Articles | Volume 13, issue 11
Earth Syst. Sci. Data, 13, 5311–5335, 2021
https://doi.org/10.5194/essd-13-5311-2021
Earth Syst. Sci. Data, 13, 5311–5335, 2021
https://doi.org/10.5194/essd-13-5311-2021
Data description paper
17 Nov 2021
Data description paper | 17 Nov 2021

Global anthropogenic CO2 emissions and uncertainties as a prior for Earth system modelling and data assimilation

Margarita Choulga et al.

Related authors

ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021,https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases
Efisio Solazzo, Monica Crippa, Diego Guizzardi, Marilena Muntean, Margarita Choulga, and Greet Janssens-Maenhout
Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021,https://doi.org/10.5194/acp-21-5655-2021, 2021
Short summary
Parametrization of a lake water dynamics model MLake in the ISBA-CTRIP land surface system (SURFEX v8.1)
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021,https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Representing model uncertainty for global atmospheric CO2 flux inversions using ECMWF-IFS-46R1
Joe R. McNorton, Nicolas Bousserez, Anna Agustí-Panareda, Gianpaolo Balsamo, Margarita Choulga, Andrew Dawson, Richard Engelen, Zak Kipling, and Simon Lang
Geosci. Model Dev., 13, 2297–2313, https://doi.org/10.5194/gmd-13-2297-2020,https://doi.org/10.5194/gmd-13-2297-2020, 2020
Short summary
Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF
Margarita Choulga, Ekaterina Kourzeneva, Gianpaolo Balsamo, Souhail Boussetta, and Nils Wedi
Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019,https://doi.org/10.5194/hess-23-4051-2019, 2019
Short summary

Related subject area

Energy and Emissions
Carbon fluxes from land 2000–2020: bringing clarity to countries' reporting
Giacomo Grassi, Giulia Conchedda, Sandro Federici, Raul Abad Viñas, Anu Korosuo, Joana Melo, Simone Rossi, Marieke Sandker, Zoltan Somogyi, Matteo Vizzarri, and Francesco N. Tubiello
Earth Syst. Sci. Data, 14, 4643–4666, https://doi.org/10.5194/essd-14-4643-2022,https://doi.org/10.5194/essd-14-4643-2022, 2022
Short summary
DeepOWT: a global offshore wind turbine data set derived with deep learning from Sentinel-1 data
Thorsten Hoeser, Stefanie Feuerstein, and Claudia Kuenzer
Earth Syst. Sci. Data, 14, 4251–4270, https://doi.org/10.5194/essd-14-4251-2022,https://doi.org/10.5194/essd-14-4251-2022, 2022
Short summary
Global datasets of leaf photosynthetic capacity for ecological and earth system research
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022,https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Retrievals of XCO2, XCH4 and XCO from portable, near-infrared Fourier transform spectrometer solar observations in Antarctica
David Frank Pollard, Frank Hase, Mahesh Kumar Sha, Darko Dubravica, Carlos Alberti, and Dan Smale
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-130,https://doi.org/10.5194/essd-2022-130, 2022
Revised manuscript accepted for ESSD
Short summary
Mapping photovoltaic power plants in China using Landsat, random forest, and Google Earth Engine
Xunhe Zhang, Ming Xu, Shujian Wang, Yongkai Huang, and Zunyi Xie
Earth Syst. Sci. Data, 14, 3743–3755, https://doi.org/10.5194/essd-14-3743-2022,https://doi.org/10.5194/essd-14-3743-2022, 2022
Short summary

Cited articles

Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modelling and policy applications, Environ. Modell. Softw., 26, 1489–1501, 2011. 
Andres, R. J., Marland, G., Fung, I., and Matthews, E.: A 1× 1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990, Global Biogeochem. Cy., 10, 419–429, https://doi.org/10.1029/96GB01523, 1996. 
Andres, R. J., Boden, T. A., and Marland, G.: Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude, United States: N. p., (NDP-058.2016), ESS-DIVE [data set], https://doi.org/10.3334/CDIAC/ffe.ndp058.2016, 2016. 
Download
Short summary
People worry that growing man-made carbon dioxide (CO2) concentrations lead to climate change. Global models, use of observations, and datasets can help us better understand behaviour of CO2. Here a tool to compute uncertainty in man-made CO2 sources per country per year and month is presented. An example of all sources separated into seven groups (intensive and average energy, industry, humans, ground and air transport, others) is presented. Results will be used to predict CO2 concentrations.