Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-3273-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3273-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GPRChinaTemp1km: a high-resolution monthly air temperature data set for China (1951–2020) based on machine learning
Qian He
Academy of Disaster Reduction and Emergency Management, Beijing
Normal University, 100875 Beijing, China
Faculty of Geographical Science, Beijing Normal University, 100875
Beijing, China
Ming Wang
CORRESPONDING AUTHOR
Academy of Disaster Reduction and Emergency Management, Beijing
Normal University, 100875 Beijing, China
School of National Safety and Emergency Management, Beijing Normal
University, 100875 Beijing, China
Kai Liu
Academy of Disaster Reduction and Emergency Management, Beijing
Normal University, 100875 Beijing, China
School of National Safety and Emergency Management, Beijing Normal
University, 100875 Beijing, China
Kaiwen Li
Academy of Disaster Reduction and Emergency Management, Beijing
Normal University, 100875 Beijing, China
Faculty of Geographical Science, Beijing Normal University, 100875
Beijing, China
Ziyu Jiang
Academy of Disaster Reduction and Emergency Management, Beijing
Normal University, 100875 Beijing, China
Faculty of Geographical Science, Beijing Normal University, 100875
Beijing, China
Related authors
Qian He, Ming Wang, Kai Liu, Kaiwen Li, and Ziyu Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-267, https://doi.org/10.5194/essd-2021-267, 2021
Manuscript not accepted for further review
Short summary
Short summary
We used three machine learning models and determined that Gaussian process regression (GPR) is best suited to interpolation of air temperature data for China. The GPR-derived results were compared with that of traditional interpolation techniques and existing datasets and it was found that the accuracy of the GPR-derived data was better. Finally, we generated a gridded monthly air temperature dataset with 1 km resolution and high accuracy for China (1951–2020) using the GPR model.
Jinqi Wang, Hao Fang, Kai Liu, Yi Yue, Ming Wang, Bohao Li, and Xiaoyi Miao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3834, https://doi.org/10.5194/egusphere-2025-3834, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study assesses the future trends of rainfall-induced landslides across China by integrating a national landslide inventory with high-resolution precipitation data. Our findings reveal increasing susceptibility in China under climate change, highlighting the need for targeted disaster prevention strategies. The results can help improve disaster risk management and policy planning in the context of future climate scenarios.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
Di Wang, Ming Wang, Kai Liu, and Jun Xie
Nat. Hazards Earth Syst. Sci., 23, 1409–1423, https://doi.org/10.5194/nhess-23-1409-2023, https://doi.org/10.5194/nhess-23-1409-2023, 2023
Short summary
Short summary
The short–medium-term intervention effect on the post-earthquake area was analysed by simulations in different scenarios. The sediment transport patterns varied in different sub-regions, and the relative effectiveness in different scenarios changed over time with a general downward trend, where the steady stage implicated the scenario with more facilities performing better in controlling sediment output. Therefore, the simulation methods could support optimal rehabilitation strategies.
Jianxin Zhang, Kai Liu, and Ming Wang
Earth Syst. Sci. Data, 15, 521–540, https://doi.org/10.5194/essd-15-521-2023, https://doi.org/10.5194/essd-15-521-2023, 2023
Short summary
Short summary
This study successfully extracted global flood days based on gravity satellite and precipitation data between 60° S and 60° N from 1 April 2002 to 31 August 2016. Our flood days data performed well compared with current available observations. This provides an important data foundation for analyzing the spatiotemporal distribution of large-scale floods and exploring the impact of ocean–atmosphere oscillations on floods in different regions.
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
Weihua Zhu, Kai Liu, Ming Wang, Sadhana Nirandjan, and Elco Koks
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-277, https://doi.org/10.5194/nhess-2021-277, 2021
Manuscript not accepted for further review
Short summary
Short summary
We use multi-source empirical damage data to generate vulnerability curves and assess the risk of transportation infrastructure to rainfall-induced hazards. The results show large variations in the shape of the vulnerability curves and risk of railway infrastructure in China across the different regions. The usage of multi-source empirical data offer opportunities to perform risk assessments that include spatial detail among regions.
Qian He, Ming Wang, Kai Liu, Kaiwen Li, and Ziyu Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-267, https://doi.org/10.5194/essd-2021-267, 2021
Manuscript not accepted for further review
Short summary
Short summary
We used three machine learning models and determined that Gaussian process regression (GPR) is best suited to interpolation of air temperature data for China. The GPR-derived results were compared with that of traditional interpolation techniques and existing datasets and it was found that the accuracy of the GPR-derived data was better. Finally, we generated a gridded monthly air temperature dataset with 1 km resolution and high accuracy for China (1951–2020) using the GPR model.
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.:
TerraClimate, a high-resolution global data set of monthly climate and
climatic water balance from 1958–2015, Scientific Data, 5, 170191,
https://doi.org/10.1038/sdata.2017.191, 2018.
Alizamir, M., Kisi, O., Ahmed, A. N., Mert, C., Fai, C. M., Kim, S., Kim, N.
W., and El-Shafie, A.: Advanced machine learning model for better prediction
accuracy of soil temperature at different depths, PLOS ONE, 15, e0231055,
https://doi.org/10.1371/journal.pone.0231055, 2020.
Alvarez, O., Guo, Q., Klinger, R. C., Li, W., and Doherty, P.: Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation, Int. J. Climatol., 34, 2258–2268, https://doi.org/10.1002/joc.3835, 2014.
Amini, M. A., Torkan, G., Eslamian, S., Zareian, M. J., and Adamowski, J.
F.: Analysis of deterministic and geostatistical interpolation techniques
for mapping meteorological variables at large watershed scales, Acta
Geophys., 67, 191–203, https://doi.org/10.1007/s11600-018-0226-y, 2019.
Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., and Nauss, T.:
Evaluating machine learning approaches for the interpolation of monthly air
temperature at Mt. Kilimanjaro, Tanzania, Spatial Statistics, 14, 91–113,
https://doi.org/10.1016/j.spasta.2015.05.008, 2015.
Band, S. S., Janizadeh, S., Chandra Pal, S., Saha, A., Chakrabortty, R.,
Melesse, A. M., and Mosavi, A.: Flash Flood Susceptibility Modeling Using
New Approaches of Hybrid and Ensemble Tree-Based Machine Learning
Algorithms, Remote Sensing, 12, 3568, https://doi.org/10.3390/rs12213568, 2020.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Benavides, R., Montes, F., Rubio, A., and Osoro, K.: Geostatistical
modelling of air temperature in a mountainous region of Northern Spain,
Agr. Forest Meteorol., 146, 173–188,
https://doi.org/10.1016/j.agrformet.2007.05.014, 2007.
Berger, J. O., De Oliveira, V., and Sansó, B.: Objective Bayesian
analysis of spatially correlated data, J. Am. Stat.
Assoc., 96, 1361–1374, 2001.
Breiman, L.: Random Forests, Machine Learning, 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Brunetti, M., Maugeri, M., Nanni, T., Simolo, C., and Spinoni, J.:
High-resolution temperature climatology for Italy: interpolation method
intercomparison, Int. J. Climatol., 34, 1278–1296, https://doi.org/10.1002/joc.3764, 2014.
Cai, B. and Yu, R.: Advance and evaluation in the long time series
vegetation trends research based on remote sensing, J. Remote Sens, 13,
1170–1186, 2009.
Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth, M. P.: Manifold
Gaussian Processes for regression, in: 2016 International Joint Conference
on Neural Networks (IJCNN), 2016 International Joint Conference on Neural
Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016,
3338–3345, https://doi.org/10.1109/IJCNN.2016.7727626, 2016.
Chen, F., Liu, Y., Liu, Q., and Qin, F.: A statistical method based on remote sensing for the estimation of air temperature in China, Int. J. Climatol., 35, 2131–2143, https://doi.org/10.1002/joc.4113, 2015.
Chen, R., Yin, P., Wang, L., Liu, C., Niu, Y., Wang, W., Jiang, Y., Liu, Y.,
Liu, J., Qi, J., You, J., Kan, H., and Zhou, M.: Association between ambient
temperature and mortality risk and burden: time series study in 272 main
Chinese cities, Brit. Med. J., 363, k4306, https://doi.org/10.1136/bmj.k4306, 2018.
Chou, S. C., de Arruda Lyra, A., Gomes, J. L., Rodriguez, D. A., Alves
Martins, M., Costa Resende, N., da Silva Tavares, P., Pereira Dereczynski,
C., Lopes Pilotto, I., Martins, A. M., Alves de Carvalho, L. F., Lima
Onofre, J. L., Major, I., Penhor, M., and Santana, A.: Downscaling
projections of climate change in Sao Tome and Principe Islands, Africa, Clim.
Dynam., 54, 4021–4042, https://doi.org/10.1007/s00382-020-05212-7, 2020.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS) [data set], https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 12 July 2022), 2017.
Costache, R., Pham, Q. B., Sharifi, E., Linh, N. T. T., Abba, S. I., Vojtek,
M., Vojteková, J., Nhi, P. T. T., and Khoi, D. N.: Flash-Flood
Susceptibility Assessment Using Multi-Criteria Decision Making and Machine
Learning Supported by Remote Sensing and GIS Techniques, Remote Sensing, 12, 106,
https://doi.org/10.3390/rs12010106, 2020.
Cui, L., Wang, L., Lai, Z., Tian, Q., Liu, W., and Li, J.: Innovative trend
analysis of annual and seasonal air temperature and rainfall in the Yangtze
River Basin, China during 1960–2015, J. Atmos.
Sol.-Terr. Phy., 164, 48–59,
https://doi.org/10.1016/j.jastp.2017.08.001, 2017.
Da Silva, R. M., Santos, C. A., Moreira, M., Corte-Real, J., Silva, V. C.,
and Medeiros, I. C.: Rainfall and river flow trends using Mann–Kendall and
Sen's slope estimator statistical tests in the Cobres River basin, Nat.
Hazards, 77, 1205–1221, 2015.
Dawood, M.: Spatio-statistical analysis of temperature fluctuation using
Mann–Kendall and Sen's slope approach, Clim. Dynam., 48, 783–797,
2017.
Diodato, N.: The influence of topographic co-variables on the spatial
variability of precipitation over small regions of complex terrain, Int. J. Climatol., 25,
351–363, https://doi.org/10.1002/joc.1131, 2005.
Dong, D., Huang, G., Qu, X., Tao, W., and Fan, G.: Temperature
trend–altitude relationship in China during 1963–2012, Theor. Appl.
Climatol., 122, 285–294, https://doi.org/10.1007/s00704-014-1286-9, 2015.
Dong, J. and Xiao, X.: Evolution of regional to global paddy rice mapping
methods: A review, ISPRS J. Photogramm., 119,
214–227, https://doi.org/10.1016/j.isprsjprs.2016.05.010, 2016.
dos Santos, R. S.: Estimating spatio-temporal air temperature in London (UK)
using machine learning and earth observation satellite data, Int.
J. Appl. Earth Obs., 88, 102066,
https://doi.org/10.1016/j.jag.2020.102066, 2020.
Duhan, D., Pandey, A., Gahalaut, K. P. S., and Pandey, R. P.: Spatial and
temporal variability in maximum, minimum and mean air temperatures at Madhya
Pradesh in central India, C. R. Geosci., 345, 3–21,
https://doi.org/10.1016/j.crte.2012.10.016, 2013.
Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., Lu, X., and Xiang,
Y.: Evaluation of SVM, ELM and four tree-based ensemble models for
predicting daily reference evapotranspiration using limited meteorological
data in different climates of China, Agr. Forest Meteorol.,
263, 225–241, https://doi.org/10.1016/j.agrformet.2018.08.019, 2018.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol, 37, 4302–4315,
https://doi.org/10.1002/joc.5086, 2017.
Fu, P. and Weng, Q.: Variability in annual temperature cycle in the urban
areas of the United States as revealed by MODIS imagery, ISPRS J.
Photogramm., 146, 65–73,
https://doi.org/10.1016/j.isprsjprs.2018.09.003, 2018.
Gao, L., Wei, J., Wang, L., Bernhardt, M., Schulz, K., and Chen, X.: A high-resolution air temperature data set for the Chinese Tian Shan in 1979–2016, Earth Syst. Sci. Data, 10, 2097–2114, https://doi.org/10.5194/essd-10-2097-2018, 2018.
Ghorbani, M. A., Shamshirband, S., Zare Haghi, D., Azani, A., Bonakdari, H.,
and Ebtehaj, I.: Application of firefly algorithm-based support vector
machines for prediction of field capacity and permanent wilting point, Soil
Till. Res., 172, 32–38,
https://doi.org/10.1016/j.still.2017.04.009, 2017.
Gocic, M. and Trajkovic, S.: Analysis of changes in meteorological variables
using Mann-Kendall and Sen's slope estimator statistical tests in Serbia,
Global Planet. Change, 100, 172–182,
https://doi.org/10.1016/j.gloplacha.2012.10.014, 2013.
Graf, R., Zhu, S., and Sivakumar, B.: Forecasting river water temperature
time series using a wavelet–neural network hybrid modelling approach,
J. Hydrol., 578, 124115,
https://doi.org/10.1016/j.jhydrol.2019.124115, 2019.
Grbić, R., Kurtagić, D., and Slišković, D.: Stream water
temperature prediction based on Gaussian process regression, Expert Syst.
Appl., 40, 7407–7414,
https://doi.org/10.1016/j.eswa.2013.06.077, 2013.
Guo, B., Zhang, J., Meng, X., Xu, T., and Song, Y.: Long-term
spatio-temporal precipitation variations in China with precipitation surface
interpolated by ANUSPLIN, Sci. Rep., 10, 81,
https://doi.org/10.1038/s41598-019-57078-3, 2020.
Hadi, S. J. and Tombul, M.: Comparison of Spatial Interpolation Methods of
Precipitation and Temperature Using Multiple Integration Periods, J. Indian.
Soc. Remote Sens., 46, 1187–1199, https://doi.org/10.1007/s12524-018-0783-1,
2018.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate data set, Sci. Data,
7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
He, Q., Wang, M., Liu, K., Li, K., and Jiang, Z.: GPRChinaTemp1km: 1 km
monthly maximum air temperature for China from January 1951 to December
2020, Zenodo [data set], https://doi.org/10.5281/zenodo.5112122, 2021a.
He, Q., Wang, M., Liu, K., Li, K., and Jiang, Z.: GPRChinaTemp1km: 1 km
monthly mean air temperature for China from January 1951 to December 2020, Zenodo [data set],
https://doi.org/10.5281/zenodo.5111989, 2021b.
He, Q., Wang, M., Liu, K., Li, K., and Jiang, Z.: GPRChinaTemp1km: 1 km
monthly minimum air temperature for China from January 1951 to December
2020, Zenodo [data set], https://doi.org/10.5281/zenodo.5112232, 2021c.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and Gräler,
B.: Random forest as a generic framework for predictive modeling of spatial
and spatio-temporal variables, PeerJ, 6, e5518,
https://doi.org/10.7717/peerj.5518, 2018.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas,
Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Ho, H. C., Knudby, A., Sirovyak, P., Xu, Y., Hodul, M., and Henderson, S.
B.: Mapping maximum urban air temperature on hot summer days, Remote Sens.
Environ., 154, 38–45, https://doi.org/10.1016/j.rse.2014.08.012,
2014.
Hooker, J., Duveiller, G., and Cescatti, A.: A global data set of air
temperature derived from satellite remote sensing and weather stations, Sci.
Data, 5, 180246, https://doi.org/10.1038/sdata.2018.246, 2018.
Hutchinson, M.: ANUSPLIN Version 4.3, Centre for Resource and Environmental
Studies, The Australian National University, Canberra, Australia, https://dokumen.tips/documents/anusplin-version-437-user-guide.html?page=1 (last access: 12 July 2022), 2004.
Hutchinson, M. F.: Interpolating mean rainfall using thin plate smoothing
splines, Int. J. Geogr. Inf. Syst., 9, 385–403, https://doi.org/10.1080/02693799508902045, 1995.
Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K.,
Butler, E. E., Timlin, D. J., Shim, K.-M., Gerber, J. S., Reddy, V. R., and
Kim, S.-H.: Random Forests for Global and Regional Crop Yield Predictions,
PLOS ONE, 11, e0156571, https://doi.org/10.1371/journal.pone.0156571, 2016.
Ji, L., Senay, G. B., and Verdin, J. P.: Evaluation of the Global Land Data
Assimilation System (GLDAS) Air Temperature Data Products, J. Hydrometeorol., 16, 2463–2480,
https://doi.org/10.1175/JHM-D-14-0230.1, 2015.
Jiang, W., Yuan, L., Wang, W., Cao, R., Zhang, Y., and Shen, W.:
Spatio-temporal analysis of vegetation variation in the Yellow River Basin,
Ecol. Indic., 51, 117–126,
https://doi.org/10.1016/j.ecolind.2014.07.031, 2015.
Jobst, A. M., Kingston, D. G., Cullen, N. J., and Sirguey, P.: Combining thin‐plate spline interpolation with a lapse rate model to produce daily air temperature estimates in a data‐sparse alpine catchment, Int. J. Climatol.,
37, 214–229, https://doi.org/10.1002/joc.4699, 2017.
Karbasi, M.: Forecasting of Multi-Step Ahead Reference Evapotranspiration
Using Wavelet- Gaussian Process Regression Model, Water Resour. Manage., 32,
1035–1052, https://doi.org/10.1007/s11269-017-1853-9, 2018.
Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., and Shearer, S.:
Integration of high resolution remotely sensed data and machine learning
techniques for spatial prediction of soil properties and corn yield,
Comput. Electron. Agr., 153, 213–225,
https://doi.org/10.1016/j.compag.2018.07.016, 2018.
Kisi, O., Sanikhani, H., and Cobaner, M.: Soil temperature modeling at
different depths using neuro-fuzzy, neural network, and genetic programming
techniques, Theor. Appl. Climatol., 129, 833–848,
https://doi.org/10.1007/s00704-016-1810-1, 2017.
Kutlug Sahin, E. and Colkesen, I.: Performance analysis of advanced decision
tree-based ensemble learning algorithms for landslide susceptibility
mapping, Geocarto Int., 36, 1253–1275, https://doi.org/10.1080/10106049.2019.1641560,
2021.
Leihy, R. I., Duffy, G. A., Nortje, E., and Chown, S. L.: High resolution
temperature data for ecological research and management on the Southern
Ocean Islands, Sci. Data, 5, 180177, https://doi.org/10.1038/sdata.2018.177,
2018.
Li, J. and Heap, A. D.: A review of comparative studies of spatial
interpolation methods in environmental sciences: Performance and impact
factors, Ecol. Inform., 6, 228–241,
https://doi.org/10.1016/j.ecoinf.2010.12.003, 2011.
Li, J. and Heap, A. D.: Spatial interpolation methods applied in the
environmental sciences: A review, Environ. Modell. Softw., 53,
173–189, https://doi.org/10.1016/j.envsoft.2013.12.008, 2014.
Li, J., Heap, A. D., Potter, A., and Daniell, J. J.: Application of machine
learning methods to spatial interpolation of environmental variables,
Environ. Modell. Softw., 26, 1647–1659,
https://doi.org/10.1016/j.envsoft.2011.07.004, 2011a.
Li, J., Heap, A. D., Potter, A., Huang, Z., and Daniell, J. J.: Can we
improve the spatial predictions of seabed sediments? A case study of spatial
interpolation of mud content across the southwest Australian margin,
Cont. Shelf Res., 31, 1365–1376,
https://doi.org/10.1016/j.csr.2011.05.015, 2011b.
Li, L. and Zha, Y.: Estimating monthly average temperature by remote sensing
in China, Adv. Space Res., 63, 2345–2357,
https://doi.org/10.1016/j.asr.2018.12.039, 2019.
Li, X., Zhou, Y., Asrar, G. R., and Zhu, Z.: Developing a 1 km resolution
daily air temperature data set for urban and surrounding areas in the
conterminous United States, Remote Sens. Environ., 215, 74–84,
https://doi.org/10.1016/j.rse.2018.05.034, 2018.
Li, Y., Zhao, C., Zhang, T., Wang, W., Duan, H., Liu, Y., Ren, Y., and Pu,
Z.: Impacts of Land-Use Data on the Simulation of Surface Air Temperature in
Northwest China, J. Meteorol. Res., 32, 896–908,
https://doi.org/10.1007/s13351-018-7151-5, 2018.
Li, Y., Xu, H., and Liu, D.: Features of the extremely severe drought in the
east of Southwest China and anomalies of atmospheric circulation in summer
2006, Acta Meteorol. Sin., 25, 176–187,
https://doi.org/10.1007/s13351-011-0025-8, 2011.
Li, Z., Zheng, F.-L., and Liu, W.-Z.: Spatiotemporal characteristics of
reference evapotranspiration during 1961–2009 and its projected changes
during 2011–2099 on the Loess Plateau of China, Agr. Forest
Meteorol., 154–155, 147–155,
https://doi.org/10.1016/j.agrformet.2011.10.019, 2012.
Liu, X., Luo, Y., Zhang, D., Zhang, M., and Liu, C.: Recent changes in
pan-evaporation dynamics in China, Geophys. Res. Lett., 38, L13404, https://doi.org/10.1029/2011GL047929,
2011.
Mao, K., Yuan, Z., Zuo, Z., Xu, T., Shen, X., and Gao, C.: Changes in Global
Cloud Cover Based on Remote Sensing Data from 2003 to 2012, Chin. Geogr.
Sci., 29, 306–315, https://doi.org/10.1007/s11769-019-1030-6, 2019.
McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S.,
Funk, C., Peters-Lidard, C. D., and Verdin, J. P.: A land data assimilation
system for sub-Saharan Africa food and water security applications, Sci.
Data, 4, 170012, https://doi.org/10.1038/sdata.2017.12, 2017.
Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T.,
Avtar, R., and Abderrahmane, B.: Machine learning methods for landslide
susceptibility studies: A comparative overview of algorithm performance,
Earth-Sci. Rev., 207, 103225,
https://doi.org/10.1016/j.earscirev.2020.103225, 2020.
Meshram, S. G., Kahya, E., Meshram, C., Ghorbani, M. A., Ambade, B., and
Mirabbasi, R.: Long-term temperature trend analysis associated with
agriculture crops, Theor. Appl. Climatol., 140, 1139–1159,
https://doi.org/10.1007/s00704-020-03137-z, 2020.
Meyer, H., Katurji, M., Appelhans, T., Müller, M. U., Nauss, T.,
Roudier, P., and Zawar-Reza, P.: Mapping Daily Air Temperature for
Antarctica Based on MODIS LST, Remote Sensing, 8, 732, https://doi.org/10.3390/rs8090732,
2016.
Mohajane, M., Costache, R., Karimi, F., Bao Pham, Q., Essahlaoui, A.,
Nguyen, H., Laneve, G., and Oudija, F.: Application of remote sensing and
machine learning algorithms for forest fire mapping in a Mediterranean area,
Ecol. Indic., 129, 107869,
https://doi.org/10.1016/j.ecolind.2021.107869, 2021.
Mukul, M., Srivastava, V., Jade, S., and Mukul, M.: Uncertainties in the
Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian
Himalaya and Peninsula, Sci. Rep., 7, 41672,
https://doi.org/10.1038/srep41672, 2017.
Mutanga, O., Adam, E., and Cho, M. A.: High density biomass estimation for
wetland vegetation using WorldView-2 imagery and random forest regression
algorithm, Int. J. Appl. Earth Obs., 18, 399–406, https://doi.org/10.1016/j.jag.2012.03.012,
2012.
New, M., Hulme, M., and Jones, P.: Representing Twentieth-Century
Space–Time Climate Variability. Part II: Development of 1901–96 Monthly
Grids of Terrestrial Surface Climate, J. Climate, 13, 2217–2238,
https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2, 2000.
Newlands, N. K., Davidson, A., Howard, A., and Hill, H.: Validation and
inter-comparison of three methodologies for interpolating daily
precipitation and temperature across Canada, Environmetrics, 22, 205–223,
https://doi.org/10.1002/env.1044, 2011.
Ozelkan, E., Bagis, S., Ozelkan, E. C., Ustundag, B. B., Yucel, M., and
Ormeci, C.: Spatial interpolation of climatic variables using land surface
temperature and modified inverse distance weighting, Int. J. Remote Sens., 36, 1000–1025,
https://doi.org/10.1080/01431161.2015.1007248, 2015.
Pathak, T. B., Maskey, M. L., Dahlberg, J. A., Kearns, F., Bali, K. M., and
Zaccaria, D.: Climate Change Trends and Impacts on California Agriculture: A
Detailed Review, Agronomy, 8, 25, https://doi.org/10.3390/agronomy8030025, 2018.
Peng, S., Zhao, C., Wang, X., Xu, Z., Liu, X., Hao, H., and Yang, S.:
Mapping daily temperature and precipitation in the Qilian Mountains of
northwest China, J. Mt. Sci., 11, 896–905,
https://doi.org/10.1007/s11629-013-2613-9, 2014.
Peng, S., Ding, Y., Liu, W., and Li, Z.: 1 km monthly temperature and precipitation data set for China from 1901 to 2017, Earth Syst. Sci. Data, 11, 1931–1946, https://doi.org/10.5194/essd-11-1931-2019, 2019.
Plouffe, C. C. F., Robertson, C., and Chandrapala, L.: Comparing
interpolation techniques for monthly rainfall mapping using multiple
evaluation criteria and auxiliary data sources: A case study of Sri Lanka,
Environ. Modell. Softw., 67, 57–71,
https://doi.org/10.1016/j.envsoft.2015.01.011, 2015.
Rasmussen, C. E.: Evaluation of Gaussian processes and other methods for non-linear regression, PhD thesis, University of Toronto Toronto, Canada, https://pure.mpg.de/rest/items/item_1794427/component/file_3216366/content (last access: 12 July 2022), 1997.
Rasmussen, C. E.: Gaussian Processes in Machine Learning, in: Advanced
Lectures on Machine Learning, vol. 3176, edited by: Bousquet, O., von
Luxburg, U., and Rätsch, G., Springer Berlin Heidelberg, Berlin,
Heidelberg, 63–71, https://doi.org/10.1007/978-3-540-28650-9_4, 2004.
Rolland, C.: Spatial and Seasonal Variations of Air Temperature Lapse Rates
in Alpine Regions, 16, 1032–1046,
https://doi.org/10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2, 2003.
Sayemuzzaman, M. and Jha, M. K.: Seasonal and annual precipitation time
series trend analysis in North Carolina, United States, Atmos.
Res., 137, 183–194, https://doi.org/10.1016/j.atmosres.2013.10.012,
2014.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and Rudolf, B.: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle, Theor. Appl. Climatol., 115, 15–40, https://doi.org/10.1007/s00704-013-0860-x, 2014.
Schulz, E., Speekenbrink, M., and Krause, A.: A tutorial on Gaussian process
regression: Modelling, exploring, and exploiting functions, J.
Math. Psychol., 85, 1–16,
https://doi.org/10.1016/j.jmp.2018.03.001, 2018.
Sekulić, A., Kilibarda, M., Protić, D., and Bajat, B.: A
high-resolution daily gridded meteorological data set for Serbia made by
Random Forest Spatial Interpolation, 8, 123, Scientific Data,
https://doi.org/10.1038/s41597-021-00901-2, 2021.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Sha, Y., Ii, D. J. G., West, G., and Stull, R.: Deep-Learning-Based Gridded
Downscaling of Surface Meteorological Variables in Complex Terrain. Part I:
Daily Maximum and Minimum 2-m Temperature, J. Appl. Meteorol. Clim., 59, 2057–2073,
https://doi.org/10.1175/JAMC-D-20-0057.1, 2020.
Shao, J., Li, Y., and Ni, J.: The characteristics of temperature variability
with terrain, latitude and longitude in Sichuan-Chongqing Region, J. Geogr.
Sci., 22, 223–244, https://doi.org/10.1007/s11442-012-0923-4, 2012.
Shifteh Some'e, B., Ezani, A., and Tabari, H.: Spatiotemporal trends and
change point of precipitation in Iran, Atmos. Res., 113, 1–12,
https://doi.org/10.1016/j.atmosres.2012.04.016, 2012.
Shrestha, N. K. and Shukla, S.: Support vector machine based modeling of
evapotranspiration using hydro-climatic variables in a sub-tropical
environment, Agr. Forest Meteorol., 200, 172–184,
https://doi.org/10.1016/j.agrformet.2014.09.025, 2015.
Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E., and Knutti,
R.: Climate change now detectable from any single day of weather at global
scale, Nat. Clim. Change, 10, 35–41,
https://doi.org/10.1038/s41558-019-0666-7, 2020.
Stahl, K., Moore, R. D., Floyer, J. A., Asplin, M. G., and McKendry, I. G.:
Comparison of approaches for spatial interpolation of daily air temperature
in a large region with complex topography and highly variable station
density, Agr. Forest Meteorol., 139, 224–236,
https://doi.org/10.1016/j.agrformet.2006.07.004, 2006.
Sun, A. Y., Wang, D., and Xu, X.: Monthly streamflow forecasting using
Gaussian Process Regression, J. Hydrol., 511, 72–81,
https://doi.org/10.1016/j.jhydrol.2014.01.023, 2014.
Sun, X., Ren, G., Ren, Y., Fang, Y., Liu, Y., Xue, X., and Zhang, P.: A
remarkable climate warming hiatus over Northeast China since 1998, Theor.
Appl. Climatol., 133, 579–594, https://doi.org/10.1007/s00704-017-2205-7,
2018.
Tan, M. L., Ficklin, D. L., Dixon, B., Ibrahim, A. L., Yusop, Z., and
Chaplot, V.: Impacts of DEM resolution, source, and resampling technique on
SWAT-simulated streamflow, Appl. Geogr., 63, 357–368,
https://doi.org/10.1016/j.apgeog.2015.07.014, 2015.
Tang, G., Clark, M. P., Newman, A. J., Wood, A. W., Papalexiou, S. M., Vionnet, V., and Whitfield, P. H.: SCDNA: a serially complete precipitation and temperature data set for North America from 1979 to 2018, Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, 2020a.
Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., and Hong, Y.: Have
satellite precipitation products improved over last two decades? A
comprehensive comparison of GPM IMERG with nine satellite and reanalysis
data sets, Remote Sens. Environ., 240, 111697,
https://doi.org/10.1016/j.rse.2020.111697, 2020b.
Theil, H.: A rank-invariant method of linear and polynomial regression analysis,
Nederl. Akad. Wetensch. Proc., 53, 386–392, 1950.
Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of
daily meteorological variables over large regions of complex terrain,
J. Hydrol., 190, 214–251,
https://doi.org/10.1016/S0022-1694(96)03128-9, 1997.
Tigkas, D., Vangelis, H., and Tsakiris, G.: Drought characterisation based
on an agriculture-oriented standardised precipitation index, Theor. Appl.
Climatol., 135, 1435–1447, https://doi.org/10.1007/s00704-018-2451-3, 2019.
Vapnik, V.: The nature of statistical learning theory, 2nd edn., Springer Science &
Business Media, ISBN 978-0387987804, 2013.
Vicente-Serrano, S. M., Saz-Sánchez, M. A., and Cuadrat, J. M.:
Comparative analysis of interpolation methods in the middle Ebro Valley
(Spain): application to annual precipitation and temperature, Clim. Res., 24, 161–180,
https://doi.org/10.3354/cr024161, 2003.
Wang, M., He, G., Zhang, Z., Wang, G., Zhang, Z., Cao, X., Wu, Z., and Liu,
X.: Comparison of Spatial Interpolation and Regression Analysis Models for
an Estimation of Monthly Near Surface Air Temperature in China, Remote
Sensing, 9, 1278, https://doi.org/10.3390/rs9121278, 2017.
Xiao, C., Li, P., Feng, Z., and Wu, X.: Spatio-temporal differences in cloud
cover of Landsat-8 OLI observations across China during 2013–2016, J.
Geogr. Sci., 28, 429–444, https://doi.org/10.1007/s11442-018-1482-0, 2018.
Xu, J., Gao, Y., Chen, D., Xiao, L., and Ou, T.: Evaluation of global
climate models for downscaling applications centred over the Tibetan
Plateau, Int. J. Climatol., 37, 657–671, https://doi.org/10.1002/joc.4731, 2017.
Xu, T. and Hutchinson, M. F.: New developments and applications in the
ANUCLIM spatial climatic and bioclimatic modelling package, Environ.
Modell. Softw., 40, 267–279,
https://doi.org/10.1016/j.envsoft.2012.10.003, 2013.
Xu, Y., Knudby, A., Shen, Y., and Liu, Y.: Mapping Monthly Air Temperature
in the Tibetan Plateau From MODIS Data Based on Machine Learning Methods, IEEE J. Sel. Top. Appl.,
11, 345–354, https://doi.org/10.1109/JSTARS.2017.2787191, 2018.
Yin, J., Guo, S., Gu, L., Zeng, Z., Liu, D., Chen, J., Shen, Y., and Xu,
C.-Y.: Blending multi-satellite, atmospheric reanalysis and gauge
precipitation products to facilitate hydrological modelling, J.
Hydrol., 593, 125878, https://doi.org/10.1016/j.jhydrol.2020.125878, 2021.
Yoo, C., Im, J., Park, S., and Quackenbush, L. J.: Estimation of daily
maximum and minimum air temperatures in urban landscapes using MODIS time
series satellite data, ISPRS J. Photogramm.,
137, 149–162, https://doi.org/10.1016/j.isprsjprs.2018.01.018, 2018.
You, Q., Cai, Z., Wu, F., Jiang, Z., Pepin, N., and Shen, S. S. P.:
Temperature data set of CMIP6 models over China: evaluation, trend and
uncertainty, Clim. Dynam., 57, 17–35,
https://doi.org/10.1007/s00382-021-05691-2, 2021.
Yu, W., Liu, Y., Ma, Z., and Bi, J.: Improving satellite-based PM 2.5
estimates in China using Gaussian processes modeling in a Bayesian
hierarchical setting, Sci. Rep., 7, 7048,
https://doi.org/10.1038/s41598-017-07478-0, 2017.
Zeng, L., Hu, Y., Wang, R., Zhang, X., Peng, G., Huang, Z., Zhou, G., Xiang,
D., Meng, R., Wu, W., and Hu, S.: 8-Day and Daily Maximum and Minimum Air
Temperature Estimation via Machine Learning Method on a Climate Zone to
Global Scale, Remote Sensing, 13, 2355, https://doi.org/10.3390/rs13122355, 2021.
Zhang, H., Zhang, F., Ye, M., Che, T., and Zhang, G.: Estimating daily air
temperatures over the Tibetan Plateau by dynamically integrating MODIS LST
data, J. Geophys. Res.-Atmos., 121, 11425–11441, https://doi.org/10.1002/2016JD025154, 2016.
Zhang, X., Kang, S., Zhang, L., and Liu, J.: Spatial variation of
climatology monthly crop reference evapotranspiration and sensitivity
coefficients in Shiyang river basin of northwest China, Agr. Water
Manage., 97, 1506–1516, https://doi.org/10.1016/j.agwat.2010.05.004,
2010.
Zhang, Z., Ye, L., Qin, H., Liu, Y., Wang, C., Yu, X., Yin, X., and Li, J.:
Wind speed prediction method using Shared Weight Long Short-Term Memory
Network and Gaussian Process Regression, Appl. Energ., 247, 270–284,
https://doi.org/10.1016/j.apenergy.2019.04.047, 2019.
Zhu, S., Nyarko, E. K., and Hadzima-Nyarko, M.: Modelling daily water
temperature from air temperature for the Missouri River, PeerJ, 6, e4894,
https://doi.org/10.7717/peerj.4894, 2018.
Short summary
We used three machine learning models and determined that Gaussian process regression (GPR) is best suited to the interpolation of air temperature data for China. The GPR-derived results were compared with that of traditional interpolation techniques and existing data sets and it was found that the accuracy of the GPR-derived data was better. Finally, we generated a gridded monthly air temperature data set with 1 km resolution and high accuracy for China (1951–2020) using the GPR model.
We used three machine learning models and determined that Gaussian process regression (GPR) is...
Altmetrics
Final-revised paper
Preprint