and applications

(such as monitoring and conservation) has remained com-
paratively low (Bakx et al., 2019). The low uptake is likely
a consequence of the considerable challenges that remain in
handling these very large data sets, which require special-
ist expertise and software, as well as substantial amounts of
data storage and processing power (Meijer et al., 2020; Vo et
al., 2016; Pfeifer et al., 2014). Here, we address this issue for
Denmark by providing a compact set of ecologically relevant
measures of terrain characteristics and vegetation structure
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derived as raster outputs from the country’s national ALS
data set with a grain size of 10m× 10m.

The typical output from an ALS survey is a so-called point
cloud that describes the physical structure of the surveyed
area in three-dimensional space (Bakx et al., 2019; Vierling
et al., 2008). In brief, short laser pulses are sent out from
a light detection and ranging (lidar) sensor mounted on an
aeroplane (or drone) and reflected by surfaces such as bare
ground, plants or buildings. The return timing of the reflected
signal is measured and – with the help of information on the
sensor’s orientation and position – the precise location of the
reflecting surface is determined in geographic space (Vier-
ling et al., 2008). If an object intercepting the light pulse is
smaller than the beam’s footprint (e.g. a leaf or a branch of
a tree), some of the light may travel on and trigger a reflec-
tion from a second surface (e.g. understorey vegetation or
the forest floor). A single light pulse might therefore gener-
ate two or even more returns, allowing – to some degree – for
the penetration of forest canopies (Ackermann, 1999). Often,
the raw signal is processed by the survey provider, and the
resulting data are delivered to the end user in the form of a
point cloud of discrete returns, in which each point is associ-
ated with information on geographic location, return strength
(amplitude), return number, acquisition timing, etc. (Vo et al.,
2016). For ALS data sets with large extents – such as Den-
mark’s nationwide data set “DHM/Punktsky” – outputs from
many survey flights are co-registered and merged, resulting
in very large point clouds with hundreds of billions of points
and data volumes of multiple terabytes (Geodatastyrelsen,
2015). For further information on ALS data acquisition, we
recommend Vo et al. (2016), Vierling et al. (2008), and Wag-
ner et al. (2006).

Based on point position and neighbourhood context it is
possible to separate ground and vegetation returns in ALS
point clouds, allowing for the calculation of descriptors of
terrain and vegetation structure. Filtering bare ground from
the point cloud may be achieved with algorithms (Moudrý et
al., 2020; Sithole and Vosselman, 2004), while more complex
segmentation of the point clouds into object classes (such as
vegetation, buildings, etc.) is done manually or with the help
of supervised machine learning (see Lin et al., 2020, for a
recent overview). Early applications for ALS were focussed
on generating simple digital elevation models (DEMs), city
and landscape planning, and forestry (Ackermann, 1999), but
over the last decades applications have expanded into other
fields, including, amongst others, the calculation of terrain
and vegetation measures for ecological research. Terrain-
derived measures of ecological interest include topographic
slope, aspect (i.e. slope direction), solar irradiation, wet-
ness, etc. (e.g. Moeslund et al., 2019; Zellweger et al., 2016;
Ceballos et al., 2015), and vegetation structural descriptors
include vegetation density, canopy height diversity, canopy
roughness and many more (e.g. Bakx et al., 2019; Moeslund
et al., 2019; Coops et al., 2016). It is important to note that
point cloud characteristics may limit the type of measures

that can be meaningfully derived from ALS data (Bakx et
al., 2019). This applies especially to the point cloud density,
which needs to be high enough to meaningfully resolve the
structure of understorey layers in forests (Bakx et al., 2019)
or ecosystems with vegetation of low stature such as grass-
lands or tundra (Boelman et al., 2016). Nonetheless, even
simpler ALS-derived descriptors of terrain and vegetation
structure can be of high value for ecological applications, as
fieldwork-derived alternatives are often too costly and diffi-
cult to collect over large extents (Vierling et al., 2008).

ALS data have provided critical information for research
on biodiversity and habitat characteristics over recent years,
and their importance in ecological research is likely to in-
crease in the future. Numerous biodiversity studies have
successfully deployed ALS to study organisms like plants
(Mao et al., 2018; Lopatin et al., 2016; Zellweger et al.,
2016; Ceballos et al., 2015; Moeslund et al., 2013; Leut-
ner et al., 2012), fungi (Peura et al., 2016; Thers et al.,
2017), bryophytes, lichens (Moeslund et al., 2019), mammals
(Tweedy et al., 2019; Froidevaux et al., 2016) and birds (see
Bakx et al., 2019, for a comprehensive review) both in open
landscapes and in forests. These studies have all emphasised
the value of ALS for representing fine-scale (∼ 10 m resolu-
tion) terrain or vegetation structural variation important to lo-
cal biodiversity patterns. Furthermore, Valbuena et al. (2020)
recently considered ALS data to be one of the key resources
for deriving ecosystem morphological traits in the global as-
sessment of essential biodiversity variables (EBVs). Finding
ways of making regional and nationwide ALS data more ac-
cessible to the average ecologist is therefore not only a criti-
cal priority for accelerating research on regional biodiversity
patterns and species–habitat relationships but also for the fa-
cilitation of global assessments such as those carried out by
IPBES (2019) and others alike.

To open up opportunities for researchers and practition-
ers not familiar with ALS processing or without access to
the required facilities, we present a new national ALS-based
data set for Denmark primarily aimed at ecological research
with possible uses in other disciplines. With a grain size of
10 m, these ecological descriptor (EcoDes) rasters provide a
snapshot of high-resolution measures of vegetation height,
structure and density, as well as topographic descriptors
including elevation, aspect, slope and wetness, for almost
all of Denmark’s terrestrial surface between spring 2014
and summer 2015 (DK15). In this publication, we (a) de-
scribe the source data and outline the processing workflow
(Sect. 2.1–2.3), (b) summarise the data set’s main charac-
teristics (Sect. 3.1–3.2), (c) describe each descriptor in de-
tail and highlight its use and limitations (Sect. 3.3–3.4), and
(d) provide guidance on data access and illustrate how the
data could be used in an example of ecological landscape
classification (Sect. 4). We finish by (e) briefly discussing
the general limitations of the data set and processing work-
flow, as well as providing perspectives on how the presented
data can be complemented with other data sources (Sect. 5).
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We hope that ease of access and thorough documentation of
the EcoDes-DK15 data set will encourage uptake and facili-
tate the development of future versions of similar data sets in
Denmark and beyond.

2 Source data and processing workflow overview

2.1 Denmark – geography and ecology

Located in northern Europe, Denmark (without Greenland
and the Faroe Islands) has an approximate land area of
43 000 km2, comprising the large peninsula of Jutland and
443 named islands. The relatively flat (highest point is 171 m
above sea level) landscape predominantly consists of arable
land and production forest with relatively small patches of
natural or semi-natural areas such as heathlands, grasslands,
fresh and salt meadows, bogs, dunes, lakes, streams, and de-
ciduous forests.

2.2 ALS and elevation source data

The Danish elevation model (DHM) is an openly available
nationwide data set providing various products based on ALS
data. Here, we used the DHM/Point-cloud (DHM/Punktsky),
the classified georeferenced ALS point cloud product, and
the DHM/Terrain (DHM/Terræn), the digital elevation model
product derived from the point cloud. The DHM data set
is currently maintained by the Agency for Data Supply and
Efficiency, Denmark (https://sdfe.dk/, last access: 13 Octo-
ber 2021), and, at the time of writing, it can be downloaded
from https://kortforsyningen.dk/ (last access: 24 April 2020,
continuously updated with new survey data) and https://
datafordeler.dk/ (last access: 13 October 2021, versioned).
While almost all of Denmark’s terrestrial surface was cov-
ered by ALS surveys in 2014/15, currently none of the prod-
ucts provided by the agency contain data exclusively from
these surveys. We therefore merged three different versions
of the source data to obtain a data set that reflects the state of
the vegetation in 2014/15 as best as possible by only contain-
ing vegetation data from 2014/15 and limited amounts from
2013 (Table 1, Sect. 3.6.3; see GitHub code repository for a
detailed description of the merger and more information on
the source data sets). The DHM/Point-cloud product is a col-
lection of 1 km×1 km tiles of three-dimensional point clouds
with attributes such as position, intensity, point source ID and
classification. Point classification follows the ASPRS LAS
1.3 standard (ASPRS, 2011), including, for example, ground,
vegetation and buildings. The point density is on average four
to five points per square metre with a horizontal and verti-
cal accuracy of 0.15 and 0.05 m, respectively. Additional in-
formation on the data sets can be found in Geodatastyrelsen
(Geodatastyrelsen, 2015 – in Danish), Thers et al. (2017),
Nord-Larsen et al. (2017), and in the quality assessment re-
port by Flatman et al. (2016). The DHM/Point-cloud product
is provided in LAZ format and in the compound coordinate

system for Denmark (ETRS89/UTM zone 32N+DVR90
height – EPSG:7416). The DHM/Terrain product is a ras-
terised digital model of the terrain height above sea level in
0.4 m resolution. This product is provided in a 32 bit Geo-
TIFF format, using the same 1km× 1km tiling convention
and spatial reference system as the DHM/Point-cloud.

The 1km× 1km tiling of the DHM/Terrain 2014/15 and
DHM/Point-cloud 2014/15 data sets matches in extent and
geolocation. However, a small number of tiles (n= 30) in
the DHM/Point-cloud data sets did not have corresponding
tiles in the DHM/Terrain data sets; these were removed prior
to processing, resulting in the total of 49 673 tiles shown in
Table 1.

2.3 Processing

We processed the source data using OPALS 2.3.2.0 (Pfeifer
et al., 2014), Python 2.7 (Van Rossum and Drake, 1995),
pandas 0.24.2 (Reback et al., 2019), SAGA GIS 7.8.2 (Con-
rad et al., 2015), and GDAL 2.2.4 (GDAL/OGR contribu-
tors, 2018) from OSgeo4W64. Some re-processing was re-
quired during the peer review process, for which we used
GDAL 3.3.3 from Osgeo4W64 (GDAL/OGR contributors,
2022). The large number of tiles and descriptors to be cal-
culated required us to develop a robust processing pipeline,
which we realised as a set of Python modules. The source
code is openly available via a GitHub code repository (see
Sect. 6). Processing was carried out on a Dell PowerEdge
R740xd computational server (Windows 2012 R2 64 bit op-
erating system, 2× Intel Xeon Platinum 8180 processors and
1.536 TB RAM). The processing of the whole data set took
approximately 45 d to complete.

Processing workflow

To facilitate the processing of the large data set, we first gen-
erated a set of compact Python modules providing a pro-
gramming interface that allows for the calculation of the in-
dividual descriptors outlined in Sect. 3. The individual rou-
tines were then integrated into a Python script mediating the
processing workflow in parallel while carrying out error han-
dling, logging and progress tracking. The schematic of the
processing workflow and the Python modules is outlined in
Fig. 1. Detailed information is available on the GitHub repos-
itory, including instructions on how to set up the processing,
documentation on the functions provided by the Python mod-
ules and detailed in-text commentary of the code.

We generated the processing workflow so that it should
be possible to adapt it to other point cloud data sets. How-
ever, the effort required in achieving this will vary depend-
ing on various features of the point cloud data set in ques-
tion (such as tiling and tile naming conventions, input/output
grain sizes, etc.). A key pre-requisite is that the point cloud
is pre-classified, ideally following the ASPRS LAS 1.1–1.4
standards (ASPRS, 2019). We have also provided a helper
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Table 1. Overview of the data sources used for generating the EcoDes-DK15 data set. Three versions of the DHM/Point-cloud were merged
to obtain a point cloud data set that contained no vegetation points scanned after 2015 and as little vegetation points before 2014 as possible.
DHM/Terrain tiles were matched sources from the same data source as the corresponding point cloud tiles. A copy of the source data is
archived on the internal long-term data storage at Aarhus University and is available on request. For further information see documentation
on GitHub code repository and Sect. 3.6.3.

Data source Years Used for Data provider Downloaded available
from (download date)

Number of tiles

DHM/Point-cloud
(DHM/Punktsky)

2007–2018 Vegetation descriptors Danish Agency
for Data Supply
and Efficiency

https://kortforsyningen.
dk/ (24 April 2020)

38 671

DHM/Point-cloud
(DHM2015_punktsky)

2007–2018 Vegetation descriptors Danish Agency
for Data Supply
and Efficiency

https://datafordeler.dk
(13 October 2021)

10 955

DHM/Point-cloud
(GST_2014)

2007–2015 Vegetation descriptors Danish Agency
for Data Supply
and Efficiency

https://kortforsyningen.
dk/ (unknown,
before 2017)

47

DHM/Terrain
(DHM/Terræn)

2007–2018 Terrain descriptors Danish Agency
for Data Supply
and Efficiency

https://kortforsyningen.
dk/ (24 April 2020)

38 671

DHM/Terrain
(DHM2015_terraen)

2007–2018 Terrain descriptors Danish Agency
for Data Supply
and Efficiency

https://datafordeler.dk
(13 October 2021)

10 955

DHM/Terrain
(GST_2014)

2007–2015 Terrain descriptors Danish Agency
for Data Supply
and Efficiency

https://kortforsyningen.
dk/ (unknown,
before 2017)

47

script that can be adapted to generate a raster digital terrain
model (DTM) from the point cloud should this not be avail-
able; see the documentation on the GitHub repository for the
details. Finally, the modular nature of the processing work-
flow allows for only a subset of the output descriptors to be
calculated and the integration of additional processing rou-
tines for any new user-defined descriptors.

3 Data set description and known limitations

3.1 Extent, projection, resolution and data format

EcoDes-DK15 covers the majority of Denmark’s land area,
including the island of Bornholm (approximate extent: 54.56
to 57.75◦ N, 8.07 to 15.20◦ E). The data are projected in
ETRS89 UTM 32N based on the GRS80 spheroid (EPSG:
25832). The data set is available as GeoTIFFs with 10 m
grain size via a data repository on Zenodo (see Sect. 6).
For each descriptor the nationwide data are split into 49 673
raster tiles of 1km× 1km with a 10 m grain size based on
25-fold aggregations of the 0.4 m national grid of Denmark.
A virtual raster mosaic (VRT) file is provided for each de-
scriptor (except the point_source_counts, point_source_ids
and point_source_proportion descriptors), and a file contain-
ing the tile footprint geometries can be used for geographical

subsetting of the data. We also provide masks for inland wa-
ter and the sea.

The final data set consists of just under 94 GB of data
(compressed for download 16.8 GB). To reduce the size of
the data set we converted numerical values from floating
point precision to 16 bit integers where possible. In some
cases, this required us to stretch the values by a set factor to
maintain information content beyond the decimal point. The
descriptor conversion factors are available as a csv file pro-
vided with the data set and in Table 2. Missing data (NoData)
is denoted by a value of −9999 throughout the data set.

3.2 Overview and file naming convention

An overview of the 18 terrain and vegetation structure de-
scriptors, as well as the auxiliary data provided, can be found
in Table 2. Generally, the descriptor names in Table 2 reflect
the prefix of the file name of a GeoTIFF file within the data
set. This prefix is followed by a suffix representing the unique
identifier for each tile based on the UTM coordinates of the
tile (see Sect. 3.4.3 for more detail). When working with the
complete data set, tiles from the same descriptor are grouped
within a folder using the same descriptor name as used for the
file name prefix. For example, for the tile with the unique id
“6239_446” the GeoTIFF for the “dtm_10m” descriptor can
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Figure 1. Diagram of the processing workflow, the dk_lidar Python module and helper scripts. The workflow requires two inputs: a pre-
classified set of point cloud tiles and a paired set of digital terrain model (DTM) tiles. The process management is handled by the pro-
cess_tiles.py script which facilitates processing of each tile pair (DTM and point cloud) in parallel and logs the progress. For each tile,
process_tiles.py calls a specified set of extraction and processing functions from the dk_lidar modules. Point cloud extraction functions
are specified in points.py and terrain model extraction functions are specified in dtm.py. The dk_lidar modules also contain two fur-
ther files: common.py, a script containing specifications of common functions used by the points.py and dtm.py,, as well as settings.py,
which is used to set global processing options, specify file paths, etc. Finally, two helper scripts are provided: progress_monitor.py, which
facilitates progress monitoring and estimates the time remaining, and debug.py, a script for testing the workflow for a single tile. To-
gether the Python scripts and modules allow the ecological descriptor outputs from the two input data sets to be generated. Further
documentation of the dk_lidar modules and workflow scripts can be found on the GitHub repository associated with this publication:
https://github.com/jakobjassmann/ecodes-dk-lidar (last access: 5 January 2022).

be found in “dtm_10m/dtm_10m_6239_446.tif”. The excep-
tions are the point counts, vegetation proportions and point
source information; please see the relevant sections below
for more detail.

3.3 Completeness of the data set

The processing of the data set was almost completely suc-
cessful. Processing failed on average for only 18 out of the
49 673 tiles per descriptor with a maximum of 65 tiles fail-
ing for the canoy_height, normalized_z_mean and normal-
ized_z_sd descriptors. The majority of these tiles were lo-
cated on the fringes of the data set, including sand spits, sand-
banks etc. We therefore did not attempt to re-process those
tiles. Instead, we generated NoData rasters for all missing
descriptor–tile combinations (i.e. we assigned −9999 to all
cells in those tiles). We provide a text file listing the affected
“NoData” tiles in the folder of each descriptor (the file is

named empty_tiles_XXX.txt, where XXX is the descriptor
name).

3.4 Elevation-model-derived descriptors

The following descriptors were solely derived from the 0.4 m
digital elevation model (DHM/Terrain). Visualisations of
these descriptors for an example tile in the Mols Bjerge area
are shown in Fig. 2.

3.4.1 Elevation (dtm_10m)

We aggregated the 0.4 m DEM by mean to match the 10m×
10m national grid of the remainder of the data set. We used
gdalwarp to carry out the aggregations. Values represent the
elevation above sea level in metres (DVR90, EPSG: 5799)
multiplied by a factor of 100, rounded to the nearest integer
and converted to 16 bit integer.
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Table 2. Brief overview of the 18 main EcoDes-DK15 descriptors and descriptor groups, their ecological meaning, unit, format and conver-
sion factor. See Sect. 3.4 for a detailed description of each descriptor. In addition to the 70 raster layers for the main descriptors, the data
set contains 9 layers of auxiliary information (see Sect. 3.7). Note: to obtain the correct unit, the descriptor value needs to be divided by the
conversion factor.

Descriptor(s) Ecological meaning Unit Format Conversion Number
factor of layers

dtm_10m Elevation m 16 bit integer 100 1
aspect Topographic aspect Degrees 16 bit integer 10 1
slope Topographic slope Degrees 16 bit integer 10 1
heat_load_index Proxy of radiation and wet-

ness
Unitless 16 bit integer 10 000 1

solar_radiation Solar radiation MJ ×100−1 m−2 yr−1 32 bit integer 1 1
openness_mean Topographic position Degrees 16 bit integer 1 1
openness_difference Presence of linear land-

scape features
Degrees 16 bit integer 1 1

twi Topographic wetness Unitless 16 bit integer 1000 1

amplitude_mean Complexb Undefined 32 bit float 1 1
amplitude_sd Complexb Undefined 32 bit float 1 1
canopy_height Vegetation height m 16 bit integer 100 1
normalized_z_mean Average structural height

(incl. vegetation and build-
ings)

m 16 bit integer 100 1

normalized_z_sd Variation in structural
height (incl. vegetation and
buildings)

m 16 bit integer 100 1

point_countsa Number of returns in
ground, water, building and
vegetation point classes;
total return count and
vegetation return counts in
height bins

Count 16 bit integer 1 30

vegetation_proportiona Proportion of vegetation re-
turns in height bins

Proportion 16 bit integer 10 000 24

vegetation_density Ratio of vegetation returns
to total returns

Proportion 16 bit integer 10 000 1

canopy_openness Ratio of ground and water
returns to total returns

Proportion 16 bit integer 10 000 1

building_proportion Ratio of building returns to
total returns

16 bit integer 10 000 1

point_source_infoa Point source/flight strip in-
formation

Varied, see description Varied, see description Varied, see description 4

masks Inland water and sea mask Binary 16 bit integer 1 2
date_stampa Min, max and mode of

GPS dates for all vegetation
points

Date as YYYYMMDDc 32 bit integer 1 3

a Descriptor group containing multiple individual descriptors; see in-text description for detail. b The amplitude descriptors are difficult to interpret but can serve as useful indicators for
vegetation classification and biodiversity studies. Please see in-text description for more detail. c YYYY= year in four digits, MM=month in two digits, DD= day in two digits.

3.4.2 Aspect (aspect)

The topographic aspect describes the orientation of a slope in
the terrain and may, amongst other things, be related to plant
growth through light and moisture availability. We calculated
the aspect in degrees, with 0◦ indicating north, 90◦ east, 180◦

south and 270◦ west. Values represent the aspect derived
from a 10 m aggregate of the elevation model (aggregated
by mean with 32 bit floating point precision). Calculations

were carried out using gdaldem binaries and the “aspect” op-
tion, which by default uses Horn’s method to calculate the
aspect (Horn, 1981). To avoid edge effects, all calculations
were done on a mosaic that included the focal tile and all
available directly neighbouring tiles (maximum eight). The
mosaic was cropped back to the extent of the focal tile upon
completion of the calculations. We then converted the value
for each cell from radians to degrees, multiplied it by a factor
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Figure 2. Illustration of the terrain-model-derived descriptors for a 1km×1km tile in the Mols Bjerge area (tile id: 6230_595). An orthophoto
and the tile location relative to Denmark are shown in (a). The terrain model (dtm_10m) is illustrated in (b). The terrain-derived descriptors
are comprised of (c) the topographic aspect, (d) the topographic slope, (e) the heat load index following McCune and Keon (2002), (f) the
estimated incident solar radiation, (g) the landscape openness mean, (h) the landscape openness difference in the eight cardinal directions
and (i) the topographic wetness index (TWI) based on Kopecký et al. (2020). For visualisation purposes, we amplified the altitude above
sea level by a factor of 2 in the three-dimensional visualisations and divided the solar radiation values by 105. The three-dimensional raster
visualisations were generated using the rayshader v0.19.2 package in R (Morgan-Wall, 2020). Orthophoto provided by the Danish Agency
for Data Supply and Efficiency (https://sdfe.dk/hent-data/fotos-og-geodanmark-data/, last access: 28 June 2021).

of 10, rounded to the nearest integer and stored the results as
a 16 bit integer. Finally, we assigned a value of −10 (−1◦) to
all cells where the slope was 0◦ (flat). Limitations in the as-
pect arise in relation to edge effects that occur where a neigh-
bourhood mosaic is incomplete for a focal tile (i.e. less than
eight neighbouring tiles), such as for tiles along the coastline
or at the edge of the covered extent. For those tiles, no aspect
can be derived for the rows or columns at the edge of the
mosaic. The cells in those rows and columns have no neigh-
bouring cells and were assigned the NoData value (−9999).
Please also note that we calculated the aspect descriptor from
the 10 m aggregate of the DTM/Terrain data set rather than
deriving it from the 0.4 m original-resolution rasters and then
aggregating it. The latter approach could represent the aspect
at the original resolution better (Grohmann, 2015; Moudrý
et al., 2019), but would create inconsistencies within how
the remaining DTM/Terrain descriptors are calculated in this
data set.

3.4.3 Slope (slope)

The topographic slope describes the steepness of the terrain
and amongst other things may be related to moisture avail-
ability, exposure and erosion. We derived the topographic
slope in degrees with a 10 m grain size from a mean ag-

gregate of the elevation model (32 bit floating point preci-
sion) using the gdaldem binaries with the “slope” option,
which by default use Horn’s method to calculate the slope
(Horn, 1981). To avoid edge effects, we carried out the cal-
culations on a mosaic including the focal tile and all avail-
able directly neighbouring tiles (maximum eight). The mo-
saic was cropped back to the extent of the focal tile upon
completion of the calculations. The value for each cell was
converted from radians to degrees, multiplied by a factor of
10, rounded to the nearest integer and stored as a 16 bit inte-
ger. Limitations in the slope arise in relation to edge effects
that occur where a neighbourhood mosaic is incomplete for
a focal tile (i.e. less than eight neighbouring tiles), such as
for tiles along the coastline or at the edge of the covered ex-
tent. For those tiles, no slope can be derived for the rows or
columns at the edge of the mosaic. These cells in those rows
and columns have no neighbouring cells, and gdaldem as-
signs the NoData value (−9999) to these cells. Please also
note that we calculated the slope descriptor from the 10 m
aggregate of the DTM/Terrain data set rather than deriving
it from the 0.4 m original-resolution rasters and then aggre-
gating it. The latter approach could represent the slope at the
original resolution better (Grohmann, 2015; Moudrý et al.,
2019), but would create inconsistencies within how the re-
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maining DTM/Terrain descriptors are calculated in this data
set.

3.4.4 Landscape openness mean (openness_mean)

Landscape openness is a landform descriptor that indicates
whether a cell is located in a depression or elevation of
the landscape. We calculate the landscape openness follow-
ing Yokoyama (2002) using the OPALS implemented algo-
rithms. We used a mean aggregate of the elevation model
with 10 m grain size and 32 bit floating point precision and
derived the mean landscape openness for a cell as the mean
of the landscape openness in all eight cardinal directions with
a search radius of 150 m. We chose to base this descriptor on
the aggregated 10 m elevation model and a 150 m search ra-
dius as we think that these are best suited to describe the
landscape-scale variation in the landforms of Denmark. Dan-
ish landscapes are characterised by gently undulating terrain,
valleys forged by small to medium sized rivers and dune sys-
tems along the coastlines. First, we generated a mosaic in-
cluding the focal tile and all available tiles in the direct neigh-
bourhood (max. eight neighbouring tiles) to reduce edge ef-
fects in subsequent calculations. The mean of the positive
openness for all eight cardinal directions with search radius
of 150 m was then derived for all cells in the mosaic using
the OPALS Openness module (options: feature= “positive”,
kernelSize= 15 and selMode= 0). Next, the mean openness
per cell was converted from radians to degrees, rounded to
the nearest integer and stored as a 16 bit integer. For incom-
plete neighbourhood mosaics (i.e. containing less than eight
neighbouring tiles) we then masked out cells within the first
150 m of all edges where a neighbourhood tile was missing.
Finally, the output was cropped back to the extent of the fo-
cal tile. As a consequence of the edge-effect-related masking,
the focal tiles on the fringes of the data set, such as those on
coastlines or at the edge of the coverage area, have no data
available for the first 150 m. The corresponding cells for the
affected areas are set to the NoData value −9999.

3.4.5 Landscape openness difference
(openness_difference)

In addition to the mean of the landscape openness, we also
derived a landscape openness difference measure. This dif-
ference measure is an indicator of whether a cell is part of a
linear feature in the landscape that runs in one cardinal direc-
tion, such as a ridge or valley, therefore providing additional
information to the landscape openness_mean descriptor. We
calculated the landscape openness difference based on the
10 m mean aggregate of the elevation model (32 bit floating
point precision) and with a search radius of 50 m. We chose
these parameters as we consider them best suited to capture
the relatively narrow valleys and ridgetops common in the
Danish landscape. First, we generated a mosaic including
the focal tile and all available tiles in the direct neighbour-

hood (max. eight neighbouring tiles) to reduce edge effects
in subsequent calculations. We then calculated the minimum
and maximum of the positive landscape openness from all
eight cardinal directions for all cells in the mosaic using the
OPALS Openness module with a search radius of 50 m (fea-
ture= “positive”, kernelSize= 5, selMode= 1 for minimum
and selMode= 2 for maximum). Next, we converted the min-
imum and maximum values from radians to degrees and cal-
culated the difference between the maximum and minimum
value. We rounded the result to the nearest full degree. For
the cases where the neighbourhood mosaic was incomplete,
i.e. containing less than eight neighbouring tiles, we masked
out all cells within the first 50 m of all edges with a miss-
ing neighbourhood tile. The final output mosaic was then
cropped to the extent of the focal tile and stored as a 16 bit in-
teger GeoTIFF. As a consequence of the edge-effect-related
masking, focal tiles on the edges of the data set, such as those
on coastlines or at the edge of the coverage area, have no data
available for the first 50 m.

3.4.6 Solar radiation (solar_radiation)

Incident solar radiation is a key parameter for plant growth
as it represents the electromagnetic energy available to plants
required for photosynthesis. However, in the comparatively
flat country of Denmark, shading by other vegetation likely
exerts a larger influence on photosynthetic activity than
terrain-related shading. Here, the impact of incident solar ra-
diation on the local climate likely plays a more important
role for determining plant growth due to its influence on
drought and water dynamics (Moeslund et al., 2019). We es-
timated the amount of incident solar radiation received per
cell (100 m2) per year from the slope and aspect computed
as described above. Calculations were implemented using
gdal_calc, following Eq. (3) specified in McCune and Keon
(2002):

solar_radiation= 106

× e0.339+0.808×cos(L)×cos(S)−0.196×sin(L)×sin(S)−0.482×cos(180−|(180−A)|)×sin(S),

(1)

where L is the centre latitude of the cell in degrees, S
is the slope of the cell in degrees, and A is the aspect
of the cell in degrees. The resulting estimate is given in
MJ× 100−1 m−2 yr−1 (McCune and Keon, 2002). Slope and
aspect for each 10m× 10m grid cell were sourced from the
slope and aspect rasters. We saved the result as 32 bit inte-
gers. Due to propagation from the calculation of slope de-
scriptor, no solar radiation values can be calculated for cells
found right on the edge of the data set, for example in tiles
situated along the coastline or at the edge of the sampling
extent.
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3.4.7 Heat load index (heat_load_index)

The heat load index (McCune and Keon, 2002) was origi-
nally developed as an indicator for temperature based solely
on aspect, but this characteristic is probably better captured
in our solar radiation descriptor (see above) that was devel-
oped to improve shortcomings in the heat load index (Mc-
Cune and Keon, 2002). However, in a previous study (Moes-
lund et al., 2019) we show that – in Denmark – the index was
moderately correlated with soil moisture and can therefore
serve as a useful indicator of the amount of moisture avail-
able to plants. We calculated the heat load index based on
the aspect rasters (described above) following the equation
specified in McCune and Keon (2002) using gdal_calc:

heat_load_index=
(1− cos(A− 45))

2
, (2)

where A is the aspect in degrees. We stretched the result by
a factor of 10 000, rounded to the nearest integer and stored
it as a 16 bit integer. As the heat_load_index is not mean-
ingfully defined for flat cells (slope= 0◦ / aspect=−1◦), we
set the value of those cells to NoData (−9999). Finally, for
cells that are located on the outermost edges of the data set
the heat_load_index is not defined due to propagation of the
NoData value assigned to the aspect in those cells.

3.4.8 Topographic wetness index (TWI)

The topographic wetness index (TWI) provides a proxy mea-
sure of soil moisture or wetness based on the hydrolog-
ical flow modelled through a digital terrain model. Here,
we derived the TWI following the method recommended by
Kopecký et al. (2020). We based our calculations on the ag-
gregated 10 m elevation model (dtm_10m, 16 bit integer) and
used a neighbourhood mosaic (max. 8 neighbours) for each
focal tile to derive the TWI. The exact procedure is detailed
in the next paragraph. As such the index values calculated
by us only consider a catchment the size of one tile and all
its neighbours (for non-edge tiles this is a 3km×3km catch-
ment, and for edge tiles it is smaller depending on the com-
pleteness of the neighbourhood mosaic). We then cropped the
resulting output back to the extent of the focal tile, stretched
the TWI values by a factor of 1000, rounded to the next full
integer and stored the results as a 16 bit integer.

We calculated the TWI using SAGA GIS v. 7.8.2 bina-
ries. First, we sink-filled the neighbourhood mosaic of the
terrain model using the ta_preprocessor 5 module and the
option “MINSLOPE 0.01” (Wang and Liu, 2006). Second,
we calculated the flow accumulation based on the sink-filled
neighbourhood mosaic of the terrain model (from step one)
using the ta_hydrology 0 module with options “METHOD
4” and “CONVERGENCE 1.0” (Freeman, 1991; Quinn et
al., 1991). Third, we derived the flow width and specific
catchment area based on the sink-filled neighbourhood mo-
saic of the terrain model (from step one) and the flow ac-
cumulation (from step two) using the module ta_hydrology

19 (Gruber and Peckahm, 2008; Quinn et al., 1991). Fourth,
we calculated the slope based on the sink-filled neighbour-
hood mosaic of the terrain model (from step one) using the
ta_morphometry 0 module with option “METHOD 7” (Har-
alick, 1983). Finally, we derived the TWI based on the spe-
cific catchment area (from step three) and slope (from step
four) using the module ta_hydrology 20 (Beven and Kirkby,
1979; Böhner and Selige, 2006; Moore et al., 1991). For de-
tailed descriptions of the modules used, please refer to the
SAGA GIS documentation (SAGA-GIS Tool Library Docu-
mentation v7.8.2, 2021).

The TWI descriptor calculated for EcoDes-DK15 is sub-
ject to two main limitations: edge effects and small catch-
ment size. Tiles with incomplete neighbourhoods (i.e. less
than eight direct neighbours are available) will suffer from
edge effects in the direct vicinity of the relevant border and
overall due to a reduced catchment size. Furthermore, even
in the ideal case of the neighbourhood being complete, for
most cells flow accumulation is therefore only calculated
for the direct neighbourhood of a focal tile, comprising a
3km× 3km catchment area. While we hypothesise that, due
to the relatively low variation in topography in Denmark, the
TWI based on this comparably small catchment area will
serve as a reasonable proxy for terrain-based wetness in most
cases, it may be less reliable in areas with exceptionally high
variation in topography or for lakes and rivers with large
catchments. In addition, we would like to point the reader
towards the general limitations of the TWI as a proxy for
soil moisture or terrain wetness as, for example, discussed
by Kopecký et al. (2020). These general limitations should
be taken into account when interpreting the TWI values pro-
vided in EcoDes-DK15.

3.5 Point-cloud-derived descriptors

The DHM/Point-cloud point cloud was pre-classified into
11 point categories (Geodatastyrelsen, 2015) following the
ASPRS LAS 1.3 standard (ASPRS, 2011). For the EcoDes-
DK15 data set, we restricted the analysis to six of these
classes, including ground points (“Terræn”) – class 2, water
points (“Vand”) – class 9, and building points (“Bygninger“)
– class 6, as well as low (“lav”), medium (“mellemhøj”) and
high vegetation (“høj vegetation”) – classes 3, 4 and 5, re-
spectively. We grouped the three vegetation classes into one
single vegetation class and, instead of the pre-assigned height
categories, considered a more detailed set of height bins (see
point-count and proportion descriptions below). The overall
classification accuracy of the point cloud was assessed by the
Danish authorities (Flatman et al., 2016), but limited infor-
mation is available for the accuracy in each class. Thus, some
degree of noise should be assumed across all classes. The tall
vegetation category (class 6) was used as a catch-all class if
classification failed, as often the case for very tall buildings
and structures (Flatman et al., 2016). To reduce the noise re-
lated to such structures, we removed vegetation points with
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a normalised height exceeding 50 m above ground when cal-
culating the vegetation point counts. We included all returns,
i.e. first returns and echoes, in our analysis.

All point cloud processing was carried out using OPALS
and the OPALS Python bindings. As none of the point-cloud-
derived descriptors required mosaicking to prevent edge ef-
fects, we processed all point cloud descriptors on the focal
tile only. After the initial ingestion of the LAZ file for a tile
into the OPALS data manager format (odm), we used the
OpalsAddInfo module to add a normalised height (z) attribute
to the points. For this attribute we subtracted the height of the
ground derived from the corresponding DHM/Terrain raster
(0.4 m grid size) from the height above sea level of each
point. Figure 3 illustrates how the point cloud data trans-
lates to some of the descriptor outputs for four exemplary
10m× 10m cells from the data set, and an overview of the
point-cloud-derived descriptors for a 1km×1km tile in Vejle
Fjord in central Jutland is provided in Fig. 4.

3.5.1 Amplitude – mean and standard deviation
(amplitude_mean and amplitude_sd)

The amplitude attribute of a point in the DHM/Point-cloud
is the actual amplitude of the return echoes; i.e. it describes
the strength of the lidar return signals detected by the sensor.
The descriptor is difficult to interpret in terms of its ecolog-
ical meaning. Nonetheless, we believe that it is still useful
for vegetation classifications, biodiversity analysis and other
applications that perform well with proxy data. We calculate
the arithmetic mean and standard deviation of the amplitude
for all points within a 10m× 10m cell. Here, “all points”
refers to all points classified as ground, water, building and
vegetation points. Calculations were carried using the OPALS
Cell module, and results were stored as 32 bit floats. The am-
plitude attributes in the DHM/Point-cloud point clouds are
not directly comparable when points originate from differ-
ent point sources (e.g. flight strips), as the amplitude has
not been calibrated and hence is sensitive to differences in
sensor, sensor configuration and signal processing. Calcu-
lating summary metrics such as mean and standard devia-
tion for a 10m× 10 m cell where points from different point
sources are present introduces additional complexities. In
some cases, a 10 m cell might contain points from up to four
different sources. We therefore recommend using the two
amplitude descriptors with care and – if possible – in con-
junction with information on the point source ids contained
in the point_source_info descriptors described below.

3.5.2 Canopy height (canopy_height)

Canopy height is a key parameter of vegetation structure re-
lated to biomass and ecosystem functioning. We derived the
canopy height in metres as the 95th percentile of the nor-
malised height above ground of all vegetation points within
each 10m×10m cell using the OPALS Cell module. The re-

sulting canopy heights were multiplied by a factor of 100,
rounded to the nearest integer and stored as 16 bit integers.
In cases where there were no vegetation points in any given
cell, we set the canopy height value of the cell to 0 m. Please
note that the canopy height is therefore also set as 0 m even
if there are no points present in the cell at all (such as ground
or water points). Furthermore, our algorithm calculates the
canopy height even if there is only a small amount of vege-
tation points in a cell. In rare cases, this might lead to erro-
neous canopy-height readings if vegetation is found on arti-
ficial structures or points have been misclassified. For exam-
ple, a tall communications tower can be found just south of
Aarhus, and returns from the tower were miss-classified as
vegetation. The resulting canopy height for this cell is calcu-
lated as> 100 m above ground, which would not make sense
if interpreted as a height of the vegetation above ground. For
such cases, the building proportion descriptor may be used to
separate cells with artificial structure from those with vege-
tation only. See also the “normalized_z” descriptor below for
a closely related measure.

3.5.3 Normalised height – mean and standard deviation
(normalized_z_mean and normalized_z_sd)

Similar to the canopy height descriptor, the normalised
height describes the structure properties of the point cloud
above ground. The key difference between the two descrip-
tors is that for the normalised height we also included non-
vegetation points (buildings and ground) and derived the
summary statistic as the mean rather than the 95 % quantile.
For the normalised height descriptor, we also provide a mea-
sure of variation in form of the standard deviation. Specif-
ically, we calculated the normalised mean and the standard
deviation of the mean height above ground (normalised z
attribute) for all points in each 10m× 10m grid cell using
the OPALS Cell module. The results were multiplied by 100,
rounded to the nearest integer and stored as 16 bit integers.
We used the normalised z attribute generated during the in-
gestion of the point cloud reflecting the height of a point
relative to the ground level determined by the DHM/Terrain
raster. Here, all points refer to all points belonging either to
the ground, water, building or vegetation class. By definition
the normalised height mean will be highly correlated with
the “canopy_height” descriptor for cells where mainly veg-
etation points are present. We kept the American spelling of
the descriptor name for legacy reasons with previous versions
of the data set.

3.5.4 Point counts (xxx_point_count_xxx)

The point-count descriptors are intermediate descriptors used
to generate the proportion descriptors described below. How-
ever, they can also be used to calculate tailored proportion
descriptors relevant to addressing a specific ecological objec-
tive (see use-case example in Sect. 4.2). For EcoDes-DK15
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Figure 3. Point cloud examples for four 10m×10m cells and a selection of the associated EcoDes-DK15 descriptors derived from the point
clouds, illustrating the ecological meaning and some of the limitations of the EcoDes-DK15 data set. The 10m× 10m cells represent the
following environments: (a) an agricultural field, (b) the edge of a forest/parkland pond with low vegetation, (c) a young plantation of dense
coniferous trees and (d) old growth mixed woodland. The EcoDes-DK15 descriptors shown include (from the top) the total point counts for
each cell in the three main EcoDes-DK15 categories: (1) the number of returns classified as ground, (2) the number of returns classified as
water and (3) the number of returns classified as vegetation. In addition, the relative proportion of vegetation points per predefined height
bin is illustrated below the total vegetation point count. Finally, the bottom three panels show the estimated canopy height (altitude above
ground for the 95 % percentile of all vegetation returns), the normalised z standard deviation (variation in height above ground for all return
classes) and the mean return amplitude for each cell. Please note how the classification of the point cloud does not separate between very
low-growing vegetation (e.g. grass) and ground points in the agricultural field shown in (a), as well as how returns from water are only
registered in shallow areas close to the water body’s edge, as exemplified by the forest pond in (b). Lastly, we would like to point the reader
to the general limitations of ALS in penetrating forest canopies such as those shown in (c) and (d). While the upper layers of the canopies
are well resolved in both cases, the laser scanning struggles to capture some aspects of the lower layers; the ground returns were frequently
blocked by the thick canopy in (c), and the laser fails to meaningfully characterise understorey vegetation and stems in (d).

we derived 30 point-count descriptors for each 10m× 10m
cell based on filtering of the pre-defined point classifications
and separation by height above ground (normalised z) us-
ing the OPALS Cell module. All point counts were stored
as 16 bit integers. These 30 descriptors contain 6 general
point counts, including ground, water, vegetation, building
and total point counts (Table 3), as well as 24 vegetation

point counts separated in height bins (Table 4). Note that the
number of returns within a 10 m cell is influenced by (a) the
number of point sources present in the cell, (b) the relative
position and distance of a cell to the point source when the
data were collected (i.e. to the flight path), and (c) the point
sources themselves (i.e. differences between the lidar sen-
sors deployed). The absolute counts are therefore not directly
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Figure 4. Illustration of the point-cloud-derived descriptors for a 1km× 1km tile along Vejle Fjord (tile id: 6171_541). An orthophoto and
the tile location relative to Denmark are shown in (a). The point-cloud-derived descriptors are comprised of (c) the mean return amplitude,
(d) the standard deviation in the return amplitude, (e) the canopy height (vegetation returns only), (f) the mean of the normalized height above
ground (all returns), (g) the mean of the normalized height (all returns), (h) the ground point count, (i) the water point count, (j) the building
point count, (k) the total point count, (l) the number of point sources (flight strips), (m) the canopy openness, (n) the vegetation density and
(o) the building proportion. Note the influence of point source overlap illustrated in (l) on some of the descriptors, for example, (g) ground
point count, (i) vegetation point count and (k) total point count (see Sect. 3.5.5 for detail). For visualisation purposes, we amplified the
altitude above sea level by a factor of 2 in the three-dimensional visualisations and divided the point counts by 1000. The three-dimensional
raster visualisations were generated using the rayshader v0.19.2 package in R (Morgan-Wall, 2020). Orthophotograph provided by the Danish
Agency for Data Supply and Efficiency (https://sdfe.dk/hent-data/fotos-og-geodanmark-data/, last access: 28 June 2021).

comparable between cells and need to be standardised first,
for example by division of the total number of point counts
as done for the point proportion descriptors derived by us.

3.5.5 Vegetation proportions by height bin
(vegetation_proportion_xxx)

The vegetation proportions by height bin are amongst the key
parameters in the EcoDes-DK15 data set describing vegeta-
tion structure as they provide an indication of how the veg-

etation is distributed vertically within each cell of the raster.
We calculated the proportions by dividing the vegetation
count for each height bin (Table 4) by the total point count
(total_point_count_-01m-50m) within a given 10m× 10m
cell. Resulting proportions were multiplied by a factor of
10 000, rounded to the nearest integer and converted to 16 bit
integers. All calculations were done using gdal_calc based
on the respective point-count rasters (Sect. 3.3.5). The nam-
ing convention of the vegetation proportion descriptors “veg-
etation_proportion_xxx” follows the same convention as the
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Table 3. General point-count descriptors, as well as the height ranges and point classes included in each descriptor.

Descriptor name Height range Point classes

ground_point_count_-01m-01m −1 to 1 m Ground points (class 2)
water_point_count_-01m-01m −1 to 1 m Water points (class 9)
ground_and_water_point_count_-01m-01m −1 to 1 m Ground and water points (classes 2, 9)
vegetation_point_count_00m-50m 0 to 50 m Vegetation points (classes 3, 4, 5)
building_point_count_-01m-50m −1 to 50 m Building points (class 6)
total_point_count_-01m-50m −1 to 50 m Ground, water, vegetation and building points (classes 2, 3, 4, 5, 6, 9)

Table 4. Vegetation point-count descriptors divided into 24 height
bins. All vegetation point counts include the point classes 3, 4 and
5.

Descriptor name Height range

vegetation_point_count_00.0m-00.5m 0.0 to 0.5 m
vegetation_point_count_00.5m-01.0m 0.5 to 1.0 m
vegetation_point_count_01.0m-01.5m 1.0 to 1.5 m
vegetation_point_count_01.5m-02.0m 1.5 to 2.0 m
vegetation_point_count_02m-03m 2 to 3 m
vegetation_point_count_03m-04m 3 to 4 m
vegetation_point_count_04m-05m 4 to 5 m
vegetation_point_count_05m-06m 5 to 6 m
vegetation_point_count_06m-07m 6 to 7 m
vegetation_point_count_07m-08m 7 to 8 m
vegetation_point_count_08m-09m 8 to 9 m
vegetation_point_count_09m-10m 9 to 10 m
vegetation_point_count_10m-11m 10 to 11 m
vegetation_point_count_11m-12m 11 to 12 m
vegetation_point_count_12m-13m 12 to 13 m
vegetation_point_count_13m-14m 13 to 14 m
vegetation_point_count_14m-15m 14 to 14 m
vegetation_point_count_15m-16m 15 to 16 m
vegetation_point_count_16m-17m 16 to 17 m
vegetation_point_count_17m-18m 17 to 18 m
vegetation_point_count_18m-19m 18 to 19 m
vegetation_point_count_19m-20m 19 to 20 m
vegetation_point_count_20m-25m 20 to 25 m
vegetation_point_count_25m-50m 25 to 50 m

vegetation point-count descriptors (Table 4), whereby the
suffix “xxx” is replaced with the respective height bin. Please
note that height bins are spaced at 0.5 m intervals below 2 m
and at 1 m intervals between 2 and 20 m. Furthermore, the
range above 20 m is split into only two bins: 20 to 25 m and
25 to 50 m.

Given the properties of the DHM/Point-cloud we recom-
mend being cautious when interpreting differences in the
lower height bins. It is likely that the inaccuracies in the point
cloud complicate clear separation between points less than
half a metre apart. Furthermore, note that the proportions in
the 0–0.5 m bin are likely biased towards an underrepresen-
tation of the vegetation proportion in this height bin due to
challenges in separating vegetation from ground points dur-

ing the pre-classification. Lastly, keep in mind that dense
canopy layers in the upper story of the canopy will reduce
penetration of the light beam to the lower canopy layers. This
may result in few returns in the lower layers (for example
Fig. 3d) even though perhaps vegetation is present in those
layers.

3.5.6 Vegetation density or total vegetation proportion
(vegetation_density)

Vegetation density is an important component of ecosys-
tem structure. Here, we calculated the vegetation density
as the ratio between the vegetation returns across all verti-
cal height bins (vegetation_point_count_00m-50m) and the
total point count (total_point_count_-01m-50m). Calcula-
tions were done using gdal_calc based on the two point-
count rasters (Sect. 3.3.5). Results were multiplied by 10 000,
rounded to the nearest integer and stored as 16 bit integers. In
addition to the actual difference between vegetation density
in a cell, the vegetation_density descriptor is also influenced
by the canopy properties; e.g. a dense upper layer will pre-
vent penetration of the light beam to lower layers or even
the ground, and the point sources within a cell, e.g. multiple
sources from different viewing angles, provide a more com-
plete estimate of the vegetation density. These additional in-
fluences are important to keep in mind when interpreting the
vegetation_density descriptor.

3.5.7 Canopy openness or ground and water proportion
(canopy_openness)

Canopy openness is an important ecological descriptor par-
ticularly of forest canopies, as it describes the amount of
light penetrating through to the levels of the canopy. To
some degree the canopy openness serves as the inverse for
the vegetation density. For EcoDes-DK15, we calculated the
canopy openness of a 10m×10m cell as the proportion of the
ground and water points (ground_and_water_point_count_-
01m-01m) to the total point count (total_point_count_-01m-
50m) within the cell. The raster calculations were done us-
ing gdal_calc. Results were multiplied by 10 000, rounded to
the nearest integer and stored as 16 bit integers. Please note
that the same considerations as for the vegetation_density de-
scriptor (Sect. 3.3.7) regarding canopy properties and differ-

https://doi.org/10.5194/essd-14-823-2022 Earth Syst. Sci. Data, 14, 823–844, 2022



836 J. J. Assmann et al.: EcoDes-DK15: high-resolution ecological descriptors of vegetation and terrain

ences in point sources between the cells apply when inter-
preting the canopy_openness descriptor. In addition, it is im-
portant to note that building points will reduce the canopy
openness the same way that vegetation points would.

3.5.8 Building proportion (building_proportion)

In a densely populated country such as Denmark, build-
ings form an important part of the landscape. For ecologi-
cal studies the distance to buildings, their presence, absence
or density may be of relevance. The building_proportion de-
scriptor of EcoDes-DK15 provides a proxy for how much
building infrastructure can be found within a 10 m cell. We
calculated the descriptor as the number of building points
(building_point_count_-01m-50m) divided by the total num-
ber of points (total_point_ count_-01m-50m) within each cell
using gdal_calc. Results were multiplied by 10 000, rounded
to the nearest integer and stored as 16 bit integers. While
most returns from three-dimensional infrastructure are clas-
sified as buildings in the DHM/Point-cloud, we would like to
highlight that many roads are classified as ground (class 2)
and some structures such as pylons and power lines were as-
signed a separate class (not described in Geodatastyrelsen,
2015). These structures are therefore not included in the
building_proportion descriptor. We would further like to note
that the majority of building points are likely based on re-
turns from the roofs of the buildings. Walls and other vertical
structures are probably represented at a lower frequency in
the point clouds. Finally, we would like to point the reader to
the “DCE Basemap” (Levin, 2019) which may assist in the
identification of basic land cover types that include buildings
and other man-made structures.

3.6 Auxiliary data

In addition to the terrain and point-cloud-derived descriptors
we provide three sets of auxiliary data with EcoDes-DK15.
These are four layers of ALS point source information, a
mask for inland water and a sea mask, as well as a shape-
file of the footprints of the 1km× 1km tiles in the data set
and their unique identifier.

3.6.1 Point source information

The point source attribute of the DHM/Point-cloud rep-
resents differences between sensor units or aircraft that
may have been used during the nationwide lidar cam-
paign, differences in the acquisition time and date, and
differences in the viewpoint or acquisition angle of the
cells. To aid in interpretation of descriptors that may be
particularly influenced by point source, like the amplitude
descriptors or the vegetation proportions, we provide
summary information about the point sources within each
10m× 10m cell. We summarised this information in four
descriptors: “point_source_counts”, “point_source_ids”,

“point_source_nids” and “point_source_proportions”. For
each tile (file name suffix= tile id), these descriptors
are found in four subfolders bundled up in the parent
“point_source_info” folder.

The point_source_ids is the multi-layer raster containing
one 16 bit integer layer for each point source id found in a
tile. If a point with a given point source id is present, the
value of the cell is set to the point source id (an integer num-
ber) in the respective layer for the point source id; otherwise
the value of a cell is set to 0. This multilayer raster can be
used to match the file names of the point_source_counts and
point_source_proportions rasters to a given point source id.
Point source ids were extracted using Opals Cell.

The point_source_nids is the single layer GeoTIFF files
containing the number of different point source ids in each
cell stored as 16 bit integers. We calculated the number of
point source ids based on the point_source_ids descriptor us-
ing gdal_calc.

For point_source_counts, for each tile there are mul-
tiple rasters (up to four), one raster for each point
source id found in the point cloud of the tile (see the
point_source_ids descriptor). These rasters are named with
an additional suffix, which matches the integer point source
id for which the point counts are given in the raster
(e.g. point_source_counts_xxxx_xxx_y*, where xxxx_xxx is
the tile id and y* the integer point source id). The rasters con-
tain the number of points per 10m×10m cell for the respec-
tive point source id in the tile. Counts were extracted using
the OPALS Cell module and stored as 16 bit integers.

For point_source_proportions, for each tile there are
multiple rasters (up to four), one raster for each point
source id found in the point cloud of the tile (see the
point_source_ids descriptor). These rasters are named with
an additional suffix, which matches the integer point
source id for which the point proportions are given in the
raster (e.g. point_source_proportions_xxxx_xxx_y*, where
xxxx_xxx is the tile id and y* the integer point source id).
Each raster contains the proportion of the point counts for
a given point source id in relation to the total point count
per 10m× 10m cell. Calculations were carried out using
gdal_calc. The final proportions were multiplied by a factor
of 10 000, rounded to the nearest integer and stored as 16 bit
integers.

3.6.2 Water masks (inland_water_mask and sea_mask)

We also provide rasterised water masks for use cases that re-
quire masking inland water bodies or the sea. To represent
all permanent lakes in Denmark, we merged three shape-
files containing (1) lakes protected by the Danish nature pro-
tection legislation (§ 3, available at https://arealinformation.
miljoeportal.dk, last access: 28 June 2021), (2) other valuable
lakes (available on request at the Danish Farming Agency in
the “good farming and environmental condition” data set),
and (3) a layer containing the remaining rather small lakes
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and ponds (GeoDanmark, https://kortforsyningen.dk/, last
access: 28 June 2021). The combined shapefile is provided
on the GitHub code repository (see below). We then burned
the geometries within the shapefile into the 10m× 10m grid
using gdal_rasterize. The masks are binary: a cell value of 1
indicates land and a value of −9999 (NoData) indicates sea
or inland water, respectively. When using the masks please
consider that the shape, presence and absence of water bod-
ies and coastlines may fluctuate over time. We created the
masks to present a snapshot of the water bodies as close as
possible to the time point of the DHM/Point-cloud acquisi-
tion (spring 2014–summer 2015), but inaccuracies may still
arise. When combining the data with more recent observa-
tions, keep in mind that inland water bodies and coastlines
may have changed since then. Finally, while we aimed to
produce the inland water mask to be as comprehensive as
possible, some small ponds and water bodies may have been
missed. Note also that while some rivers are included in the
sea mask, the inland water mask does not include rivers or
streams. The masks can be found in the “masks” subfolder
of the complete data set.

3.6.3 Vegetation point date stamps (date_stamp_min,
date_stamp_max, date_stamp_mode)

The time point at which the source data were collected may
be of interest to certain applications that are using EcoDes-
DK15 vegetation descriptors. These include, for example,
comparisons amongst regions where the data were collected
under different foliage conditions (leaf-on/leaf-off) or stud-
ies that require a precise timing of the sample such as change
detection studies. To better facilitate these applications,
we generated three date_stamp descriptors that summarise
the GPS time stamps of the vegetation points within each
10m× 10m cell. The three descriptors are date_stamp_min,
date_stamp_max and date_stamp_mode, which represent the
earliest, latest and most common survey date for the vegeta-
tion points in any given cell in the format “YYYYMMDD”,
where YYYY is the year in four digits, MM the month in two
digits and DD the day in two digits.

We used the OPALS addInfo module to generate a new
“GPSDay” attribute for all vegetation points (classes 3, 4, 5)
by dividing the GPS time (seconds since 6 January 1980) at-
tribute by 86 400 (seconds per day) and taking the floor value
of the result. We then exported the min, max and mode for
each 10m× 10m cell using the OPALS Cell module, loaded
the output rasters into Python and converted the_GPSDay
values into year, month and day in central European time
(CET) using the datetime module. Finally, we exported the
min, max and mode dates as 32 bit integers.

Note that the date_stamp descriptors only cover points
that are classified as vegetation and therefore do not pro-
vide information about the time point at which points be-
longing to other classes were surveyed (ground point, build-
ing points, etc). We chose to not include other point classes in

Figure 5. Distribution of the most common survey date for the
vegetation points in each tile of the EcoDes-DK15 data set. The
data shown are aggregated for each tile from date_stamp_mode de-
scriptor. The figure highlights that while the majority of the vege-
tation points are from 2014/15, the data set also includes a small
amount of vegetation points from 2013 in western Jutland. Further-
more, surveys were conducted in all seasons, with vegetation points
originating in spring, summer, autumn and winter. Nonetheless, the
majority of vegetation points come from the leaf-off season. Lastly,
the date_stamp descriptors could not be derived for some regions as
the GPS time was not provided in the point clouds. However, from
auxiliary information we know that the surveys in the Mols Bjerge
and Sønderborg areas were conducted in April–May 2015 and Oc-
tober 2014, respectively.

the date_stamp descriptors as we are aware that all versions
of the source data sets include some ground points from 2007
and as we believe that clear information about the vegeta-
tion points is most relevant for the end-users conducting eco-
logical research. Furthermore, determining the date_stamps
was not possible for a proportion of tiles for which the GPS
time in the source data was not converted from seconds per
GPS week to GPS time in seconds since 6 January 1980. A
post hoc conversion is not possible without the knowledge
of the exact GPS week number, which is not provided in the
source data. In these cases, we assigned the NoData value to
the date_stamps. The majority of the tiles affected are located
in the areas around Mols Bjerge and Sønderborg (Fig. 5).
However, from auxiliary information about the source data
sets we know that these areas were surveyed April–May 2015
and October 2014, respectively.

3.6.4 Footprint file (tile_footprints.shp)

To assist data access and creation of data subsets, we have
produced an ESRI shapefile containing the footprints of all
1km× 1km tiles in the EcoDes-DK15 data set. The shape-
file was generated based on the “dtm_10m” rasters, and the
tile identifier of each footprint geometry is specified in the
“tile_id” attribute column.
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4 Data access and ecological use case example

4.1 Data access and handling

Depending on the extent of the study, it may be preferable to
work with a subset of the data set rather than the nationwide
VRT files (Fig. 6). We suggest starting by identifying the
relevant EcoDes-DK15 descriptors of interest, then retriev-
ing the relevant data from the repository and decompressing
the archives (instructions provided on data repository). If the
study area of interest covers a large fraction of Denmark’s ex-
tent and sufficient processing power is available, the nation-
wide VRT data should provide the most convenient access to
the selected descriptors. However, if the study area does not
cover a large proportion of Denmark, then we suggest sub-
setting the data using the tile footprints to decrease demands
on computational resources. After subsetting, local/regional
VRT files or mosaics can be generated if needed. We provide
an example R script illustrating how this subsetting could be
done for the use case example shown in the next section on
the code repository (manuscript/figure_7/subset_data set.R).
We have also made the resulting subset available as a “teaser”
(5 MB) to help the reader assess the value of EcoDes-DK15
without having to commit to the multi-gigabyte download of
the complete data set (see Sect. 6).

4.2 Use case example – ecological landscape
stratification of Husby Klit nature protected area

Figure 7 illustrates a use case for the EcoDes-DK15 data
set with an example of an ecologically motivated landscape
stratification of the “Husby Klit” old-dune protected area
in western Denmark. We developed this stratification for a
group of master’s projects carrying out vegetation monitor-
ing in the area. Our aim was to capture the variation in the
dominant vegetation based on vegetation structure, as well
as the variation in fine-scale topography created by the dune
systems across the landscape. In addition to using the de-
scriptors already provided, the stratification required us to
derive a topographic position index, as well as grouping the
point densities in height bins relevant to the characteristics
of the three most common dominant vegetation types (grass
and heath, Pinus mugo Turra, Pinus sylvestris L.) in the
area. The source code for this figure contained in the code
repository provides an example of how this can be achieved
(manuscript/figure_7/figure_7.R).

5 Discussion – limitations and future perspectives

Our data set demonstrates how the complex information in
ALS point cloud data sets spanning more than 40 000 km2

can be condensed into a compact data set of rasterised de-
scriptors of interest for ecological studies. For the whole of
Denmark, we provide 70 raster layers representing 18 mea-
sures that describe a snapshot of vegetation height, structure

Figure 6. Schematic chart of two possible approaches for accessing
and integrating EcoDes-DK15 data into ecological studies. The
first step is to identify which descriptors are of interest; these
descriptors can then be downloaded from the Zenodo repository
and decompressed. Next a decision needs to be made whether the
whole data set (nationwide) or only a subset of the tiles is required
(e.g. a regional study). As the whole data set is relatively large
(∼ 94 GB), storage and processing limitations need to be taken into
account when planning data processing and handling. If a subset
of tiles is sufficient for a study, the provided tile footprints can
be used to identify which tiles are required based on a geometry
(e.g. a shapefile) of the study region(s). Finally, for easy data
handling in subsequent analysis, a mosaic of the selected tiles can
be created. For nationwide use we provided virtual mosaics (VRT
files) containing all tiles for the descriptors. An R script illustrating
how the subsetting can be done for a regional study can be found
on the GitHub repository: https://github.com/jakobjassmann/
ecodes-dk-lidar/blob/master/manuscript/figure_7/subset_dataset.R
(last access: 5 January 2022).

and density, as well as topography and topography-derived
habitat characteristics, including slope, aspect, solar radi-
ation and wetness for the time period 2014–2015. These
measures are of direct relevance for ecological research on
species’ habitat characteristics, distribution modelling, biodi-
versity and conservation applications. Condensing the ALS-
derived information into a compact set of raster descriptors
makes it more accessible to the community of ecological re-
searchers and practitioners, allowing them to access informa-
tion on the vertical structure of vegetation and terrain other-
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Figure 7. Use-case example: landscape stratification of the Husby Klit protected area based on EcoDes-DK15-derived terrain and vegetation
structure descriptors. The target was to stratify the landscape of the Husby Klit “dune plantation” area in the west of Denmark (56.2837–
56.3024◦ N, 8.1239–8.1600◦ E) to facilitate stratified random sampling for vegetation monitoring. We identified the four tiles overlapping
with the boundaries of the protected area and derived a stratification based on two components: topographic position (a) and vegetation struc-
ture (b). We hypothesised that both components would influence the vegetation communities present. For the topographic position (a), we
first derived and standardised the topographic position index (TPI) (Weiss, 2001) from the terrain model (dtm_10m). Following Weiss (2001)
we then classified each cell based on the scaled TPI into three categories. A scaled TPI below a value of −0.5 was classified as a “trough or
lower-slope”, a scaled TPI between −0.5 and 0.5 as “mid-slope or flat”, and a scaled TPI above 0.5 as a “ridge or top”. For the vegetation
structure component (b), we calculated the proportion of returns in three simplified height bins: (1) 0 to 1.5 m, (2) 1.5 to 3.0 m and (3) 3.0
to 50 m. Here we included both ground and vegetation returns as the divisor for the standardisation but not the returns from buildings or wa-
ter. Based on a priori knowledge we deduced that there are three dominant vegetation communities within the protected area: communities
dominated by grass and heath with vegetation growth generally below 1.5 m, communities dominated by shrubs and small trees (including
the invasive Pinus mugo) with vegetation growth predominantly below 3.0 m, and communities dominated by trees (including the native
Pinus sylvestris), generally with growth above 3.0 m. We used this knowledge to assign the three vegetation classes based on the proportion
of point returns in the simplified height bins. For the “grass and heath” class we used a strict cut-off with no points present above 1.5 m. For
the “shrubs and small trees” class we used a fuzzy cut-off allowing the proportion of points in the 3.0 m and above bin to reach up to 10 % of
the maximum proportion found in this height bin. All remaining cells were then assigned to the “trees” class. Finally, we combined the two
classifications into one as illustrated in (c). Panel (d) shows the location of the protected area within Denmark. The three-dimensional raster
visualisations were generated using the rayshader v0.19.2 package in R (Morgan-Wall, 2020).

wise difficult to obtain for large extents such as those of a
whole country.

We would like to highlight some key ecological and phys-
ical limitations that should be kept in mind when using the
data or derivatives. Firstly, we were able to only carry out
a simple qualitative assessment of the errors in the EcoDes-
DK15 data set within the scope of this project. All descrip-

tors should therefore be seen as proxies for the geographical
and biological properties they describe. Errors in the original
point cloud and DTM will have propagated through to the
final descriptors, and future studies are needed to assess to
what degree the proxy measures correlate with in-field data.
Furthermore, the EcoDes-DK15 data set is a snapshot in time
representing the state of the vegetation in the 1.5 years be-
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tween spring 2014 and summer 2015 (with some exceptions
in western Jutland, where the data are from 2013). Like any-
where on Earth, the landscapes of Denmark may change over
time, and by the time of publication of this data set over
5 years may have passed since the collection of the source
data. External data sources containing information about on-
going or past changes (such as satellite imagery – see be-
low) might help overcome this bias. Additionally, the geo-
graphical differences in the timing of the point cloud col-
lection across the country (see Sect. 6.3.4) may introduce
noise and could affect cross-comparability of the data be-
tween regions, for example due to seasonal differences in fo-
liage (see, for example, Leiterer et al., 2015). Furthermore,
there are implicit limitations in spatial scale due to the set
grain size of the data set. We chose a 10m× 10m grid for
efficiency in computation and data handling, as well as to
overcome limitations in the density of the source point cloud
(four to five points per square metre). Our data set might
therefore not serve well for capturing some ecologically rel-
evant variation in terrain and vegetation structures at scales
below the 10m× 10m grain size. We believe that our data
set is nonetheless valuable in providing ecologically relevant
information at the geographical extent of Denmark.

While some of the descriptors in the presented data set
such as elevation, slope and vegetation height are quite
straightforward to interpret, the ecological meaning of other
descriptors – for example those related to vegetation struc-
ture – may not be as obvious as they are influenced by
multiple ecological and sensing methodology-related factors.
The amplitude, point count and point proportion descriptors
are amongst those measures. For example, while the (non-
calibrated) amplitude in the DHM/Point-cloud source data
may generally relate to the reflectance properties of the sur-
face that generated the return, the incident light angle, scat-
tering and subsequent generation of echoes may result in
several different surfaces generating similar amplitude sig-
natures. Furthermore, the point counts may be influenced by
a whole suite of factors, including incident light angle, scat-
tering and density of flight strips covering a given cell, as
well as canopy properties – most importantly the penetration
ability. While standardising the point counts as proportions
to the total counts may help to account for some of these fac-
tors, it is likely that notable uncertainties will remain even
in the proportions especially for lower layers of the canopy.
Nonetheless, we believe that these measures can be informa-
tive if appropriate care is taken in their interpretation.

Two code developments could enhance the EcoDes-DK15
processing workflow in efficiency and transferability: us-
ing gdal Python bindings and switching to an open-source
point cloud handler. First, for practical reasons we reverted
to using gdal binaries rather than the Python bindings as we
encountered issues with the gdal bindings provided by the
OPALS shell on our computational server. Solving this issue
and using the bindings instead of the binaries could reduce
hard drive access time and overheads from launching sub-

processes and therefore potentially speed up the raster ma-
nipulations in the workflow. However, as the point cloud pro-
cessing takes the majority of time (we estimate 75 %–80 %)
we did not invest further resources to do so in the first de-
velopment round. Secondly, while our Python source code is
open source and freely available, OPALS itself requires the
purchase of a software license, limiting the transferability of
our code to projects which can afford the license. We did not
explore alternatives to OPALS, but a redeveloped process-
ing pipeline could make use of purely open-source software
benefiting from ongoing developments in the field; see, for
example, the “Laserchicken” Python module (Meijer et al.,
2020) and “lidR” R package (Roussel et al., 2020).

We believe that to realise the full potential of ALS-derived
data such as EcoDes-DK15 these data sets are ideally com-
bined with other data sources including climate, field data
and remote sensing observations. Climate data are especially
relevant for addressing research on species–habitat relation-
ships, distribution models and biodiversity studies, and many
studies have demonstrated the power of ALS observations in
complementing climate data for such exercises (Coops et al.,
2016; Zellweger et al., 2016). Like for other remote sens-
ing products, field data are essential for validating inferences
and putting biological meaning into ALS data (Coops et al.,
2021) – this applies especially to the more complex struc-
tural vegetation measures in EcoDes-DK15. This could be
achieved through field surveys combined with terrestrial- and
drone-based ALS data, in which the point density is much
higher (e.g. Madsen et al., 2020). The potential benefits from
fusing ALS data with other remote sensing products have
been realised early on (Hyde et al., 2005) and demonstrated
again since then (e.g. Coops et al., 2021; Montgomery et al.,
2019; Manzanera et al., 2016). However, note that data fu-
sion does not provide additional value in every use case (Xu
et al., 2018; Ceballos et al., 2015; Boelman et al., 2016). We
still believe that there is tremendous potential in combining
EcoDes-DK15 with other types of remote sensing data. Fine-
grain optical imagery could provide proxies for horizontal
vegetation structure in grasslands where the vegetation is too
small to be captured by the DHM/Point-cloud density (e.g.
Malmstrom et al., 2017; Pazúr et al., 2021), and satellite-
derived time series can provide unique temporal perspectives
that describe parameters of seasonality (e.g. Boelman et al.,
2016) and the historical context on disturbances and land-
cover change not captured in the single time-point ALS data
(e.g. Senf et al., 2017; Pekel et al., 2016).

6 Code availability

The source code for the processing pipeline is openly
available under a simplified BSD license via Zenodo:
https://doi.org/10.5281/zenodo.6035002 (Assmann et al.,
2022b).
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7 Data availability

The data are openly available under a Creative
Commons Attribution 4.0 license on Zenodo:
https://doi.org/10.5281/zenodo.4756556 (Assmann et
al., 2021).

A small example subset “teaser” (5 MB) covering the
9km× 9km of the Husby Klit area (Fig. 7) is available on
Zenodo: https://doi.org/10.5281/zenodo.6035188 (Assmann
et al., 2022a).

8 Conclusions

Open data sets like EcoDes-DK15 will allow ecologists with
limited computational resources and little expertise in han-
dling lidar point clouds to use large-scale ALS data for their
research. We see our efforts not only as a first step for pro-
viding ready-to-use descriptors of local vegetation and ter-
rain features but also for providing an example workflow and
tools that allow for the replication of the processing. We have
described and documented the measures of terrain and veg-
etation structure contained in the data set and pointed out
possible applications and limitations. We are confident that
EcoDes-DK15 provides a meaningful collection of ecologi-
cal descriptors at a 10 m×10 m resolution for the extent of
a whole country, and we encourage the community to use
our workflow and collection of codes as inspiration to pro-
cess other large-scale ALS data sets in a similar manner. Ul-
timately, we hope the publication of this data set will help
facilitate the uptake of ALS-derived information by ecologi-
cal researchers and practitioners in Denmark and beyond.
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