Articles | Volume 13, issue 11
https://doi.org/10.5194/essd-13-5311-2021
https://doi.org/10.5194/essd-13-5311-2021
Data description paper
 | 
17 Nov 2021
Data description paper |  | 17 Nov 2021

Global anthropogenic CO2 emissions and uncertainties as a prior for Earth system modelling and data assimilation

Margarita Choulga, Greet Janssens-Maenhout, Ingrid Super, Efisio Solazzo, Anna Agusti-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Monica Crippa, Hugo Denier van der Gon, Richard Engelen, Diego Guizzardi, Jeroen Kuenen, Joe McNorton, Gabriel Oreggioni, and Antoon Visschedijk

Related authors

Advances in land surface forecasting: a comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025,https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024,https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023,https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021,https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases
Efisio Solazzo, Monica Crippa, Diego Guizzardi, Marilena Muntean, Margarita Choulga, and Greet Janssens-Maenhout
Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021,https://doi.org/10.5194/acp-21-5655-2021, 2021
Short summary

Related subject area

Energy and Emissions
Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025,https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Four-dimensional aircraft emission inventory dataset of the landing-and-takeoff cycle in China (2019–2023)
Jianlei Lang, Zekang Yang, Ying Zhou, Chaoyu Wen, and Xiaoqing Cheng
Earth Syst. Sci. Data, 17, 2489–2506, https://doi.org/10.5194/essd-17-2489-2025,https://doi.org/10.5194/essd-17-2489-2025, 2025
Short summary
Distribution and characteristics of lightning-ignited wildfires in boreal forests – the BoLtFire database
Brittany Engle, Ivan Bratoev, Morgan A. Crowley, Yanan Zhu, and Cornelius Senf
Earth Syst. Sci. Data, 17, 2249–2276, https://doi.org/10.5194/essd-17-2249-2025,https://doi.org/10.5194/essd-17-2249-2025, 2025
Short summary
Global and national CO2 uptake by cement carbonation from 1928 to 2024
Le Niu, Songbin Wu, Robbie M. Andrew, Zi Shao, Jiaoyue Wang, and Fengming Xi
Earth Syst. Sci. Data, 17, 2231–2247, https://doi.org/10.5194/essd-17-2231-2025,https://doi.org/10.5194/essd-17-2231-2025, 2025
Short summary
A daily sunshine duration (SD) dataset in China from Himawari AHI imagery (2016–2023)
Zhanhao Zhang, Shibo Fang, and Jiahao Han
Earth Syst. Sci. Data, 17, 1427–1439, https://doi.org/10.5194/essd-17-1427-2025,https://doi.org/10.5194/essd-17-1427-2025, 2025
Short summary

Cited articles

Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modelling and policy applications, Environ. Modell. Softw., 26, 1489–1501, 2011. 
Andres, R. J., Marland, G., Fung, I., and Matthews, E.: A 1× 1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990, Global Biogeochem. Cy., 10, 419–429, https://doi.org/10.1029/96GB01523, 1996. 
Andres, R. J., Boden, T. A., and Marland, G.: Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude, United States: N. p., (NDP-058.2016), ESS-DIVE [data set], https://doi.org/10.3334/CDIAC/ffe.ndp058.2016, 2016. 
Download
Short summary
People worry that growing man-made carbon dioxide (CO2) concentrations lead to climate change. Global models, use of observations, and datasets can help us better understand behaviour of CO2. Here a tool to compute uncertainty in man-made CO2 sources per country per year and month is presented. An example of all sources separated into seven groups (intensive and average energy, industry, humans, ground and air transport, others) is presented. Results will be used to predict CO2 concentrations.
Share
Altmetrics
Final-revised paper
Preprint