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Abstract. An accurate spatially continuous air temperature data set is crucial for multiple applications in the
environmental and ecological sciences. Existing spatial interpolation methods have relatively low accuracy, and
the resolution of available long-term gridded products of air temperature for China is coarse. Point observa-
tions from meteorological stations can provide long-term air temperature data series but cannot represent spa-
tially continuous information. Here, we devised a method for spatial interpolation of air temperature data from
meteorological stations based on powerful machine learning tools. First, to determine the optimal method for
interpolation of air temperature data, we employed three machine learning models: random forest, support vec-
tor machine, and Gaussian process regression. A comparison of the mean absolute error, root mean square
error, coefficient of determination, and residuals revealed that a Gaussian process regression had high accuracy
and clearly outperformed the other two models regarding the interpolation of monthly maximum, minimum,
and mean air temperatures. The machine learning methods were compared with three traditional methods used
frequently for spatial interpolation: inverse distance weighting, ordinary kriging, and ANUSPLIN (Australian
National University Spline). Results showed that the Gaussian process regression model had higher accuracy
and greater robustness than the traditional methods regarding interpolation of monthly maximum, minimum,
and mean air temperatures in each month. A comparison with the TerraClimate (Monthly Climate and Climatic
Water Balance for Global Terrestrial Surfaces), FLDAS (Famine Early Warning Systems Network (FEWS NET)
Land Data Assimilation System), and ERA5 (ECMWF, European Centre for Medium-Range Weather Forecasts,
Climate Reanalysis) data sets revealed that the accuracy of the temperature data generated using the Gaussian
process regression model was higher. Finally, using the Gaussian process regression method, we produced a
long-term (January 1951 to December 2020) gridded monthly air temperature data set, with 1 km resolution
and high accuracy for China, which we named GPRChinaTemp1km. The data set consists of three variables:
monthly mean air temperature, monthly maximum air temperature, and monthly minimum air temperature. The
obtained GPRChinaTemp1km data were used to analyse the spatiotemporal variations of air temperature using
Theil–Sen median trend analysis in combination with the Mann–Kendall test. It was found that the monthly
mean and minimum air temperatures across China were characterised by a significant trend of increase in each
month, whereas monthly maximum air temperatures showed a more spatially heterogeneous pattern, with sig-
nificant increase, non-significant increase, and non-significant decrease. The GPRChinaTemp1km data set is
publicly available at https://doi.org/10.5281/zenodo.5112122 (He et al., 2021a) for monthly maximum air tem-
perature, at https://doi.org/10.5281/zenodo.5111989 (He et al., 2021b) for monthly mean air temperature, and at
https://doi.org/10.5281/zenodo.5112232 (He et al., 2021c) for monthly minimum air temperature.
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1 Introduction

Air temperature is a fundamental variable in various research
fields that include the impact of global warming and climate
change, ecology, hydrology, agriculture, and human health
(Sippel et al., 2020; Abatzoglou et al., 2018; Pathak et al.,
2018; Chen et al., 2018). The monthly temperature data are
crucial for multiple studies and applications, such as agricul-
ture (Meshram et al., 2020), meteorological disasters (Tigkas
et al., 2019), and ecology (Leihy et al., 2018). Long-term
records of air temperature data with high spatial resolution
are necessary for such research. Generally, air temperature
data are measured by meteorological station networks or sim-
ulated using numerical climate models (dos Santos, 2020;
Fu and Weng, 2018). Meteorological stations can provide
long-term point-based information on observed air tempera-
ture; however, they cannot reflect spatially continuous infor-
mation regarding regional air temperature. The downscaling
technique is often used to obtain high-resolution data sets us-
ing coarse-resolution products, while there are multiple low
spatial resolution data sets, such as the Climatic Research
Unit (CRU) (Harris et al., 2014), the Global Precipitation
Climatology Centre (GPCC) (Schneider et al., 2014; Becker
et al., 2013), and Willmott & Matsuura (W&M) (Matsuura
and Willmott, 2012), are generated using data from the ob-
servational stations. Interpolation is a reliable way to obtain
spatially continuous data (Peng et al., 2019). The reanalysis-
based data usually have low spatial resolution, which limits
their ability to reflect the effects of complex topographies,
land surface characteristics, and other processes on climate
systems (Peng et al., 2019; Xu et al., 2017). Besides this,
some reanalysis products have uncertainty per se (Tang et
al., 2020b; Yin et al., 2021).

Various interpolation techniques that include inverse dis-
tance weighting (IDW) and ordinary kriging (OK) (Dawood,
2017; Li et al., 2011a, 2012; Hadi and Tombul, 2018; Stahl
et al., 2006; Benavides et al., 2007; Duhan et al., 2013) are
often employed to derive gridded temperature data sets for
data-sparse areas. However, the accuracy of the derived re-
sults depends on the density of the meteorological stations
used for the interpolation (Wang et al., 2017; Peng et al.,
2019; Gao et al., 2018; Peng et al., 2014). Using conven-
tional methods for data interpolation in areas with uneven
coverage of meteorological stations could diminish the ac-
curacy of the derived data (dos Santos, 2020; X. Li et al.,
2018). The network of meteorological stations in China is
characterised by irregular spatial coverage. For example, the
observation network has low density in mountain areas (Gao
et al., 2018; dos Santos, 2020; Guo et al., 2020), especially
on the Tibetan Plateau (Xu et al., 2018; Zhang et al., 2016).
Additionally, the number of meteorological stations opera-
tional in China in the 1950s was low. Therefore, the use
of conventional interpolation methods cannot guarantee the

accuracy of the derived spatial data sets of air temperature
across China. Although various air temperature products are
available, e.g. the TerraClimate (Abatzoglou et al., 2018),
FLDAS (McNally et al., 2017), and ERA5 (Copernicus Cli-
mate Change Service, 2017) data sets, their spatial resolution
is usually coarse (2.5 arcmin, 0.1 arcdeg, and 0.25 arcdeg, re-
spectively), which restricts their ability to reflect the topo-
graphical characteristics and spatial heterogeneity of air tem-
perature across China (Peng et al., 2019; Zhang et al., 2016).
Thus, the demand remains for long-term spatially continuous
data sets of air temperature with a high spatial resolution.

In comparison with traditional interpolation techniques,
machine learning methods are better able to model nonlin-
ear and highly interactive relationships (Xu et al., 2018). Us-
ing mud content samples from the southwest margin of Aus-
tralia, Li et al. (2011a) proved the superior performance of
machine learning methods in application to spatial interpola-
tion of environmental variables. The subsequent application
of machine learning methods further confirmed their effec-
tiveness as tools for interpolation of environmental variables,
in which secondary information considered, such as slope,
latitude, and longitude, can improve the performance of ma-
chine learning (Li et al., 2011b, Appelhans et al., 2015; Zhu
et al., 2018; Alizamir et al., 2020; Kisi et al., 2017). Many
previous studies have demonstrated the potential of machine
learning techniques in application to the estimation of air
temperature in small regions, although most of these studies
interpolated air temperature using satellite-derived predic-
tors, such as the Land Surface Temperature and Normalised
Difference Vegetation Index based on Moderate Resolution
Imaging Spectroradiometer (MODIS) products (Appelhans
et al., 2015; dos Santos, 2020; Meyer et al., 2016; Xu et
al., 2018; Zhang et al., 2016; Yoo et al., 2018). However,
MODIS data are only available from 2000, which means that
air temperature in earlier years cannot be interpolated us-
ing such products. Moreover, optical remote sensing images
are easily affected by clouds, limiting the ability of associ-
ated models to produce long-term spatially continuous data
sets for air temperature across large regions such as China
(Dong and Xiao, 2016; Mao et al., 2019; Xiao et al., 2018,
pp. 2013–2016). Therefore, it is necessary to develop a uni-
versal model to interpolate long-term air temperature data
sets for China. However, how best to design a simple and
accurate model for temperature interpolation using machine
learning remains unclear.

To interpolate air temperature across China, we employed
three machine learning approaches: random forest (RF), sup-
port vector machine (SVM), and Gaussian process regression
(GPR). Both RF and SVM have been proven effective in pre-
vious studies on remote-sensing-based air temperature esti-
mation studies (Yoo et al., 2018; Zhang et al., 2016; Ho et
al., 2014; Zeng et al., 2021). GPR is a powerful state-of-the-
art probabilistic non-parametric regression method (Calandra
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et al., 2016; Schulz et al., 2018), which has produced satis-
factory results regarding the prediction of daily river temper-
ature (Zhu et al., 2018; Grbić et al., 2013) but has rarely been
used for air temperature estimation. In this study, we utilised
the RF, SVM, and GPR machine learning methods to develop
a model for interpolation of long-term air temperature data
for China.

The ultimate objective of the study is to produce a long-
term high-resolution spatially continuous monthly air tem-
perature product for China, based on meteorological station
data and the best-performing model constructed using ma-
chine learning techniques. The specific variables contained
in the generated product include monthly mean air temper-
ature (Tmean), monthly maximum air temperature (Tmax),
and monthly minimum air temperature (Tmin) from January
1951 to December 2020 across China.

2 Data

2.1 Meteorological station data

Observational data of monthly Tmax, Tmin, and Tmean
recorded from January 1951 to December 2020 at meteo-
rological stations distributed across China were downloaded
from the China Meteorological Data Service Centre (https:
//data.cma.cn/data/, last access: 17 April 2022). The height
of the air temperatures from the weather stations is 2 m above
the ground. The data set includes information from 613 sta-
tions, which were split randomly into a training set (70 %)
for model training and a testing set (30 %) for model eval-
uation (Fig. 1). The data division was implemented by the
“Subset Features” (Geostatistical Analyst) tool in ArcGIS re-
ferring to previous studies (Costache et al., 2020; Band et
al., 2020; Mohajane et al., 2021; Kutlug Sahin and Colke-
sen, 2021). The number of weather stations in different years
was not always exactly 613; the early years of the 1950s had
notably fewer stations available (see Fig. S1 for further de-
tails regarding the number of weather stations in each year
and the data records each station contains). Note that we did
not impute the missing data to make all the stations have all
the monthly temperature data from January 1951 to Decem-
ber 2020. The source station meteorological data are quality-
controlled and adjusted, and the stations with no data are
deleted in the study.

2.2 Topographic data

The topographic data used in this study comprised a digi-
tal elevation model (DEM) obtained from the NASA Shuttle
Radar Topographic Mission (SRTM) (https://srtm.csi.cgiar.
org/, last access: 15 July 2021). We used SRTM version 4,
which is the latest SRTM DEM product. The spatial resolu-
tion of the DEM is 3 arcsec (approximately 90 m resolution).
The DEM was resampled to 1 km resolution using the near-
est neighbour method to produce the air temperature data

Figure 1. Elevation and spatial distribution of meteorological sta-
tions across China (70 % were used for training and 30 % were used
for testing).

set with 1 km resolution. Gridded latitudinal and longitudi-
nal coordinates of 1× 1 km pixels were also used as com-
ponents. All data used in this study were processed in the
WGS84 Geographic Coordinate System (EPSG:4326).

2.3 Existing temperature products for comparison

We used three existing temperature products for comparison:
(1) the Monthly Climate and Climatic Water Balance for
Global Terrestrial Surfaces, University of Idaho (Terra-
Climate) data set (resolution: 2.5 arcmin, about 4.6 km)
(https://developers.google.com/earth-engine/datasets/
catalog/IDAHO_EPSCOR_TERRACLIMATE, last access:
15 July 2021); (2) the Famine Early Warning Systems
Network (FEWS NET) Land Data Assimilation System
(FLDAS) data set (resolution: 0.1 arcdeg, about 11 km)
(https://developers.google.com/earth-engine/datasets/
catalog/NASA_FLDAS_NOAH01_C_GL_M_V001,
last access: 15 July 2021); and (3) the latest cli-
mate reanalysis produced by the ECMWF/Coperni-
cus Climate Change Service (ERA5 Monthly aggre-
gates) data set (resolution: 0.25 arcdeg, about 28 km)
(https://developers.google.com/earth-engine/datasets/
catalog/ECMWF_ERA5_MONTHLY, last access:
15 July 2021). The three data sets were used for com-
parison with our derived gridded temperature data.
TerraClimate was used for comparing Tmax and Tmin
using the maximum temperature (tmmx ◦C−1) and the
minimum temperature (tmmn ◦C−1) variables, respec-
tively. FLDAS was used for comparing Tmean using the
near-surface air temperature variable (Tair_f_tavg K−1),
and we converted the unit (K) into degrees Celsius.
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ERA5 was used for comparing Tmax, Tmin, and
Tmean using the average air temperature at 2 m height
(mean_2m_air_temperature K−1), maximum air temperature
at 2 m height (maximum_2m_air_temperature K−1),
and minimum air temperature at 2 m height (mini-
mum_2m_air_temperature K−1), respectively, and the
unit (K) was converted into degrees Celsius. The available
time periods for the TerraClimate, FLDAS, and ERA5 prod-
ucts on the Google Earth Engine platform are 1 January 1958
to 1 December 2020, 1 January 1982 to 1 May 2021, and
1 January 1979 to 1 June 2020, respectively. Considering
the overlapping periods, we chose January 1979 to Decem-
ber 2019 for the comparisons of Tmax and Tmin, and the
period of January 1982 to December 2019 for the compar-
isons of Tmean. The height of the temperature data from
FLDAS is also 2 m (McNally et al., 2017). For TerraClimate
data, it is produced based on other data sets, including
WorldClim, CRUTs4.0, and JRA-55 (Abatzoglou et al.,
2018, pp. 1958–2015). The temperatures in WorldClim are
at 2 m height (Fick and Hijmans, 2017; Chou et al., 2020).
The temperature data from CRU Ts and JRA-55 are also at
2 m height (Harris et al., 2020). Therefore, the TerraClimate
data set also represents the 2 m temperature.

3 Methods

3.1 Variable selection

The spatial distribution of air temperature is closely related
to latitude, longitude, and elevation (Shao et al., 2012). The
use of such auxiliary data can help alleviate, to a certain ex-
tent, the limitation of spatial interpolation associated with
the sparse and irregular distribution of meteorological sta-
tions, and increase estimation accuracy (Chen et al., 2015;
Alvarez et al., 2014; Li and Heap, 2011; Newlands et al.,
2011). Figure 2 displays the correlation coefficients between
air temperature (i.e. Tmax, Tmin, and Tmean) and the above
three geographical variables. Note that the correlation co-
efficient value for each month represents the average of all
years (1951–2020), which was obtained based on all the ob-
served data from meteorological stations. The box plots of
the correlation coefficient for each month are provided in
Fig. S2. Overall, Tmax, Tmin, and Tmean have positive (neg-
ative) correlations with respect to longitude (latitude and ele-
vation). Longitude and elevation have opposite correlations,
but a similar trend with Tmax, Tmin, and Tmean, i.e. a rea-
sonably high correlation during summer (June–August) and
low correlation during winter (December–February). Lati-
tude is correlated negatively with Tmax, Tmin, and Tmean,
i.e. strong (weak) correlation in winter (summer). It is ev-
ident that strong regularity exists in the relationships be-
tween air temperature and longitude, latitude, and elevation.
In the subregions of mainland China, the relationships be-
tween temperature and the variables still hold. Thus, we
chose the three variables as predictor variables to obtain the

gridded temperature raster from the point observations. Ow-
ing to the incompleteness of remote sensing data attributable
to imaging time constraints and cloud contamination, we did
not consider satellite-derived independent variables. We con-
sidered only longitude, latitude, and elevation as predictor
variables to give the derived model the advantages of ease of
use, generalisability, and universality.

3.2 Machine learning models

3.2.1 Random forest (RF)

RF, proposed by Breiman (2001), has been used widely for
the regression of geographical variables. RF is an ensemble
machine learning method that consists of multiple decision
trees. RF can produce high rates of accuracy, and the per-
formance of RF in predicting new data is determined by the
aggregation of the results of all the trees (Hengl et al., 2018).
The randomisation of RF lies in two aspects: the random
selection of training samples for a tree through bagging (a
form of bootstrapping) and the random selection of predictor
variables as the splitting attributes at each node of the tree
(Merghadi et al., 2020; Yoo et al., 2018). The randomness
of RF makes it resistant to the problem of overfitting.
RF, which has been demonstrated as being promising and
flexible in dealing with heterogeneity in the geographical
environment, has been applied to the prediction of spatial
and temporal variables (Hengl et al., 2018; Zeng et al., 2021;
Yoo et al., 2018). For further detailed information regarding
RF, the reader is referred to Breiman (2001). We used the
ensemble algorithm for regression in MATLAB R2020b for
the RF implementation and used the default parameters. The
minimum observations per leaf were set at 8 and the number
of ensemble learning cycles was set at 30. The reader is
referred to the MATLAB help centre for further details
(https://www.mathworks.com/help/stats/fitrensemble.html?
searchHighlight=NumLearningCycles&s_tid=srchtitle, last
access: 15 July 2021; https://www.mathworks.com/help/
stats/ensemble-algorithms.html, last access: 15 July 2021;
https://www.mathworks.com/help/stats/fitrensemble.html#
bvcj_t2-15, last access: 15 July 2021).

3.2.2 Support vector machines (SVMs)

SVMs, developed by Vapnik (2013), utilise the inductive
principle of structural risk minimisation to obtain the overall
optimal response. SVMs transform input data from lower-
dimensional into a high-dimension space based on a series
of kernel functions (Fan et al., 2018). The input space and
the output space are non-linearly related in real applications,
and the limitation is solved by mapping the input space on
to higher dimension. In regression applications, an optimal
hyperplane is constructed that is as close to as many sam-
ples as possible. The SVM does not only consider the er-
ror approximation to the data, but also the model generalisa-
tion. SVMs have been used widely in various fields such as
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Figure 2. Correlation coefficients between (a) monthly maximum air temperature (Tmax), (b) minimum air temperature (Tmin), and
(c) mean air temperature (Tmean) and longitude, latitude, and elevation for each month. Coloured shading indicates the standard devia-
tion. Note that the correlation coefficients are the average values of the correlation coefficients for each month over 70 years (1951–2020).

meteorology, hydrology, and agriculture for regression and
prediction applications (Ghorbani et al., 2017; Shrestha and
Shukla, 2015; Fan et al., 2018). Detailed information regard-
ing SVMs can be found in Vapnik (2013). The Gaussian ker-
nel was adopted as the kernel function of SVMs and the ker-
nel scale parameter was set to 1.7. The value of epsilon is
an estimate of a 10th of the standard deviation using the in-
terquartile range of the response variable (by default). The
box constraint value for the Gaussian kernel function was
obtained by dividing the interquartile range of the response
variable by 1.349. The box constraint and the epsilon hy-
perparameters vary from month to month according to the
training data of each month. The predictors were standard-
ised in the SVM model. The reader is referred to the MAT-
LAB help documentation for further technical details (https:
//www.mathworks.com/help/stats/fitrsvm.html, last access:
15 July 2021 and https://www.mathworks.com/help/stats/
understanding-support-vector-machine-regression.html, last
access: 15 July 2021).

3.2.3 Gaussian process regression (GPR)

GPR is a non-parametric Bayesian technique for solving non-
linear regression problems (Grbić et al., 2013). GPR was
originally proposed to provide a “principle, practical, and
probabilistic approach to learning in kernel machines” (Ras-
mussen, 1997, 2004). GPR is based on Bayesian theory and
statistical learning theory, which is applicable to regression

problems (Zhang et al., 2019). GPR has strength in its seam-
less combination of several machine learning tasks, such as
model training, hyperparameter estimation, and uncertainty
estimation, which can compute the prediction intervals us-
ing the trained model (Sun et al., 2014; Zhu et al., 2018).
GPR has been utilised in diverse applications that include
model approximation, experiment design, and multivariate
regression (Zhu et al., 2018; Karbasi, 2018). However, pre-
vious applications of GPR to the prediction of air temper-
ature have been limited. For detailed information regarding
the GPR model, the reader is referred to Rasmussen (1997,
2004). The explicit basis in the GPR model is “constant”
and the kernel function of the GPR algorithm is the ex-
ponential kernel. The predictor variables were standardised
in the GPR model. The reader is referred to the MAT-
LAB help documentation for further details regarding GPR
(https://www.mathworks.com/help/stats/fitrgp.html, last ac-
cess: 15 July 2021 and https://www.mathworks.com/help/
stats/gaussian-process-regression-models.html, last access:
15 July 2021).

We extracted the independent variables (i.e. latitude, lon-
gitude, and elevation) relating to the meteorological stations
and randomly divided the processed data into a set for model
training (70 %) and a set for model evaluation and valida-
tion (30 %). For each month, we used the temperature data of
a month (training set) to train the model and then used this
model to generate the grid data of the same month. When
training the models, the 10-fold cross-validation was used.
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We constructed a model for each month separately, which
means we have 840 models for the 840 months from 1951 to
2020.

3.3 Model evaluation metrics

We used three metrics to evaluate model performance: mean
absolute error (MAE), root mean square error (RMSE), and
the coefficient of determination (R2), which have all been
used widely in previous studies to evaluate model capabil-
ity in predicting the dependent variable (Graf et al., 2019;
Khanal et al., 2018; Peng et al., 2019; Ji et al., 2015). The
MAE is the mean value of all the individual errors. The
RMSE measures the discrepancy between the observed and
predicted values. The MAE and RMSE both summarise the
mean difference between the observed and predicted val-
ues and are among the best overall measures of model per-
formance (Li and Heap, 2011). Lower values of MAE and
RMSE mean better accuracy. R2 measures the proportion of
variance explained by the model (Sekulić et al., 2021), repre-
senting how well the predicted values fit in comparison with
the observed values. The higher the R2 value, the better the
model performance:

MAE=
1
n

∑n

i=1
|Pi −Oi | , (1)

RMSE=

√
1
n

∑n

i=1
(Pi −Oi)2, (2)

R2
= 1−

∑n
i=1(Oi −Pi)2∑n
i=1
(
Oi −O

)2 , (3)

where Pi is the predicted value in the time series, Oi refers
to the observed value from the meteorological stations, n is
the number of samples, and O represents the average of the
observed values from n meteorological stations. All perfor-
mance measures were calculated using the testing data set for
evaluation purposes.

3.4 Methods for spatiotemporal analysis of monthly air
temperature

The Theil–Sen slope estimator used in combination with
Mann–Kendall (MK) detection, which is an effective ap-
proach for trend analysis that reflects the variation in trends
of each pixel in a time series, has been used widely in various
fields such as hydrology and meteorology (Cai and Yu, 2009;
Gocic and Trajkovic, 2013; Jiang et al., 2015). In this study,
we used the Theil–Sen estimator coupled with the MK test to
detect the trend of the temperature time series.

3.4.1 Theil–Sen estimator

The Theil–Sen estimator, which is a robust non-parametric
approach for estimating the slope of a trend, has been used
widely in relation to hydrometeorological time series data

(Jiang et al., 2015; Gocic and Trajkovic, 2013; Shifteh
Some’e et al., 2012; Sayemuzzaman and Jha, 2014). The
Theil–Sen slope estimator, which represents the magnitude
of a trend, can be expressed as (Theil, 1950; Sen, 1968):

β =Median
(
xj − xi

j − i

)
, ∀j > i, (4)

where β denotes the Theil–Sen median slope, and xi and xj
refer to the air temperature at time i and j , respectively. The
slope derived from the Theil–Sen estimator is a robust esti-
mate of the magnitude of a trend, which can represent an in-
creasing trend (β > 0) or a decreasing trend (β < 0) over the
study period on the pixel scale. In this study, the Theil–Sen
median slope was computed using the MATLAB platform.

3.4.2 The Mann–Kendall (MK) test

The MK test quantifies the significance of a trend. It is a
non-parametric statistical test, meaning that it does not re-
quire samples to follow specific distributions and is not influ-
enced by outliers. The MK test has frequently been applied
to measure the significance of trends in hydrological and
meteorological time series data (Jiang et al., 2015; Shifteh
Some’e et al., 2012; Da Silva et al., 2015; Gocic and Tra-
jkovic, 2013). The Z statistic is used to evaluate a trend; a
positive (negative) value of Z means an increasing (decreas-
ing) trend. Further details regarding the MK test can be found
in Jiang et al. (2015) and Shifteh Some’e et al. (2012). In this
study, we set the significance level at 5 %, the same as many
other related studies (Jiang et al., 2015; Shifteh Some’e et
al., 2012; Da Silva et al., 2015). This means the variation
is significant when |Z| is >1.96, otherwise, the variation is
non-significant. The MK test was conducted using MATLAB
language.

4 Results

4.1 Evaluation of model performance

We used the testing data set to evaluate the performance of
each model. Figure 3a–c presents the MAE, RMSE, and R2

values of Tmean, respectively, of the three machine learn-
ing models for each month in the time series of 1951–2020.
The MAEs of GPR and SVM are close to 1 ◦C across the
study period (the MAEs are slightly smaller for GPR), while
the MAEs of RF are clearly higher than those of both GPR
and SVM. The RMSEs have the same order as the MAEs,
i.e. GPR outperforms both SVM and RF. The differences
in the RMSEs of the three models are evident; GPR has
the lowest RMSE in every month throughout the study pe-
riod (maximum RMSE= 1.35 ◦C, average RMSE= 0.79 ◦C,
and Std= 0.15 ◦C). A detailed inspection of the MAEs and
RMSEs from January 2015 to December 2020 (Fig. S3)
reveals that the errors are relatively larger in cold months
(November–February) and smaller in warmer months. All
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three models show relatively high values of R2. GPR and
SVM have R2 values that are very similar, i.e. average R2

values of 0.97 and 0.96, respectively, while RF has lower val-
ues of R2, especially during the first few years. For Tmean,
RF shows distinct fluctuations from January 1951 to De-
cember 2020, whereas GPR and SVM are relatively stable.
The accuracy metrics show that the MAEs and RMSEs fluc-
tuate from month to month, while R2 remains reasonably
constant. The accuracy metrics of GPR averaged over 840
months from January 1951 to December 2020 are as fol-
lows: MAE= 0.79 ◦C, RMSE= 0.79 ◦C, and R2

= 0.97 for
Tmean. The three metrics indicate that GPR always has the
highest accuracy and lowest standard deviation, reflecting the
robustness of GPR. For Tmax and Tmin, GPR still performs
best according to the evaluation metrics (Figs. S4 and S5).
The correlation coefficients of air temperature and the pre-
dictor variables (Fig. 2) vary from month to month, which
might contribute to the fluctuation in the accuracy of the in-
terpolation with month.

The residuals were obtained as the observed values mi-
nus the predicted values. Figure 4 shows box plots of the
residuals for Tmean for the test meteorological stations each
month during 1951–2020. Overall, the mean residuals of the
three models are generally close to 0 and the residuals are
smaller during the warm months (June–September) than dur-
ing the cool/cold months (October–April), particularly for
RF and SVM. In comparison with SVM and RF, GPR has
the most stable accuracy over the 12 months, i.e. the differ-
ence in the residuals among the months is relatively small.
GPR also has a quantile range that is narrower than that of the
other models. For Tmax and Tmin, the bias of GPR over the
12 months is smaller than that of both RF and SVM (Figs. S6
and S7). Additionally, the accuracy of the estimated Tmax
is higher than that of Tmin, consistent with the findings of
Tang et al. (2020a). The results show that the GPR model
could be a better choice than either RF or SVM to estimate
Tmean, Tmax, and Tmin for China. The frequency distribu-
tions of the residuals of the three machine learning models
for Tmean, Tmax, and Tmin are provided in the Supplement
(Figs. S8–S10), in which it can be found that GPR generally
has the greatest concentration of residuals close to zero.

The spatial distribution of the average values of the resid-
uals of the GPR results for Tmean throughout the 70 years
(1951–2020) at each of the test meteorological stations is
displayed in Fig. 5. Most areas have relatively low abso-
lute residuals, although certain stations in some western areas
have relatively high residuals. In January and December, the
number of stations with high absolute residuals (>2.5 ◦C) is
relatively higher than that in other months, i.e. 13 and 12 sta-
tions, respectively. Conversely, there are only five, five, and
four stations with absolute residuals >2.5 ◦C for June, July,
and September, respectively. This might indicate that the
GPR model produces better results during warmer months.
Furthermore, among the stations with high absolute residu-
als (>2.5 ◦C), more are positive than negative, indicating that

the observed values are higher than the predicted values, i.e.
there is a slight underestimation by GPR at those stations.
Overall, most stations show residuals between −1 and 1 ◦C.
The maps of the residuals for Tmax and Tmin also display
patterns that are spatially similar to the maps of residuals for
Tmean. However, the overall residuals of Tmax exhibit better
results in comparison with the spatial pattern of the residuals
of Tmin (Figs. S11 and S12).

4.2 Spatial distribution of air temperature

According to the model evaluation, we concluded that GPR
is the best model for estimating air temperature across China.
Therefore, we employed the GPR model to generate the long-
term spatial data set of Tmean, Tmax, and Tmin from Jan-
uary 1951 to December 2020, which we named GPRChi-
naTemp1km. Figure 6 illustrates the spatial pattern of Tmean
estimated by GPR in 2020. The differences between north-
western and southeastern regions are remarkable. Generally,
Tmean decreases from the southeast toward the northwest. In
winter, the temperature range between northern and southern
China is large, whereas the temperature range in summer is
relatively small. The lowest Tmean (−27 ◦C) occurs in Jan-
uary and the highest Tmean (34 ◦C) occurs in July, consistent
with the fact that January and July are generally the cold-
est and hottest months, respectively. The maps show reason-
able changes as the seasons change, i.e. high temperatures
in summer (June–August) and low temperatures during win-
ter (December–February). Overall, Tmax and Tmin in China
follow a pattern similar to that of Tmean, i.e. decreasing from
the south toward the north (Figs. S13 and S14). The high-
est Tmax of 2020 (44 ◦C) occurs in July (Fig. S13) and the
lowest Tmin (−43 ◦C) occurs in December (Fig. S14). The
results describe the spatial heterogeneity of air temperature
across China well. Additionally, the border of the Tibetan
Plateau is evident in the maps of Tmax, Tmin, and Tmean
for each month, especially in the winter and summer seasons,
further demonstrating the rationality of the derived results.

4.3 Trend analysis of air temperature in China

A Theil–Sen median trend analysis was integrated with the
MK test and the results were classified into four categories:
significant increase, non-significant increase, significant de-
crease, and non-significant decrease. Figure 7 shows that
the trend of the variation of Tmean (1951–2020) in China
is dominated by significant increase in each month. There
is only a small region in northwestern China that has sig-
nificant decrease in Tmean in January and December. We
found that there is always a small region showing a different
trend in comparison with surrounding areas in the Xinjiang
Uygur Autonomous Region in northwestern China, which
is characterised by a decreasing trend in most months and
non-significant increase in the hot months (June–September).
This phenomenon could be related to the complex condi-
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Figure 3. (a) Mean absolute error (MAE), (b) root mean square error (RMSE), and (c) coefficient of determination (R2) between observed
Tmean and predicted Tmean by the three machine learning models (GPR, SVM, RF) of the test meteorological stations over the period of
January 1951 to December 2020. See Figs. S4 and S5 for the accuracy graph of Tmax and Tmin.

Figure 4. Residuals of the monthly Tmean predicted by the machine learning models with respect to in situ Tmean for the test meteorological
stations. Note that the average of the residuals of Tmean from 1951–2020 for each test meteorological station is shown for each month. See
Figs. S6 and S7 for the residual graph of Tmax and Tmin.

tions of the region. For example, Bayinbuluke is an inter-
mountain basin surrounded by the Tianshan Mountains, with
an alpine wetland ecosystem in the arid temperate zone.
During summer (June–August), Tmean shows distinct non-
significant decrease in central areas of China. In December,
the spatial differentiation is the most remarkable and the in-

creasing trend in most of eastern China is non-significant,
which differs from that of other months. There is also a re-
gion representing a trend of non-significant decrease on the
Yungui Plateau in southwestern China. Overall, the trend
of Tmean in China during 1951–2020 shows significant in-
crease in each month, while only a few areas have a trend of
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Figure 5. Spatial distribution of residuals between the observed Tmean and the predicted Tmean by GPR for the test meteorological stations
for each month. Note that the exhibited residuals are the average residual of 70 years (1951–2020) for each month.

decrease. The distribution of the mean temperature trend in
China in our study agrees with the existing literature (Dong
et al., 2015; Sun et al., 2018; You et al., 2021; Cui et al.,
2017). Tmax is characterised by significant increase, non-
significant increase, and a non-significant decreasing trend
(Fig. S21). Tmin exhibits a spatial pattern similar to that of
Tmean, showing a significant increasing trend in most areas
in each month (Fig. S22).

5 Discussion

5.1 Comparison with traditional interpolation methods

Two traditional methods used widely for spatial interpolation
are IDW and OK (Li and Heap, 2014, 2011). In this study, we
used ANUSPLIN in addition to IDW and OK for compari-
son with the machine learning models. ANUSPLIN, which
is professional interpolation software that uses the thin-plate
smoothing spline algorithm (Hutchinson, 1995, 2004; Xu
and Hutchinson, 2013), has been used to create many cli-
matic data sets, such as the monthly Climatic Research Unit
data set (New et al., 2000) and the WorldClim data set (Fick
and Hijmans, 2017; Hijmans et al., 2005). We compared the

interpolation results derived using the machine learning mod-
els with the results obtained using the traditional methods to
further assess the interpolation power of the machine learn-
ing methods regarding air temperature across China. The ac-
curacy metrics (Fig. 8) show that the performances of GPR,
SVM, and ANUSPLIN are of a similar level, while RF, IDW,
and OK perform less well. Both IDW and OK have relatively
high interpolation errors with higher MAEs and RMSEs than
GPR and SVM (Fig. 8). Overall, IDW and OK do not per-
form well in July and January of all the studied years. Fig-
ure 9 shows scatter plots of the observed monthly Tmean and
Tmean estimated by the six models for January and July in
2020. It can be seen that OK and IDW both have clear differ-
ences between January and July (Fig. 9g, h, i, and j), in which
the points are relatively widely dispersed in July. GPR, SVM,
and ANUSPLIN are slightly affected by the seasonal varia-
tion with lower errors (i.e. lower MAEs and RMSEs) in July
(Fig. 9). As shown in Fig. 3, the RMSE, MAE, and R2 show
a cyclic pattern. In winter (November, December, January,
and February), the temperature has relatively lower correla-
tions with two variables (i.e. longitude and elevation), while
in summer, temperature has a lower correlation with only one
variable (i.e. latitude) and has high correlations with longi-
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Figure 6. Spatial distribution of monthly Tmean predicted by GPR across China for each month in 2020. Note that only the maps for 2020
are presented as an example (all the data are available in the China GPRChinaTemp1km database).

tude and elevation. The elevation can add the topographic
information that can increase the temperature interpolation
reliability (Rolland, 2003), which may be a reason for the
larger errors in the cold months (Amini et al., 2019; Brunetti
et al., 2014; Stahl et al., 2006). The RMSE and MAE are high
for the winter months as shown in the zoomed-in accuracy in
Fig. S3. This accuracy cycle pattern is probably induced by
the correlation difference between summer and winter. GPR
has the lowest MAEs and RMSEs, and the highest R2 val-
ues in most months. Note that the RMSE and MAE values
of ANUSPLIN for July months in 1970, 1980 1990, 2010,
and 2020 are slightly lower than GPR (Fig. 8). Considering
the proven power of ANUSPLIN in predicting meteorolog-
ical variables, the GPR yields relatively satisfactory results.
Taking the accuracy in 2020 as an example (Fig. 9), ANUS-
PLIN has higher errors and lower R2 values than GPR, and
there are certain points with values estimated by ANUSPLIN
that are relatively far away from the observed values in July
(Fig. 9l). In contrast, the Tmean values estimated by GPR are
relatively close to those of the in situ Tmean values (Fig. 9b).

Comparison of the performances of the six models for
Tmax and Tmin reveals that GPR performs better in terms
of Tmax and has the lowest errors (MAEs and RMSEs) in

almost all the studied months (Fig. S23). OK and IDW have
similar performances, consistent with the findings of previ-
ous related studies (Plouffe et al., 2015; Li et al., 2011a).
It is noticeable that IDW and OK perform relatively poorly.
Both IDW and OK depend on the spatial autocorrelation of
air temperature and cannot capture the geomorphic charac-
teristics of the interpolation area because neither method in-
cludes elevation information (Ozelkan et al., 2015; Wang et
al., 2017; Li et al., 2011a). Unlike IDW and OK, ANUS-
PLIN considers longitude, latitude, and elevation (Hijmans
et al., 2005). The frequency distributions of the residuals
for Tmean, Tmax, and Tmin of the six models for the
same months as in Fig. 9 are presented in the Supplement
(Figs. S24–S26). The distributions follow a normal distribu-
tion and the residuals of GPR, SVM, and ANUSPLIN are
concentrated mainly around zero. Scatter plots of Tmean,
Tmax, and Tmin for the same periods as shown in Fig. 9
are provided in the Supplement (Figs. S27–S49), in which
the robustness of GPR is clearly demonstrated for Tmean,
Tmax, and Tmin in comparison with other methods. Stud-
ies have shown that Gaussian processes are one of the most
intuitive techniques for modelling spatial surfaces (Yu et al.,
2017; Berger et al., 2001). Besides this, we conducted an ex-
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Figure 7. Monthly trends of Tmean changes in China during 1951–2020 obtained by the Theil–Sen median slope analysis. The significance
of the trends is quantified by the Mann–Kendall statistical test at the 95 % confidence level. The separate Theil–Sen trend analysis and MK
test results for Tmean, Tmax, and Tmin are provided in the Supplement (Figs. S15–S20).

periment by cutting out a region using a 300 km square, and
we used all stations inside this square for testing and stations
outside it for training models to estimate the robustness of the
GPR models. The results indicated high accuracy and good
robustness of the GPR models (Figs. S50–S52).

Figure 10 presents maps of the residuals (observed val-
ues minus estimated values) for Tmean in January and July
2020 estimated using the six methods. Bias is apparent in RF
(Fig. 10c and d), IDW (Fig. 10g and h) and OK (Fig. 10i
and j). A comparison of the maps of the residuals reveals that
Tmean estimated by GPR generally agrees well with the in
situ data, with large bias at only a few stations that are dis-
tributed mainly in western and northern China, which might
be related to the scarcity of meteorological stations and the
complex regional topography (Ji et al., 2015). It is also ev-
ident that the absolute residuals in July are generally lower
than those in January (Fig. 10). For China, the spatial ho-
mogeneity of temperature in summer is stronger than that
in winter, which might be one reason for the lower bias ob-
served in July. We note that RF has poor performance in com-
parison with the other machine learning methods. Although
we do not have sufficient evidence to deduce the causes for
the lower accuracy of RF, the small number of meteorolog-

ical stations might be a major reason. Additionally, RF re-
gression has a limitation regarding the conditions beyond
the range of the training data set because only the values
included in the training data are used for splitting the trees
(Mutanga et al., 2012; Jeong et al., 2016). Among the three
machine learning algorithms, GPR and SVM both perform
relatively well, although the performance of GPR is better.
Note that we used the medium Gaussian SVM and exponen-
tial GPR in MATLAB R2020b. GPR and SVM are both non-
parametric kernel-based models that rely on the Gaussian
principle. The Gaussian function has the desired characteris-
tics of being an inverse-distance algorithm and a smoothing
filter (Thornton et al., 1997), which might explain the bet-
ter performances of GPR and SVM. The comparison with
Peng’s data (Peng et al., 2019) in the Tibetan Plateau region
shows the strength of the GPR data in regions with compli-
cated topography (Fig. S55).

In summary, ANUSPLIN is an interpolation method that
is better than IDW and OK in modelling air temperature over
complex terrain (Plouffe et al., 2015; Newlands et al., 2011).
However, the robustness of ANUSPLIN is no better than that
of GPR. Moreover, ANUSPLIN is based on the principle of
thin-plate splines, the skill of which can be limited in regions
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Figure 8. Accuracy of Tmean derived from the machine learning methods and traditional methods for January and July during 1951–2020
with an interval of 10 years.

Figure 9. Scatter plots of Tmean estimated by the machine learning models and traditional models against observed monthly mean temper-
ature in January and July 2020.

with high elevations and sparse observations, i.e. areas such
as the Tibetan Plateau (Jobst et al., 2017). Furthermore, in
our study, running ANUSPLIN was more time-consuming in
comparison with running the GPR model, making it difficult
to generate long-term monthly data sets for all 12 months
over 70 years. The spatial maps of temperature generated

by the six models (Figs. S56–S58) reveal that GPR obtained
reasonable results for Tmean, Tmax, and Tmin. In the case
of Tmax and Tmin, ANUSPLIN does not appear to have a
rational range for Tmin (Fig. S58k and l). Therefore, in pro-
duction of long-term high-resolution data sets over large land
areas such as China, it is more feasible, efficient, and ac-
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Figure 10. Comparison of the spatial distribution of the residuals between machine learning methods and traditional methods for Tmean in
January and July 2020 (comparisons for Tmax and Tmin are provided in Figs. S53 and S54).

curate to use the GPR model. Furthermore, the GPR gener-
ated data can capture the high temperature of the anomalous
event (Fig. S59), e.g. the 2006 summer drought of the eastern
Sichuan Basin (Y. Li et al., 2011). The spatial anomaly pat-
tern can also be captured using our generated gridded data,
as shown in Figs. S60–S70. In our study, the GPR method
is employed to generate the temperature data. In future work,
we may dig into the potential of GPR in other meteorological
variables.

5.2 Comparison with other products

We used the ERA5, FLDAS, and TerraClimate temperature
data sets for comparison with our data set generated using
the GPR model. The spatial resolution of the three data sets
is about 28, 11, and 4.6 km, respectively. Our data sets are
1 km. We resampled all the data to the resolution of the ERA5
data set to keep the resolution consistent and we then made
comparisons. Note that the generated data in our study repre-
sent the temperature at 2 m height, since the station records
the temperature at 2 m above ground (Liu et al., 2011; Zhang
et al., 2010). Taylor diagrams were constructed to compare
the accuracy between our data and that of the other prod-

ucts for Tmax, Tmin, and Tmean (Fig. 11). For Tmax, it
can be seen that the GPR-simulated air temperature best
matches the observations, with a closer standard deviation
to the observed variability, lower centred RMSE, and higher
correlation than both ERA5 and TerraClimate. For Tmin, the
standard deviation and RMSE values of ERA5 are clearly
greater than those of both TerraClimate and GPR. GPR has
almost the same standard deviation as the observations, with
the lowest RMSE and highest correlation, whereas TerraCli-
mate has slightly less spatial variability (lower standard de-
viation), with a higher RMSE value and lower correlation.
In the case of Tmean, GPR and FLDAS have almost the
same variability (with a standard deviation close to the ob-
served variability), while GPR has the highest correlation and
lowest RMSE. Generally, the GPR-derived data set is better
in terms of Tmax, Tmin, and Tmean than the data sets ob-
tained using other products. The better outcome using the
GPR model is characterised by the closest distance in terms
of the variability compared with the observations, the low-
est RMSE, and the highest correlation for all three tempera-
ture variables. The Taylor diagrams also show that the GPR
model performs better in terms of the reliability of the grid-
ded temperature data sets and has greater potential regard-
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Figure 11. Taylor diagrams displaying a statistical comparison with observations between our products generated using the GPR model and
the other products under the same spatial resolution. Given the overlapping time of the data sets, January 1979 to December 2019 was used
to compare Tmax and Tmin, and January 1982 to December 2019 was used to compare Tmean. Comparisons for each month are presented
in the Supplement (Figs. S73–S75).

ing spatial interpolation of air temperature. Besides this, we
also compared our data sets with Peng’s data (Peng et al.,
2019), which shows the mean temperature from GPR data
sets has relatively higher accuracy than that from Peng’s data
on the whole, especially in warm months (Fig. S71). Addi-
tionally, the high-resolution GPR data can provide more spa-
tial details than the coarse-resolution products like ERA and
FLDAS (Fig. S72).

5.3 Limitations

China covers a vast territory, with a complex topography
and diverse climate, meaning that auxiliary data such as el-
evation are particularly important regarding temperature in-
terpolation (Appelhans et al., 2015; Vicente-Serrano et al.,
2003). Air temperature is strongly impacted by topography
and the DEM represents a fundamental variable for interpo-
lating air temperature in our methodology. The terrain se-
mantics can be learned from the elevation data (Sha et al.,
2020). The quality of auxiliary environmental predictors is
vital and an appropriate DEM is crucial for accurate interpo-
lation (Li and Heap, 2011; Diodato, 2005). The DEM data
adopted in this study were from the SRTM Version 4, which
represents a substantial improvement on previous versions.
Although the updated version is promoted as the highest
quality SRTM data set available (https://srtm.csi.cgiar.org/,
last access: 15 July 2021), certain limitations remain. For ex-
ample, Mukul et al. (2017) reported that the accuracy of the
SRTM product in the region of the Himalayas decreases as
elevation rises. Additionally, only a limited number of exter-
nal studies validating the SRTM version 4 product have been
reported (Tan et al., 2015) and the uncertainty of the data in
our application to air temperature interpolation should be as-
sessed in future work.

The Euclidean distance of observation stations is quite
small in most regions, while it is relatively large in the west
of the Tibetan Plateau and a small region in Inner Mongolia

(Fig. S76). The larger Euclidean distance means the stations
in that region are sparse, which can have an impact on the in-
terpolation accuracy (Hijmans et al., 2005; Li et al., 2011a).
The spatial distribution of the width of the predicted intervals
with a significance level of 5 % (using the upper limit minus
the lower limit of the confidence interval) for the 12 months
in 2010 using the trained models shows that most of the re-
gions have quite small uncertainty, while the Tibetan Plateau
areas have relatively larger uncertainty (Fig. S77).

Some studies use the remote sensing data to generate the
air temperature data set, such as land surface temperature,
normalised differential vegetation index (NDVI), and land
use (Hooker et al., 2018; Li and Zha, 2019; Li et al., 2018).
Although these variables are correlated with the air tempera-
ture, these remote sensing data are usually not available be-
fore 2000, since our goal is to generate long-term data se-
ries from 1951 to 2020. Furthermore, the MODIS data are
not available for each month from January 2000 to Decem-
ber 2020. As shown in Fig. S78, the percentage of the avail-
able MODIS images is low in northeast China and southern
regions. Thus, the remote sensing data are not appropriate for
generating long-term temperature data in our study. Further-
more, there is inherent data uncertainty in the remote sensing
data itself, such as the land use data.

In our study, we split the stations into testing and training
stations in ArcGIS, which considers the spatial distribution
of the weather stations. We also conducted a case study us-
ing the Tmean from 1990, 2000, and 2010 to figure out if the
model output is sensitive to the choice of stations used in the
test/training data set. We conducted the experiment by ran-
domly splitting the data into training and testing sets (7 : 3)
50 times in ArcGIS. The RMSE varies slightly from differ-
ent scenarios of the test/training data set, while there is no
obvious variation in R2 (Figs. S79 and S80).

It should be noted that in July 1951, there were only 38
samples available for testing and 96 samples available for
training. The scarcity of meteorological stations in the early
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years of the 1950s represents one of the major limitations
regarding the use of machine learning methods. Generally,
this study found that the GPR estimates Tmean better than
Tmax and Tmin. The average MAEs and RMSEs of the
GPR model for Tmean are both 0.79 ◦C, i.e. smaller than
1 ◦C (Fig. 3), whereas the average MAEs and RMSEs for
Tmax and Tmin are >1 ◦C (Tmax: average MAE= 1.20,
average RMSE= 1.70; Tmin: average MAE= 1.41, aver-
age RMSE= 1.92) (Figs. S4 and S5). Therefore, the GPR
model requires further improvement regarding interpolation
of Tmax and Tmin.

6 Data availability

The GPRChinaTemp1km data set includes monthly max-
imum air temperature, minimum air temperature, and
mean air temperature at 1 km spatial resolution over
China from January 1951 to December 2020. The
data sets are publicly available in GeoTIFF format
on Zenodo at https://doi.org/10.5281/zenodo.5112122 (He
et al., 2021a) for monthly maximum air tempera-
ture, at https://doi.org/10.5281/zenodo.5111989 (He et
al., 2021b) for monthly mean air temperature, and at
https://doi.org/10.5281/zenodo.5112232 (He et al., 2021c)
for monthly minimum air temperature. The unit of the data
is ◦C.

7 Conclusions

A long-term, high-resolution, current, and spatially continu-
ous data set of air temperature over China is fundamental for
understanding climatic dynamics and conducting related sci-
entific research. We used meteorological station data avail-
able from January 1951 to December 2020 throughout China
as the dependent variable and longitude, latitude, and eleva-
tion were considered as independent variables for interpola-
tion. We used three machine learning models (i.e. RF, SVM,
and GPR) to investigate the potential of machine learning
techniques regarding the interpolation of air temperature over
China. Results showed that GPR performed best, followed
by SVM and RF. The machine learning models were also
compared with conventional interpolation methods (i.e. IDW,
OK, and ANUSPLIN) and the results showed that GPR was
generally superior for interpolating Tmax, Tmin, and Tmean
for each month over China. Comparison of the GPR-derived
results with existing products (i.e. TerraClimate, FLDAS,
and ERA5) revealed that GPR outperformed the three prod-
ucts with regard to Tmax, Tmin, and Tmean. We constructed
a new 1 km resolution monthly maximum, minimum, and
mean air temperature data set (named GPRChinaTemp1km)
for China from 1951 to 2020 using the advanced GPR ma-
chine learning method. Most regions of China display signif-
icant increases for Tmean and Tmin in each month, while the
trends of significant increase, non-significant increase, and

non-significant decrease are prominent for Tmax. A more
profound analysis can be conducted based on our temper-
ature data sets, which could help further understanding of
global warming and climate change.
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