Articles | Volume 14, issue 4
https://doi.org/10.5194/essd-14-1581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-1581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials
Department of Physical Geography and Ecosystem Science, University of
Lund, 22362 Lund, Sweden
Department of Biology and Environmental Science, Linnaeus University,
39182 Kalmar, Sweden
Ralph Fyfe
School of Geography, Earth and Environmental Sciences, University of
Plymouth, PL4 8AA Plymouth, United Kingdom
Marie-Jose Gaillard
Department of Biology and Environmental Science, Linnaeus University,
39182 Kalmar, Sweden
Anna-Kari Trondman
Department of Biology and Environmental Science, Linnaeus University,
39182 Kalmar, Sweden
Division of Education Affairs, Swedish University of Agricultural
Science (SLU), 23456 Alnarp, Sweden
Florence Mazier
Environmental Geography Laboratory, GEODE UMR 5602 CNRS,
Université de Toulouse Jean Jaurès, 31058 Toulouse, France
Anne-Birgitte Nielsen
Department of Geology, Lund University, 22100 Lund, Sweden
Anneli Poska
Department of Physical Geography and Ecosystem Science, University of
Lund, 22362 Lund, Sweden
Department of Geology, Tallinn University of Technology, 19086
Tallinn, Estonia
Shinya Sugita
Institute of Ecology, Tallinn University of Technology, 10120 Tallinn,
Estonia
Jessie Woodbridge
School of Geography, Earth and Environmental Sciences, University of
Plymouth, PL4 8AA Plymouth, United Kingdom
Julien Azuara
Département Homme et Environnement, UMR 7194 Histoire Naturelle de
l'Homme Préhistorique, 75013 Paris, France
Angelica Feurdean
Senckenberg Biodiversity and Climate Research Centre (BiK-F), 60325
Frankfurt am Main, Germany
Department of Geology, Faculty of Biology and Geology,
Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
Roxana Grindean
Department of Geology, Faculty of Biology and Geology,
Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
Institute of Archaeology and History of Arts, Romanian
Academy, 400015 Cluj-Napoca, Romania
Vincent Lebreton
Département Homme et Environnement, UMR 7194 Histoire Naturelle de
l'Homme Préhistorique, 75013 Paris, France
Laurent Marquer
Department of Botany, University of Innsbruck, 6020 Innsbruck,
Austria
Nathalie Nebout-Combourieu
Département Homme et Environnement, UMR 7194 Histoire Naturelle de
l'Homme Préhistorique, 75013 Paris, France
Miglė Stančikaitė
Institute of Geology and Geography, Vilnius University, 03101 Vilnius, Lithuania
Ioan Tanţău
Department of Geology, Faculty of Biology and Geology,
Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
Spassimir Tonkov
Department of Botany, Sofia University St. Kliment Ohridski, 1164
Sofia, Bulgaria
Lyudmila Shumilovskikh
Department of Palynology and Climate Dynamics,
Georg August University, 37073 Göttingen, Germany
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Angelica Feurdean, Randy Fulweber, Andrei-Cosmin Diaconu, Graeme T. Swindels, and Mariusz Gałka
EGUsphere, https://doi.org/10.5194/egusphere-2025-2318, https://doi.org/10.5194/egusphere-2025-2318, 2025
Short summary
Short summary
We found minimal fire activity in northern Arctic Alaska from ~1000 BCE to 500 CE and a marked increase at 1850 CE when it exceeded any levels observed in the preceding millennia. Our findings suggest that deepening of water tables and peatland drying associated with permafrost thaw have facilitated woody encroachment, especially by more flammable Ericaceous shrubs. This study highlights the importance of moisture–vegetation–fire feedback in shaping the tundra fire regime.
Léa d'Oliveira, Sébastien Joannin, Guillemette Ménot, Nathalie Combourieu-Nebout, Lucas Dugerdil, Marion Blache, Mary Robles, Assunta Florenzano, Alessia Masi, Anna Maria Mercuri, Laura Sadori, Marie Balasse, and Odile Peyron
EGUsphere, https://doi.org/10.5194/egusphere-2025-1106, https://doi.org/10.5194/egusphere-2025-1106, 2025
Short summary
Short summary
We studied climate change in the central Mediterranean during the Holocene by analysing 38 pollen records. Several methods were used to obtain reliable results on seasonal temperatures and precipitation. Our results show that, during the Holocene, summer temperatures were colder in the south and warmer in the north, with wetter winters and drier summers, especially in the south. Unlike winter conditions, summers ones did not follow variations in insolation, suggesting other factors.
Dael Sassoon, Nathalie Combourieu-Nebout, Odile Peyron, Adele Bertini, Francesco Toti, Vincent Lebreton, and Marie-Hélène Moncel
Clim. Past, 21, 489–515, https://doi.org/10.5194/cp-21-489-2025, https://doi.org/10.5194/cp-21-489-2025, 2025
Short summary
Short summary
Climatic reconstructions of Marine Isotope Stages (MISs) 19, 11, and 5 and the current interglacial (MIS 1) based on pollen data from a marine core (Alboran Sea) show that, compared with MIS 1, MIS 19 was colder and highly variable, MIS 11 was longer and more stable, and MIS 5 was warmer. There is no real equivalent to the current interglacial, but past interglacials give insights into the sensitivity of the southwestern Mediterranean to global climatic changes in conditions similar to MIS 1.
Andria Dawson, John W. Williams, Marie-José Gaillard, Simon J. Goring, Behnaz Pirzamanbein, Johan Lindstrom, R. Scott Anderson, Andrea Brunelle, David Foster, Konrad Gajewski, Dan G. Gavin, Terri Lacourse, Thomas A. Minckley, Wyatt Oswald, Bryan Shuman, and Cathy Whitlock
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-6, https://doi.org/10.5194/cp-2024-6, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Holocene vegetation-atmosphere interactions provide insight into intensifying land use impacts and the Holocene Conundrum- a mismatch between data- and model- inferred temperature. Using pollen records and statistical modeling, we reconstruct Holocene land cover for North America. We determine patterns and magnitudes of land cover changes across scales. We attribute land cover changes to ecological, climatic, and human drivers. These reconstructions provide benchmarks for Earth System Models.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Anne Dallmeyer, Anneli Poska, Laurent Marquer, Andrea Seim, and Marie-José Gaillard
Clim. Past, 19, 1531–1557, https://doi.org/10.5194/cp-19-1531-2023, https://doi.org/10.5194/cp-19-1531-2023, 2023
Short summary
Short summary
We compare past tree cover changes in Europe during the last 8000 years simulated with two dynamic global vegetation models and inferred from pollen data. The major model–data mismatch is related to the much earlier onset of anthropogenic deforestation in the data compared to the prescribed land use in the models. We show that land use, and not climate, is the main driver of the Holocene forest decline. The model–data agreement depends on the model tuning, challenging model–data comparisons.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Frank Arthur, Didier M. Roche, Ralph Fyfe, Aurélien Quiquet, and Hans Renssen
Clim. Past, 19, 87–106, https://doi.org/10.5194/cp-19-87-2023, https://doi.org/10.5194/cp-19-87-2023, 2023
Short summary
Short summary
This paper simulates transcient Holocene climate in Europe by applying an interactive downscaling to the standard version of the iLOVECLIM model. The results show that downscaling presents a higher spatial variability in better agreement with proxy-based reconstructions as compared to the standard model, particularly in the Alps, the Scandes, and the Mediterranean. Our downscaling scheme is numerically cheap, which can perform kilometric multi-millennial simulations suitable for future studies.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Cited articles
Abraham, V. and Kozáková, R.: Relative pollen productivity estimates
in the modern agricultural landscape of Central Bohemia (Czech Republic),
Rev. Palaeobot. Palynol., 179, 1–12, https://doi.org/10.1016/j.revpalbo.2012.04.004,
2012.
Abraham, V., Oušková, V., and Kuneš, P.: Present-Day Vegetation
Helps Quantifying Past Land Cover in Selected Regions of the Czech Republic,
edited by B. Bond-Lamberty, PLoS One, 9, e100117,
https://doi.org/10.1371/journal.pone.0100117, 2014.
Andersen, S. T.: The relative pollen productivity and pollen representation
of north European trees, and correction factors for tree pollen spectra,
Danmarks Geol. Undersogelse II, 96, 1–99, https://doi.org/10.34194/raekke2.v96.6887, 1970.
Baker, A. G., Zimny, M., Keczyński, A., Bhagwat, S. A., Willis, K. J.,
and Latałowa, M.: Pollen productivity estimates from old-growth forest
strongly differ from those obtained in cultural landscapes: Evidence from
the Białowieża National Park, Poland, The Holocene, 26, 80–92,
https://doi.org/10.1177/0959683615596822, 2016.
Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H.,
Fortelius, M., Getz, W. M., Harte, J., Hastings, A., Marquet, P. A.,
Martinez, N. D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J. W.,
Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D. P.,
Revilla, E., and Smith, A. B.: Approaching a state shift in Earth's
biosphere, Nature, 486, 52–58, https://doi.org/10.1038/nature11018, 2012.
Beug, H. J.: Leitfaden der Pollenbestimmung für Mitteleuropa und
angrenzende Gebiete (Guide to pollen determination for Central Europe and
neighboring areas), Verlag Dr. Friedrich Pfeil, ISBN
10:3899370430, 2004.
Broström, A., Sugita, S., and Gaillard, M.-J.: Pollen productivity
estimates for the reconstruction of past vegetation cover in the cultural
landscape of southern Sweden, The Holocene, 14, 368–381,
https://doi.org/10.1191/0959683604hl713rp, 2004.
Broström, A., Sugita, S., Gaillard, M.-J., and Pilesjö, P.:
Estimating the spatial scale of pollen dispersal in the cultural landscape
of southern Sweden, The Holocene, 15, 252–262,
https://doi.org/10.1191/0959683605hl790rp, 2005.
Broström, A., Nielsen, A. B., Gaillard, M.-J., Hjelle, K., Mazier, F.,
Binney, H., Bunting, J., Fyfe, R., Meltsov, V., Poska, A., Räsänen,
S., Soepboer, W., von Stedingk, H., Suutari, H., and Sugita, S.: Pollen
productivity estimates of key European plant taxa for quantitative
reconstruction of past vegetation: a review, Veg. Hist. Archaeobot., 17,
461–478, https://doi.org/10.1007/s00334-008-0148-8, 2008.
Bunting, M. J., Armitage, R., Binney, H. A., and Waller, M.: Estimates
of`relative pollen productivity' and`relevant source area of pollen' for
major tree taxa in two Norfolk (UK) woodlands, The Holocene, 15,
459–465, https://doi.org/10.1191/0959683605hl821rr, 2005.
Bunting, M. J., Farrell, M., Broström, A., Hjelle, K. L., Mazier, F.,
Middleton, R., Nielsen, A. B., Rushton, E., Shaw, H., and Twiddle, C. L.:
Palynological perspectives on vegetation survey: a critical step for
model-based reconstruction of Quaternary land cover, Quaternary Sci. Rev., 82,
41–55, https://doi.org/10.1016/j.quascirev.2013.10.006, 2013a.
Bunting, M. J., Schofield, J. E., and Edwards, K. J.: Estimates of relative
pollen productivity (RPP) for selected taxa from southern Greenland: A
pragmatic solution, Rev. Palaeobot. Palynol., 190, 66–74,
https://doi.org/10.1016/j.revpalbo.2012.11.003, 2013b.
Commerford, J. L., McLauchlan, K. K., and Sugita, S.: Calibrating Vegetation
Cover and Grassland Pollen Assemblages in the Flint Hills of Kansas, USA,
Am. J. Plant Sci., 04, 1–10, https://doi.org/10.4236/ajps.2013.47A1001, 2013.
Cui, Q.-Y., Gaillard, M.-J., Lemdahl, G., Sugita, S., Greisman, A.,
Jacobson, G. L., and Olsson, F.: The role of tree composition in Holocene
fire history of the hemiboreal and southern boreal zones of southern Sweden,
as revealed by the application of the Landscape Reconstruction Algorithm:
Implications for biodiversity and climate-change issues, The Holocene,
23, 1747–1763, https://doi.org/10.1177/0959683613505339, 2013.
Cui, Q., Gaillard, M., Lemdahl, G., Stenberg, L., Sugita, S., and Zernova,
G.: Historical land-use and landscape change in southern Sweden and
implications for present and future biodiversity, Ecol. Evol., 4,
3555–3570, https://doi.org/10.1002/ece3.1198, 2014.
Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The age and post-glacial
development of the modern European vegetation: a plant functional approach
based on pollen data, Veg. Hist. Archaeobot., 24, 303–317,
https://doi.org/10.1007/s00334-014-0476-9, 2015.
Davis, M. B.: On the theory of pollen analysis, Am. J. Sci., 261,
897–912, https://doi.org/10.2475/ajs.261.10.897, 1963.
Dawson, A., Cao, X., Chaput, M., Hopla, E., Li, F., Edwards, M., Fyfe, R.,
Gajewski, K., Goring, S. J., Herzschuh, U., Mazier, F., Sugita, S.,
Williams, J. W., Xu, Q., and Gaillard, M.-J.: Finding the magnitude of
human-induced Northern Hemisphere land-cover transformation between 6 and
0.2 ka BP, Past Glob. Chang. Mag., 26, 34–35,
https://doi.org/10.22498/pages.26.1.34, 2018.
de Vareilles, A., Pelling, R., Woodbridge, J., and Fyfe, R.: Archaeology and
agriculture: plants, people, and past land-use, Trends Ecol. Evol., 36,
943–954, https://doi.org/10.1016/j.tree.2021.06.003, 2021.
Dickson, C.: Distinguishing cereal from wild grass pollen: some limitations,
Circaea, 5, 67–71, 1988.
Downs, P. W. and Piégay, H.: Catchment-scale cumulative impact of human
activities on river channels in the late Anthropocene: implications,
limitations, prospect, Geomorphology, 338, 88–104,
https://doi.org/10.1016/j.geomorph.2019.03.021, 2019.
Edwards, K. J., Fyfe, R., and Jackson, S. T.: The first 100 years of pollen
analysis, Nat. Plants, 3, 17001, https://doi.org/10.1038/nplants.2017.1, 2017.
Ellis, E. C.: Ecology in an anthropogenic biosphere, Ecol. Monogr., 85,
287–331, https://doi.org/10.1890/14-2274.1, 2015.
Feurdean, A., Vannière, B., Finsinger, W., Warren, D., Connor, S. C., Forrest, M., Liakka, J., Panait, A., Werner, C., Andrič, M., Bobek, P., Carter, V. A., Davis, B., Diaconu, A.-C., Dietze, E., Feeser, I., Florescu, G., Gałka, M., Giesecke, T., Jahns, S., Jamrichová, E., Kajukało, K., Kaplan, J., Karpińska-Kołaczek, M., Kołaczek, P., Kuneš, P., Kupriyanov, D., Lamentowicz, M., Lemmen, C., Magyari, E. K., Marcisz, K., Marinova, E., Niamir, A., Novenko, E., Obremska, M., Pędziszewska, A., Pfeiffer, M., Poska, A., Rösch, M., Słowiński, M., Stančikaitė, M., Szal, M., Święta-Musznicka, J., Tanţău, I., Theuerkauf, M., Tonkov, S., Valkó, O., Vassiljev, J., Veski, S., Vincze, I., Wacnik, A., Wiethold, J., and Hickler, T.: Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe, Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, 2020.
Foley, J. A.: Global Consequences of Land Use, Science, 309,
570–574, https://doi.org/10.1126/science.1111772, 2005.
Fyfe, R., de Beaulieu, J.-L., Binney, H., Bradshaw, R. H. W., Brewer, S., Le
Flao, A., Finsinger, W., Gaillard, M.-J., Giesecke, T., Gil-Romera, G.,
Grimm, E. C., Huntley, B., Kunes, P., Kühl, N., Leydet, M., Lotter, A.
F., Tarasov, P. E., and Tonkov, S.: The European Pollen Database: past
efforts and current activities, Veg. Hist. Archaeobot., 18, 417–424,
https://doi.org/10.1007/s00334-009-0215-9, 2009.
Fyfe, R., Roberts, N., and Woodbridge, J.: A pollen-based pseudobiomisation
approach to anthropogenic land-cover change, The Holocene, 20,
1165–1171, https://doi.org/10.1177/0959683610369509, 2010.
Fyfe, R., Twiddle, C., Sugita, S., Gaillard, M. J., Barratt, P., Caseldine,
C. J., Dodson, J., Edwards, K. J., Farrell, M., Froyd, C., Grant, M. J.,
Huckerby, E., Innes, J. B., Shaw, H., and Waller, M.: The Holocene vegetation
cover of Britain and Ireland: Overcoming problems of scale and discerning
patterns of openness, Quaternary Sci. Rev., 73, 132–148,
https://doi.org/10.1016/j.quascirev.2013.05.014, 2013.
Fyfe, R. M., Woodbridge, J., and Roberts, N.: From forest to farmland:
pollen-inferred land cover change across Europe using the pseudobiomization
approach, Glob. Chang. Biol., 21, 1197–1212, https://doi.org/10.1111/gcb.12776,
2015.
Fyfe, R. M., Woodbridge, J., and Roberts, C. N.: Trajectories of change in
Mediterranean Holocene vegetation through classification of pollen data,
Veg. Hist. Archaeobot., 27, 351–364, https://doi.org/10.1007/s00334-017-0657-4,
2018.
Fyfe, R. M., Githumbi, E., Trondmann, A.-K., Mazier, F., Nielsen, A. B.,
Poska, A., Sugita, S., Woodbridge, J., Contributors, L., and Gaillard, M.-J.:
A full Holocene record of transient gridded vegetation cover in Europe,
Pangaea [data set], https://doi.org/10.1594/PANGAEA.937075, 2022.
Gaillard, M.-J., Sugita, S., Bunting, M. J., Middleton, R., Broström,
A., Caseldine, C., Giesecke, T., Hellman, S. E. V., Hicks, S., Hjelle, K.,
Langdon, C., Nielsen, A.-B., Poska, A., von Stedingk, H., and Veski, S.: The
use of modelling and simulation approach in reconstructing past landscapes
from fossil pollen data: a review and results from the POLLANDCAL network,
Veg. Hist. Archaeobot., 17, 419–443, https://doi.org/10.1007/s00334-008-0169-3,
2008.
Gaillard, M.-J., Sugita, S., Mazier, F., Trondman, A.-K., Broström, A., Hickler, T., Kaplan, J. O., Kjellström, E., Kokfelt, U., Kuneš, P., Lemmen, C., Miller, P., Olofsson, J., Poska, A., Rundgren, M., Smith, B., Strandberg, G., Fyfe, R., Nielsen, A. B., Alenius, T., Balakauskas, L., Barnekow, L., Birks, H. J. B., Bjune, A., Björkman, L., Giesecke, T., Hjelle, K., Kalnina, L., Kangur, M., van der Knaap, W. O., Koff, T., Lagerås, P., Latałowa, M., Leydet, M., Lechterbeck, J., Lindbladh, M., Odgaard, B., Peglar, S., Segerström, U., von Stedingk, H., and Seppä, H.: Holocene land-cover reconstructions for studies on land cover-climate feedbacks, Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, 2010a.
Gaillard, M. J., Sugita, S., Rundgren, M., Smith, B., Mazier, F., Trondman,
A.-K., Fyfe, R., Kokfelt, U., Nielsen, A.-B., Strandberg, G., and Team, L.
members: Pollen-inferred quantitative reconstructions of Holocene land-cover
in NW Europe for the evaluation of past climate-vegetation feedbacks – The
Swedish LANDCLIM project and the NordForsk LANDCLIM network, Geophys. Res.
Abstr., 12, 3–4, 2010b.
Gaillard, M.-J., Kleinen, T., Samuelsson, P., Nielsen, A. B., Bergh, J.,
Kaplan, J. O., Poska, A., Sandström, C., Strandberg, G., Trondman, A.-K.,
and Wramneby, A.: Second Assessment of Climate Change for the Baltic Sea
Basin, edited by: The BACC II Author Team, Springer International Publishing,
Cham, https://doi.org/10.1007/978-3-319-16006-1, 2015.
Gaillard, M. J., Morrison, K. D., Madella, M., and Whitehouse, N.: Editorial:
Past land-use and land-cover change: the challenge of quantification at the
subcontinental to global scales, Past Glob. Chang. Mag., 26, 3,
https://doi.org/10.22498/pages.26.1.3, 2018.
Giesecke, T., Davis, B., Brewer, S., Finsinger, W., Wolters, S., Blaauw, M.,
de Beaulieu, J.-L., Binney, H., Fyfe, R. M., Gaillard, M.-J., Gil-Romera,
G., van der Knaap, W. O., Kuneš, P., Kühl, N., van Leeuwen, J. F. N.
N., Leydet, M., Lotter, A. F., Ortu, E., Semmler, M., and Bradshaw, R. H. W.
W.: Towards mapping the late Quaternary vegetation change of Europe, Veg.
Hist. Archaeobot., 23, 75–86, https://doi.org/10.1007/s00334-012-0390-y, 2014.
Gilgen, A., Wilkenskjeld, S., Kaplan, J. O., Kühn, T., and Lohmann, U.: Effects of land use and anthropogenic aerosol emissions in the Roman Empire, Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019, 2019.
Githumbi, E., Fyfe, R., Kjellström, E., Lindström, J., Lu, Z.,
Mazier, F., Nielsen, A. B., Poska, A., Smith, B., Strandberg, G., Sugita,
S., Zhang, Q., and Gaillard, M.-J.: Holocene quantitative pollen-based
vegetation reconstructions in Europe for climate modelling: LandClim II, in
INQUA 2019: Life on the Edge, Dublin,
https://portal.research.lu.se/portal/en/publications/holocene-quantitative-pollenbased-vegetation-reconstructions-in-europe-for-climate-modelling-landclim-ii(46cc8471-f51c-4117-a7c6-ccff00638e82)/export.html
(last access: 9 August 2021), 2019.
Gregory, P.: Spores: their properties and sedimentation in still air.
Microbiology of the atmosphere, A plant science monograph, Leonard Hill, ISBN
0249441101, 1973.
Grindean, R., Nielsen, A. B., Tanţău, I., and Feurdean, A.: Relative
pollen productivity estimates in the forest steppe landscape of southeastern
Romania, Rev. Palaeobot. Palynol., 264, 54–63,
https://doi.org/10.1016/j.revpalbo.2019.02.007, 2019.
Guiry, E., Beglane, F., Szpak, P., Schulting, R., McCormick, F., and
Richards, M. P.: Anthropogenic changes to the Holocene nitrogen cycle in
Ireland, Sci. Adv., 4, eaas9383, https://doi.org/10.1126/sciadv.aas9383, 2018.
Harrison, S. and Marinova, E.: EMBSeCBIO modern pollen biomisation, University of Reading [data set], https://doi.org/10.17864/1947.109, 2017.
Harrison, S. P., Gaillard, M.-J., Stocker, B. D., Vander Linden, M., Klein Goldewijk, K., Boles, O., Braconnot, P., Dawson, A., Fluet-Chouinard, E., Kaplan, J. O., Kastner, T., Pausata, F. S. R., Robinson, E., Whitehouse, N. J., Madella, M., and Morrison, K. D.: Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments, Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, 2020.
He, F., Vavrus, S. J., Kutzbach, J. E., Ruddiman, W. F., Kaplan, J. O., and
Krumhardt, K. M.: Simulating global and local surface temperature changes
due to Holocene anthropogenic land cover change, Geophys. Res. Lett., 41,
623–631, https://doi.org/10.1002/2013GL058085, 2014.
Hellman, S., Gaillard, M.-J., Broström, A., and Sugita, S.: The REVEALS
model, a new tool to estimate past regional plant abundance from pollen data
in large lakes: validation in southern Sweden, J. Quat. Sci., 23, 21–42,
https://doi.org/10.1002/jqs.1126, 2008a.
Hellman, S. E. V., Gaillard, M., Broström, A., and Sugita, S.: Effects of
the sampling design and selection of parameter values on pollen-based
quantitative reconstructions of regional vegetation: a case study in
southern Sweden using the REVEALS model, Veg. Hist. Archaeobot., 17,
445–459, https://doi.org/10.1007/s00334-008-0149-7, 2008b.
Hibbard, K., Janetos, A., van Vuuren, D. P., Pongratz, J., Rose, S. K.,
Betts, R., Herold, M., and Feddema, J. J.: Research priorities in land use
and land-cover change for the Earth system and integrated assessment
modelling, Int. J. Climatol., 30, 2118–2128, https://doi.org/10.1002/joc.2150,
2010.
Hjelle, K. L.: Herb pollen representation in surface moss samples from mown
meadows and pastures in western Norway, Veg. Hist. Archaeobot., 7,
79–96, https://doi.org/10.1007/BF01373926, 1998.
Hofman-Kamińska, E., Bocherens, H., Drucker, D. G., Fyfe, R. M.,
Gumiński, W., Makowiecki, D., Pacher, M., Piličiauskienė, G.,
Samojlik, T., Woodbridge, J., and Kowalczyk, R.: Adapt or die – Response of
large herbivores to environmental changes in Europe during the Holocene,
Glob. Chang. Biol., 25, 2915–2930, https://doi.org/10.1111/gcb.14733, 2019.
Huntley, B.: European vegetation history: Palaeovegetation maps from pollen
data – 13 000 yr BP to present, J. Quat. Sci., 5, 103–122,
https://doi.org/10.1002/jqs.3390050203, 1990.
Kaplan, J., Krumhardt, K., Gaillard, M.-J., Sugita, S., Trondman, A.-K.,
Fyfe, R., Marquer, L., Mazier, F., and Nielsen, A.: Constraining the
Deforestation History of Europe: Evaluation of Historical Land Use Scenarios
with Pollen-Based Land Cover Reconstructions, Land, 6, 91,
https://doi.org/10.3390/land6040091, 2017.
Kaplan, J. O., Krumhardt, K. M., and Zimmermann, N.: The prehistoric and
preindustrial deforestation of Europe, Quaternary Sci. Rev., 28,
3016–3034, https://doi.org/10.1016/j.quascirev.2009.09.028, 2009.
Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C.,
and Goldewijk, K. K.: Holocene carbon emissions as a result of anthropogenic
land cover change, The Holocene, 21, 775–791,
https://doi.org/10.1177/0959683610386983, 2011.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Kuneš, P., Abraham, V., Kovářík, O., Kopecký, M.,
Břízová, E., Dudová, L., Jankovská, V., Knipping, M.,
Kozšková, R., Nováková, K., Petr, L., Pokorný, P.,
Roszková, A., Rybníčková, E., Svobodová-Svitavská,
H., and Wacnik, A.: Czech quaternary palynological Database – Palycz: review
and basic statistics of the data, Preslia, 81, 209–238, 2009.
Kuneš, P., Abraham, V., Werchan, B., Plesková, Z., Fajmon, K.,
Jamrichová, E., and Roleček, J.: Relative pollen productivity
estimates for vegetation reconstruction in central-eastern Europe inferred
at local and regional scales, The Holocene, 29, 1708–1719,
https://doi.org/10.1177/0959683619862026, 2019.
Lerigoleur, E., Mazier, F., Jégou, L., Perret, M., and Galop, D.:
PALEOPYR: un système d'information pour la gestion et l'exploitation de
données palaeoenvironnementales sur le massif nord-pyrénéen,
Ingénieurie des Systèmes d'Information 3,
http://paleopyr.univ-tlse2.fr/ (last access: 4 April 2022), 2015.
Li, F., Gaillard, M.-J., Xu, Q., Bunting, M. J., Li, Y., Li, J., Mu, H., Lu,
J., Zhang, P., Zhang, S., Cui, Q., Zhang, Y., and Shen, W.: A Review of
Relative Pollen Productivity Estimates From Temperate China for Pollen-Based
Quantitative Reconstruction of Past Plant Cover, Front. Plant Sci.,
9, 1214, https://doi.org/10.3389/fpls.2018.01214, 2018.
Li, F., Gaillard, M.-J., Cao, X., Herzschuh, U., Sugita, S., Tarasov, P. E.,
Wagner, M., Xu, Q., Ni, J., Wang, W., Zhao, Y., An, C., Beusen, A. H. W.,
Chen, F., Feng, Z., Goldewijk, C. G. M. K., Huang, X., Li, Y., Li, Y., Liu,
H., Sun, A., Yao, Y., Zheng, Z., and Jia, X.: Towards quantification of
Holocene anthropogenic land-cover change in temperate China: A review in the
light of pollen-based REVEALS reconstructions of regional plant cover,
Earth-Sci. Rev., 203, 103119,
https://doi.org/10.1016/j.earscirev.2020.103119, 2020.
Marinova, E., Harrison, S. P., Bragg, F., Connor, S., Laet, V., Leroy, S. A.
G., Mudie, P., Atanassova, J., Bozilova, E., Caner, H., Cordova, C.,
Djamali, M., Filipova-Marinova, M., Gerasimenko, N., Jahns, S., Kouli, K.,
Kotthoff, U., Kvavadze, E., Lazarova, M., Novenko, E., Ramezani, E.,
Röpke, A., Shumilovskikh, L., Tanţau, I., and Tonkov, S.:
Pollen-derived biomes in the Eastern Mediterranean–Black
Sea–Caspian-Corridor, J. Biogeogr., 45, 484–499, https://doi.org/10.1111/jbi.13128,
2018.
Marquer, L., Gaillard, M.-J., Sugita, S., Trondman, A.-K., Mazier, F.,
Nielsen, A. B., Fyfe, R., Odgaard, B. V., Alenius, T., Birks, H. J. B.,
Bjune, A. E., Christiansen, J., Dodson, J., Edwards, K. J., Giesecke, T.,
Herzschuh, U., Kangur, M., Lorenz, S., Poska, A., Schult, M., and Seppä,
H.: Holocene changes in vegetation composition in northern Europe: why
quantitative pollen-based vegetation reconstructions matter, Quaternary Sci.
Rev., 90, 199–216, https://doi.org/10.1016/j.quascirev.2014.02.013, 2014.
Marquer, L., Gaillard, M.-J., Sugita, S., Poska, A., Trondman, A.-K.,
Mazier, F., Nielsen, A. B., Fyfe, R., Jönsson, A. M., Smith, B., Kaplan,
J. O., Alenius, T., Birks, H. J. B. J. B., Bjune, A. E., Christiansen, J.,
Dodson, J., Edwards, K. J., Giesecke, T., Herzschuh, U., Kangur, M., Koff,
T., Latałowa, M., Lechterbeck, J., Olofsson, J., and Seppä, H.:
Quantifying the effects of land use and climate on Holocene vegetation in
Europe, Quaternary Sci. Rev., 171, 20–37, https://doi.org/10.1016/j.quascirev.2017.07.001,
2017.
Marquer, L., Mazier, F., Sugita, S., Galop, D., Houet, T., Faure, E.,
Gaillard, M.-J., Haunold, S., de Munnik, N., Simonneau, A., De Vleeschouwer,
F., and Le Roux, G.: Pollen-based reconstruction of Holocene land-cover in
mountain regions: Evaluation of the Landscape Reconstruction Algorithm in
the Vicdessos valley, northern Pyrenees, France, Quaternary Sci. Rev., 228,
106049, https://doi.org/10.1016/j.quascirev.2019.106049, 2020.
Matthias, I., Nielsen, A. B., and Giesecke, T.: Evaluating the effect of
flowering age and forest structure on pollen productivity estimates, Veg.
Hist. Archaeobot., 21, 471–484, https://doi.org/10.1007/s00334-012-0373-z, 2012.
Mazier, F., Broström, A., Gaillard, M.-J., Sugita, S., Vittoz, P., and
Buttler, A.: Pollen productivity estimates and relevant source area of
pollen for selected plant taxa in a pasture woodland landscape of the Jura
Mountains (Switzerland), Veg. Hist. Archaeobot., 17, 479–495,
https://doi.org/10.1007/s00334-008-0143-0, 2008.
Mazier, F., Gaillard, M. J., Kunes, P., Sugita, S., Trondman, A.-K., and
Brostrom, A.: Testing the effect of site selection and parameter setting on
REVEALS-model estimates of plant abundance using th Czech Quaternary
Palynological database Testing the effect of site selection and parameter
setting on REVEALS-model estimates of plant abunda, Rev. Palaeobot.
Palynol., 187, 38–49, 2012.
Mazier, F., Broström, A., Bragée, P., Fredh, D., Stenberg, L.,
Thiere, G., Sugita, S., and Hammarlund, D.: Two hundred years of land-use
change in the South Swedish Uplands: comparison of historical map-based
estimates with a pollen-based reconstruction using the landscape
reconstruction algorithm, Veg. Hist. Archaeobot., 24, 555–570,
https://doi.org/10.1007/s00334-015-0516-0, 2015.
McLauchlan, K. K., Williams, J. J., Craine, J. M., and Jeffers, E. S.:
Changes in global nitrogen cycling during the Holocene epoch, Nature,
495, 352–355, https://doi.org/10.1038/nature11916, 2013.
Mehl, I. K., Overland, A., Berge, J., and Hjelle, K. L.: Cultural landscape
development on a west–east gradient in western Norway – potential of the
Landscape Reconstruction Algorithm (LRA), J. Archaeol. Sci., 61, 1–16,
https://doi.org/10.1016/j.jas.2015.04.015, 2015.
Morrison, K. D., Hammer, E., Boles, O., Madella, M., Whitehouse, N.,
Gaillard, M.-J., Bates, J., Vander Linden, M., Merlo, S., Yao, A., Popova,
L., Hill, A. C., Antolin, F., Bauer, A., Biagetti, S., Bishop, R. R.,
Buckland, P., Cruz, P., Dreslerová, D., Dusseldorp, G., Ellis, E.,
Filipovic, D., Foster, T., Hannaford, M. J., Harrison, S. P., Hazarika, M.,
Herold, H., Hilpert, J., Kaplan, J. O., Kay, A., Klein Goldewijk, K.,
Kolář, J., Kyazike, E., Laabs, J., Lancelotti, C., Lane, P.,
Lawrence, D., Lewis, K., Lombardo, U., Lucarini, G., Arroyo-Kalin, M.,
Marchant, R., Mayle, F., McClatchie, M., McLeester, M., Mooney, S.,
Moskal-del Hoyo, M., Navarrete, V., Ndiema, E., Góes Neves, E., Nowak,
M., Out, W. A., Petrie, C., Phelps, L. N., Pinke, Z., Rostain, S., Russell,
T., Sluyter, A., Styring, A. K., Tamanaha, E., Thomas, E., Veerasamy, S.,
Welton, L., and Zanon, M.: Mapping past human land use using archaeological
data: A new classification for global land use synthesis and data
harmonization, edited by J. Freeman, PLoS One, 16, e0246662,
https://doi.org/10.1371/journal.pone.0246662, 2021.
Nielsen, A. B.: Modelling pollen sedimentation in Danish lakes at c.ad 1800:
an attempt to validate the POLLSCAPE model, J. Biogeogr., 31,
1693–1709, https://doi.org/10.1111/j.1365-2699.2004.01080.x, 2004.
Nielsen, A. B. and Odgaard, B. V.: Quantitative landscape dynamics in
Denmark through the last three millennia based on the Landscape
Reconstruction Algorithm approach, Veg. Hist. Archaeobot., 19, 375–387,
https://doi.org/10.1007/s00334-010-0249-z, 2010.
Nielsen, A. B., Giesecke, T., Theuerkauf, M., Feeser, I., Behre, K.-E.,
Beug, H.-J., Chen, S.-H., Christiansen, J., Dörfler, W., Endtmann, E.,
Jahns, S., de Klerk, P., Kühl, N., Latałowa, M., Odgaard, B. V.,
Rasmussen, P., Stockholm, J. R., Voigt, R., Wiethold, J., and Wolters, S.:
Quantitative reconstructions of changes in regional openness in
north-central Europe reveal new insights into old questions, Quaternary Sci. Rev., 47, 131–149, https://doi.org/10.1016/j.quascirev.2012.05.011, 2012.
Nosova, M. B., Novenko, E. Y., Severova, E. E., and Volkova, O. A.:
Vegetation and climate changes within and around the Polistovo-Lovatskaya
mire system (Pskov Oblast, north-western Russia) during the past
10,500 years, Veg. Hist. Archaeobot., 28, 123–140,
https://doi.org/10.1007/s00334-018-0693-8, 2018.
Palmisano, A., Woodbridge, J., Roberts, C. N., Bevan, A., Fyfe, R., Shennan,
S., Cheddadi, R., Greenberg, R., Kaniewski, D., Langgut, D., Leroy, S. A.
G., Litt, T., and Miebach, A.: Holocene landscape dynamics and long-term
population trends in the Levant, The Holocene, 29, 708–727,
https://doi.org/10.1177/0959683619826642, 2019.
Parsons, R. W. and Prentice, I. C.: Statistical approaches to R-values and
the pollen – vegetation relationship, Rev. Palaeobot. Palynol., 32,
127–152, https://doi.org/10.1016/0034-6667(81)90001-4, 1981.
Pinhasi, R., Fort, J., and Ammerman, A. J.: Tracing the origin and spread of
agriculture in Europe, PLoS Biol., 3, 1–9,
https://doi.org/10.1371/journal.pbio.0030410, 2005.
Pirzamanbein, B., Lindström, J., Poska, A., Sugita, S., Trondman, A.-K.,
Fyfe, R., Mazier, F., Nielsen, A. B., Kaplan, J. O., Bjune, A. E., Birks, H.
J. B., Giesecke, T., Kangur, M., Latałowa, M., Marquer, L., Smith, B., and
Gaillard, M.-J.: Creating spatially continuous maps of past land cover from
point estimates: A new statistical approach applied to pollen data, Ecol.
Complex., 20, 127–141, https://doi.org/10.1016/j.ecocom.2014.09.005, 2014.
Pirzamanbein, B., Lindström, J., Poska, A., and Gaillard, M. J.:
Modelling Spatial Compositional Data: Reconstructions of past land cover and
uncertainties, Spat. Stat., 24, 14–31, https://doi.org/10.1016/j.spasta.2018.03.005,
2018.
Pirzamanbein, B., Poska, A., and Lindström, J.: Bayesian Reconstruction
of Past Land Cover From Pollen Data: Model Robustness and Sensitivity to
Auxiliary Variables, Earth Space Sci., 7, https://doi.org/10.1029/2018EA000547, 2020.
Poska, A., Meltsov, V., Sugita, S., and Vassiljev, J.: Relative pollen
productivity estimates of major anemophilous taxa and relevant source area
of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia),
Rev. Palaeobot. Palynol., 167, 30–39,
https://doi.org/10.1016/j.revpalbo.2011.07.001, 2011.
Prentice, C.: Records of vegetation in time and space: the principles of
pollen analysis, in: Vegetation history, 17–42, edited by: Huntley, B. and Webb, T., Springer the Netherlands,
Dordrecht, https://doi.org/10.1007/978-94-009-3081-0_2, 1988.
Prentice, C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R.:
Reconstructing biomes from palaeoecological data: a general method and its
application to European pollen data at 0 and 6 ka, Clim. Dynam., 12,
185–194, https://doi.org/10.1007/BF00211617, 1996.
Prentice, I. C.: Pollen Representation, Source Area, and Basin Size: Toward
a Unified Theory of Pollen Analysis, Quaternary Res., 23, 76–86,
https://doi.org/10.1016/0033-5894(85)90073-0, 1985.
Prentice, I. C. and Parsons, R. W. A.: Maximum Likelihood Linear Calibration
of Pollen Spectra in Terms of Forest Composition, Biometrics, 39,
1051–1057, https://doi.org/10.2307/2531338, 1983.
Prentice, I. C. and Webb III, T.: BIOME 6000: reconstructing global
mid-Holocene vegetation patterns from palaeoecological records, J.
Biogeogr., 25, 997–1005, https://doi.org/10.1046/j.1365-2699.1998.00235.x, 1998.
Räsänen, S., Suutari, H., and Nielsen, A. B.: A step further towards
quantitative reconstruction of past vegetation in Fennoscandian boreal
forests: Pollen productivity estimates for six dominant taxa, Rev.
Palaeobot. Palynol., 146, 208–220,
https://doi.org/10.1016/j.revpalbo.2007.04.004, 2007.
Roberts, C. N., Woodbridge, J., Palmisano, A., Bevan, A., Fyfe, R., and
Shennan, S.: Mediterranean landscape change during the Holocene: Synthesis,
comparison and regional trends in population, land cover and climate, The
Holocene, 29, 923–937, https://doi.org/10.1177/0959683619826697, 2019.
Roberts, N., Fyfe, R. M., Woodbridge, J., Gaillard, M.-J., Davis, B. A. S.
S., Kaplan, J. O., Marquer, L., Mazier, F., Nielsen, A. B., Sugita, S.,
Trondman, A.-K., and Leydet, M.: Europe's lost forests: a pollen-based
synthesis for the last 11,000 years, Sci. Rep.-UK, 8, 716,
https://doi.org/10.1038/s41598-017-18646-7, 2018.
Ruddiman, W. F.: The Anthropogenic Greenhouse Era Began Thousands of Years
Ago, Clim. Change, 61, 261–293, https://doi.org/10.1023/B:CLIM.0000004577.17928.fa,
2003.
Ruddiman, W. F., Fuller, D. Q., Kutzbach, J. E., Tzedakis, P. C., Kaplan, J.
O., Ellis, E. C., Vavrus, S. J., Roberts, C. N., Fyfe, R., He, F., Lemmen,
C., and Woodbridge, J.: Late Holocene climate: Natural or anthropogenic?,
Rev. Geophys., 54, 93–118, https://doi.org/10.1002/2015RG000503, 2016.
Schauer, P., Shennan, S., Bevan, A., Cook, G., Edinborough, K., Fyfe, R.,
Kerig, T. and Parker Pearson, M.: Supply and demand in prehistory? Economics
of Neolithic mining in northwest Europe, J. Anthropol. Archaeol., 54,
149–160, https://doi.org/10.1016/j.jaa.2019.03.001, 2019.
Shennan, S.: The First Farmers of Europe An Evolutionary Perspective,
Cambridge University Press, Cambridge,
https://www-cambridge-org.proxy.lnu.se/se/academic/subjects/archaeology/archaeology-europe-and-near-and-middle-east/first-farmers-europe-evolutionary-perspective?format=HB&isbn=9781108422925 (last access: 4 April 2022),
2018.
Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B.,
Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P.,
Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G.,
Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T.,
Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F.,
Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M.,
Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata,
Y., Edmonds, J., and Yongsung, C.: Biophysical and economic limits to
negative CO2 emissions, Nat. Clim. Chang., 6, 42–50,
https://doi.org/10.1038/nclimate2870, 2016.
Soepboer, W., Sugita, S., Lotter, A. F., van Leeuwen, J. F. N., and van der
Knaap, W. O.: Pollen productivity estimates for quantitative reconstruction
of vegetation cover on the Swiss Plateau, The Holocene, 17, 65–77,
https://doi.org/10.1177/0959683607073279, 2007.
Soepboer, W., Sugita, S., and Lotter, A. F.: Regional vegetation-cover
changes on the Swiss Plateau during the past two millennia: A pollen-based
reconstruction using the REVEALS model, Quaternary Sci. Rev., 29, 472–483,
https://doi.org/10.1016/j.quascirev.2009.09.027, 2010.
Stephens, L., Fuller, D., Boivin, N., et al.: Archaeological assessment reveals Earth's
early transformation through land use, Science, 365,
897–902, https://doi.org/10.1126/science.aax1192, 2019.
Strandberg, G., Kjellström, E., Poska, A., Wagner, S., Gaillard, M.-J., Trondman, A.-K., Mauri, A., Davis, B. A. S., Kaplan, J. O., Birks, H. J. B., Bjune, A. E., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., van der Knaap, W. O., Kokfelt, U., Kuneš, P., Latałowa, M., Marquer, L., Mazier, F., Nielsen, A. B., Smith, B., Seppä, H., and Sugita, S.: Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation, Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, 2014.
Strandberg, G., Lindström, J., Poska, A., Zhang, Q., Fyfe, R., Githumbi, E., Kjellström, E., Mazier, F., Nielsen, A. B.,
Sugita, S., Trondman, A.-K., Woodbridge, J., and Gaillard, M.-J.: Mid-Holocene European climate revisited: New high-resolution regional climate model simulations using pollen-based land cover, Quaternary Sci. Rev., 281, 107431, https://doi.org/10.1016/j.quascirev.2022.107431, 2022.
Stuart, A. and Ord, J. K.: Kendall's advanced theory of statistics,
Distrib. theory, 1,
https://ci.nii.ac.jp/naid/10004597057 (last access: 2 July 2021), 1994.
Sugita, S.: A Model of Pollen Source Area for an Entire Lake Surface, Quaternary
Res., 39, 239–244, https://doi.org/10.1006/qres.1993.1027, 1993.
Sugita, S.: Pollen representation of vegetation in quaternary sediments –
theory and method in patchy vegetation, J. Ecol., 82, 881–897, https://doi.org/10.2307/2261452, 1994.
Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen
from large sites REVEALS regional vegetation composition, The Holocene,
17, 229–241, https://doi.org/10.1177/0959683607075837, 2007a.
Sugita, S.: Theory of quantitative reconstruction of vegetation II: all you
need is LOVE, The Holocene, 17, 243–257, https://doi.org/10.1177/0959683607075838,
2007b.
Sugita, S., Gaillard, M.-J., and Broström, A.: Landscape openness and
pollen records: a simulation approach, The Holocene, 9, 409–421,
https://doi.org/10.1191/095968399666429937, 1999.
Sugita, S., Parshall, T., Calcote, R., and Walker, K.: Testing the Landscape
Reconstruction Algorithm for spatially explicit reconstruction of vegetation
in northern Michigan and Wisconsin, Quaternary Res., 74, 289–300,
https://doi.org/10.1016/j.yqres.2010.07.008, 2010.
Sun, A., Luo, Y., Wu, H., Chen, X., Li, Q., Yu, Y., Sun, X., and Guo, Z.: An
updated biomization scheme and vegetation reconstruction based on a
synthesis of modern and mid-Holocene pollen data in China, Glob. Planet.
Change, 192, 103178, https://doi.org/10.1016/j.gloplacha.2020.103178, 2020.
Sutton, O.: Micrometeorology., Q. J. Roy. Meteor. Soc., 79, 457–457,
https://doi.org/10.1002/qj.49707934125, 1953.
Theuerkauf, M., Kuparinen, A., and Joosten, H.: Pollen productivity estimates
strongly depend on assumed pollen dispersal, The Holocene, 23, 14–24,
https://doi.org/10.1177/0959683612450194, 2012.
Theuerkauf, M., Couwenberg, J., Kuparinen, A., and Liebscher, V.: A matter of
dispersal: REVEALSinR introduces state-of-the-art dispersal models to
quantitative vegetation reconstruction, Veg. Hist. Archaeobot., 25, 541–553,
https://doi.org/10.1007/s00334-016-0572-0, 2016.
Trondman, A. K., Gaillard, M. J., Mazier, F., Sugita, S., Fyfe, R., Nielsen,
A. B., Twiddle, C., Barratt, P., Birks, H. J. B., Bjune, A. E.,
Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J.,
Dörfler, W., Fischer, E., van Geel, B., Giesecke, T., Hultberg, T.,
Kalnina, L., Kangur, M., van der Knaap, P., Koff, T., Kuneš, P.,
Lagerås, P., Latalowa, M., Lechterbeck, J., Leroyer, C., Leydet, M.,
Lindbladh, M., Marquer, L., Mitchell, F. J. G., Odgaard, B. V., Peglar, S.
M., Persson, T., Poska, A., Rösch, M., Seppä, H., Veski, S., and
Wick, L.: Pollen-based quantitative reconstructions of Holocene regional
vegetation cover (plant-functional types and land-cover types) in Europe
suitable for climate modelling, Glob. Chang. Biol., 21, 676–697,
https://doi.org/10.1111/gcb.12737, 2015.
Trondman, A.-K., Gaillard, M.-J., Sugita, S., Björkman, L., Greisman,
A., Hultberg, T., Lagerås, P., Lindbladh, M., and Mazier, F.: Are pollen
records from small sites appropriate for REVEALS model-based quantitative
reconstructions of past regional vegetation? An empirical test in southern
Sweden, Veg. Hist. Archaeobot., 25, 131–151,
https://doi.org/10.1007/s00334-015-0536-9, 2016.
Twiddle, C. L., Jones, R. T., Caseldine, C. J., and Sugita, S.: Pollen
productivity estimates for a pine woodland in eastern Scotland: The
influence of sampling design and vegetation patterning, Rev. Palaeobot.
Palynol., 174, 67–78, https://doi.org/10.1016/j.revpalbo.2011.12.006, 2012.
von Stedingk, H., Fyfe, R. M., and Allard, A.: Pollen productivity estimates
from the forest–tundra ecotone in west-central Sweden: implications for
vegetation reconstruction at the limits of the boreal forest, The Holocene,
18, 323–332, https://doi.org/10.1177/0959683607086769, 2008.
Wieczorek, M. and Herzschuh, U.: Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics, Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, 2020.
Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and
ecosystem function of the Barents Region, Clim. Change, 87, 51–73,
https://doi.org/10.1007/s10584-007-9342-4, 2008.
Woodbridge, J., Fyfe, R. M., and Roberts, N.: A comparison of remotely sensed
and pollen-based approaches to mapping Europe's land cover, J. Biogeogr., 41, 2080–2092, https://doi.org/10.1111/jbi.12353, 2014.
Woodbridge, J., Fyfe, R., Roberts, C., Trondman, A., Mazier, F., and Davis,
B.: European forest cover since the start of Neolithic agriculture: a
critical comparison of pollen-based reconstructions, Past Glob. Chang. Mag.,
26, 10–11, https://doi.org/10.22498/pages.26.1.10, 2018.
Zanon, M., Davis, B. A. S. S., Marquer, L., Brewer, S., and Kaplan, J. O.:
European Forest Cover During the Past 12,000 Years: A Palynological
Reconstruction Based on Modern Analogs and Remote Sensing, Front. Plant
Sci., 9, 1–25, https://doi.org/10.3389/fpls.2018.00253, 2018.
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Reconstruction of past land cover is necessary for the study of past climate–land cover...
Altmetrics
Final-revised paper
Preprint