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Abstract. The growth in anthropogenic carbon dioxide (CO2) emissions acts as a major climate change driver,
which has widespread implications across society, influencing the scientific, political, and public sectors. For an
increased understanding of the CO2 emission sources, patterns, and trends, a link between the emission inven-
tories and observed CO2 concentrations is best established via Earth system modelling and data assimilation.
Bringing together the different pieces of the puzzle of a very different nature (measurements, reported statistics,
and models), it is of utmost importance to know their level of confidence and boundaries well.

Inversions disaggregate the variation in observed atmospheric CO2 concentration to variability in CO2 emis-
sions by constraining the regional distribution of CO2 fluxes, derived either bottom-up from statistics or top-down
from observations. The level of confidence and boundaries for each of these CO2 fluxes is as important as their
intensity, though often not available for bottom-up anthropogenic CO2 emissions. This study provides a post-
processing tool CHE_UNC_APP for anthropogenic CO2 emissions to help assess and manage the uncertainty
in the different emitting sectors. The postprocessor is available under https://doi.org/10.5281/zenodo.5196190
(Choulga et al., 2021). Recommendations are given for regrouping the sectoral emissions, taking into account
their uncertainty instead of their statistical origin; for addressing local hot spots; for the treatment of sectors with
small budget but uncertainties larger than 100 %; and for the assumptions around the classification of countries
based on the quality of their statistical infrastructure. This tool has been applied to the EDGARv4.3.2_FT2015
dataset, resulting in seven input grid maps with upper- and lower-half ranges of uncertainty for the European
Centre for Medium-Range Weather Forecasts Integrated Forecasting System. The dataset is documented and
available under https://doi.org/10.5281/zenodo.3967439 (Choulga et al., 2020). While the uncertainty in most
emission groups remains relatively small (5 %–20 %), the largest contribution (usually over 40 %) to the total
uncertainty is determined by the OTHER group (of fuel exploitation and transformation but also agricultural
soils and solvents) at the global scale. The uncertainties have been compared for selected countries to those re-
ported in the inventories submitted to the United Nations Framework Convention on Climate Change and to those
assessed for the European emission grid maps of the Netherlands Organisation for Applied Scientific Research.
Several sensitivity experiments are performed to check (1) the country dependence (by analysing the impact of
assuming either a well- or less well-developed statistical infrastructure), (2) the fuel type dependence (by adding
explicit information for each fuel type used per activity from the Intergovernmental Panel on Climate Change),
and (3) the spatial source distribution dependence (by aggregating all emission sources and comparing the effect
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against an even redistribution over the country). The first experiment shows that the SETTLEMENTS group (of
energy for buildings) uncertainty changes the most when development level is changed. The second experiment
shows that fuel-specific information reduces uncertainty in emissions only when a country uses several different
fuels in the same amount; when a country mainly uses the most globally typical fuel for an activity, uncertainty
values computed with and without detailed fuel information are the same. The third experiment highlights the
importance of spatial mapping.

1 Introduction

Accurate assessment of anthropogenic carbon dioxide (CO2)
emissions is important to better understand the global car-
bon cycle. Efforts towards a global anthropogenic CO2 mon-
itoring and verification support capacity as described by
Janssens-Maenhout et al. (2020) rely on atmospheric mod-
elling and atmospheric observations, like in situ (e.g. the In-
tegrated Carbon Observation System, ICOS), airborne (e.g.
aircraft campaigns), or spaceborne observations (e.g. the
Orbiting Carbon Observatory, OCO-2, and the Greenhouse
gases Observing Satellite, GOSAT). Atmospheric measure-
ments of CO2 and co-emitted species can be assimilated into
flux inversion systems to provide top-down estimates of CO2
fluxes at multiple spatiotemporal scales. The European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), for ex-
ample, aims to develop an operational inversion system to
estimate CO2 fluxes using observed atmospheric concentra-
tions of CO2 and other relevant species.

The global transport models require an initial best estimate
of the CO2 emission fields with uncertainties, the so-called
“prior information”. The intensity of the emission fields is
corrected through minimization of the difference between
the modelled and measured concentration values for CO2.
The uncertainty in these corrected CO2 fluxes based on in-
verse modelling will be lower with the increase in CO2 ob-
servations and their accuracy. The disentanglement of the
fossil CO2 emissions from the total atmospheric CO2 emis-
sions remains challenging. For example in 2018 total an-
thropogenic CO2 concentrations (5.4± 0.4 ppm) represented
only 1.3 % of the global atmospheric CO2 concentration
(407.4± 0.1 ppm) (Friedlingstein et al., 2019), which states
the need for a high accuracy of measurements (≥ 1.0 %).

Emission fields are often supplied through emission inven-
tories. Bottom-up emission inventories start from human ac-
tivity statistics. Emission factors are defined for each activity
and provided at the international or country level (e.g. na-
tional greenhouse gas inventory report, NIR). Such invento-
ries need to be gridded and characterized with uncertainties
to represent a prior dataset useful for numerical modelling.
Table 1 shows examples of most commonly used global grid-
ded CO2 emission datasets; for more details see Cong et
al. (2018, Table 1), Janssens-Maenhout et al. (2019, Table 3),
Andrew (2020), and Jones et al. (2021).

Only four datasets from Table 1 provide uncertainty es-
timates, namely CDIAC, FFDAS, PKU-FUEL, and GCP-
GridFED. CDIAC uncertainties have no sectors and include
contributions from the tabular fossil fuel CO2 emissions (as-
signed per seven country types; values are constant over
time), geography map (power plant location), and popula-
tion map (has details in both time and space and used to
distribute fossil fuel CO2 emissions). Population map un-
certainty strongly dominates in the generated gridded fossil
fuel CO2 uncertainties (Andres et al., 2016). CDIAC uncer-
tainties have no sectoral distribution and are presented on a
1.0◦× 1.0◦ grid. FFDAS provides only posterior uncertain-
ties, which are based on a model inversion. These posterior
uncertainties could be used as prior uncertainties for separate
inversion systems. However, this would make the characteri-
zation of uncertainty more complex if there were similarities
in the model and observations used. PKU-FUEL uncertainty
estimates of CO2 emission maps, associated with uncertain
fuel data and uncertain activity data in the spatial disaggre-
gation process, are based on Monte Carlo ensemble simula-
tions. Input data were randomly sampled 1000 times from an
a priori normal uncertainty distribution with a certain coeffi-
cient of variation: for fuel consumptions from ships and avi-
ation the sector coefficient of variation is set to be 20 %, for
the wildfires sector 18 %, for all other fuel data 10 %, and for
combustion rates 20 % (Marland et al., 2003; Marland et al.,
2006; Wang et al., 2013; Oda et al., 2019). GCP-GridFED fo-
cusses strongly on the fuel disaggregation for the global CO2
emissions, for which a detailed assessment of the uncertainty
has not yet been published.

2 Methods

2.1 Purpose and UNFCCC context

Intercomparisons of global greenhouse gas (GHG) emission
inventories were carried out (e.g. Cong et al., 2019; Petrescu
et al., 2020) to better understand discrepancies and miss-
ing or lesser-known sources. The United Nations Framework
Convention on Climate Change (UNFCCC) experts, review-
ing national GHG inventories on a yearly basis, are keen to
know which sectors or fuels need extra attention for an inven-
tory that complies with the principles of transparency, accu-
racy, consistency, completeness, and comparability (TACCC
principles). Discrepancies are often related to the different in-
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Table 1. Examples of global gridded anthropogenic CO2 emission bottom-up datasets.

Name Resolution Period Main assumptions, uncertainties Source

Carbon Dioxide
Information Analysis
Center
(CDIAC)

Spatial: 1.0◦× 1.0◦

Temporal: annual,
monthly
Sectoral: 1

1751–2013 Use population density to disaggregate emissions,
the mass-emissions data based on fossil-fuel
consumption estimates. Provide gridded annual
and monthly uncertainty estimates for 1950–2013.

Andres et al. (1996, 2016)

Open-Data Inventory
for Anthropogenic
Carbon dioxide
(ODIAC)

Spatial: 1× 1 km2,
0.1◦× 0.1◦

Temporal: monthly
Sectoral: 6

1979–2018 First introduce the combined use of nightlight
data and individual power plant emission and loca-
tion profiles.

Oda and Maksyutov
(2011); Oda et al. (2018);
ODIAC (2021)

Emissions Database for
Global Atmospheric
Research (EDGAR)

Spatial: 0.1◦× 0.1◦

Temporal: annual,
monthly
Sectoral: 26

1970–
(year− 1)

Based on international statistics, covers all IPCC
(2006) reporting categories, consistent
methodology applied to all the world countries.

Janssens-Maenhout et al.
(2019)

Fossil Fuel Data
Assimilation System
(FFDAS)

Spatial: 0.1◦× 0.1◦

Temporal: annual
Sectoral: 2

1997–2012 Provide gridded posterior uncertainty (version 2.2);
in addition, provide monthly, weekly, and hourly
fractions from annual CO2 emissions.

Asefi-Najafabady et al.
(2014)

Community Emissions
Data System (CEDS)

Spatial: 0.1◦× 0.1◦

Temporal: annual,
monthly
Sectoral: 55

1750–2014 Provide emissions of CO2 and
other GHGs and pollutants.

Hoesly et al. (2018)

Peking University Fuel
combustion inventory
(PKU-FUEL)

Spatial: 0.1◦× 0.1◦

Temporal: monthly
Sectoral: 6

1960–2014 By request provide daily emissions and the results
of Monte Carlo simulation-based uncertainty
analyses.

Chen et al. (2016);
Liu et al. (2015)

Global Carbon Budget
Gridded Fossil
Emissions Dataset
(GCP-GridFED)

Spatial: 0.1◦× 0.1◦

Temporal: monthly
Sectoral: 28

1959–2018 National GHG inventories reported to UNFCCC
are used for the GCP dataset, that is gridded with
predefined grid maps following EDGARv4.3.2
spatial distribution proxies; also provide gridded
sectoral uncertainties.

Jones et al. (2021)

terpretations of definitions or to missing information (statis-
tics and/or measurements). When focussing on global emis-
sion datasets, which are calculated bottom-up following the
Intergovernmental Panel on Climate Change (IPCC) 2006
Guidelines for National Greenhouse Gas Inventories, then
the discrepancy using different definitions disappears, while
the lack of information becomes strongly apparent for certain
regions. More information costs time and effort when com-
piling a global dataset in a consistent way. Therefore, it is of
paramount importance to prioritize the additional informa-
tion needs and the weaknesses in the inventory with sources
of large uncertainty in intensity or variability.

The IPCC has been addressing uncertainty from the be-
ginning. Methodology, data, and data sources in this paper
were taken from IPCC (2006) guidelines and their refine-
ments (IPCC, 2019). Also, the assumptions are based on
IPCC (2006), so all emissions are considered to be fully un-
correlated with activity (and so with sector and type) (i.e. all
activities from IPCC (2006) are fully uncorrelated with each
other) for the calculation of the uncertainty as well as of the
covariance matrices.

While the UNFCCC sticks to national inventories, the at-
mospheric modelling community needs spatially distributed

data. This adds an extra uncertainty to the emission grid
maps, not evaluated with the uncertainty in the proxy data
but which needs an assessment of the representativeness of
the selected proxies for distributing the emissions. The point
sources, leading to large plumes, were prioritized for being
treated separately with more data. These consisted of super
power plants, which are defined as a large power plant or a
group of closely located power plants (operating at maximum
capacity and availability), causing CO2 plumes from a single
grid cell with a CO2 flux ≥ 7.9× 10−6 kgm−2 s−1. Accord-
ing to expert knowledge, the upper-half range of uncertainty
for super power plants is not larger than+3.0 %, whereas for
small plants whose operation is decided based on day-to-day
needs, this can reach up to +15.0 %. In this paper, 30 grid
cells of 0.1◦× 0.1◦ from 12 countries were identified, repre-
senting these super power generators (896.7 Mt of the energy
sector) and including large plants from China, Russia, and
India (for the detailed ranking of the power plant sites as a
function of their emission intensity, refer to the Supplement,
Sect. S1). The power plant coordinates were checked to avoid
the need for an uncertainty related to their positioning. The
remaining power plants (not super power generators), over
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30 000, could not be checked to the same extent and there-
fore are recommended in a second emission group.

2.2 Generating uncertainty input for transport models

The uncertainty calculation methodology and initial uncer-
tainty values (i.e. activity data and emission factor uncer-
tainties per CO2-emitting activity) are both taken from IPCC
(2006) and its refinements (IPCC, 2019). The following ter-
minology is used to ease the explanation: “activity” – IPCC
(2006) activities which result in anthropogenic CO2 emis-
sions in the yearly budget (a long-cycle carbon), “sector” –
combination of different activities that are measured or re-
ported together (that have emission budget data), “group” –
combination of different sectors that have emission budget
data purely for modelling or comparison needs.

In general, uncertainties are calculated in three steps:
(i) sector uncertainties (based on emission factors and ac-
tivity data uncertainties), (ii) annual grouped uncertainties,
and (iii) monthly grouped uncertainties. By default, all cal-
culations are performed separately for upper- and lower-half
ranges of uncertainties and sector and/or group combined
uncertainties, where upper- and lower-half ranges of uncer-
tainty are in percent.

2.2.1 Calculating sector uncertainties

The initial 92 IPCC (2006) activity uncertainties are com-
bined into sectors for which the user has emission budget
data1, following Eqs. (1) and (2):

UCactivity_i =

√
EF2

activity_i +AD2
activity_i, (1)

where combined uncertainties UCactivity_i per activity i were
calculated using uncertainties for emission factors EFactivity_i
and activity data ADactivity_i in percent provided in IPCC
(2006) and its refinements (IPCC, 2019);

UCsector_j =√
UC2

activity_1+UC2
activity_2+ ·· ·+UC2

activity_n, (2)

where combined uncertainties UCsector_j per sector j were
calculated with the error propagation method, taking into ac-
count particularly for that sector activity combined uncer-
tainties UCactivity_1, UCactivity_2, . . . , UCactivity_n used in per-
cent.

2.2.2 Group annual uncertainties

This concerns the further grouping of the combined IPCC
(2006) sectors according to the user needs into groups and

1Often, emission budgets are provided not per IPCC (2006) ac-
tivity but for several activities together (usually due to measuring
or reporting limitations), for which the user then needs to assume a
lump sum activity, emission factor, and uncertainties in those.

calculation of group yearly uncertainties. Usually, there are
computational restrictions for operational modelling: the
number of emission input fields read by the model cannot
be too large, or emission values are too low to be distinguish-
able from a global or large regional modelling perspective, so
some sectors need to be merged. In addition, instantaneous
local emission data as an aggregated total might be rather
uncertain and hard to evaluate for different emission types
all over the world. IPCC (2006) and its refinement (IPCC,
2019) provide the best possible information on how certain
emissions are reported on an annual national level.

Sector uncertainties have to be adjusted to consider a
country’s statistical system development level and its yearly
emission budget and log-normal distribution of non-negative
emissions and then further combined into group uncertain-
ties for modelling and comparison purposes in the following
way (by default all calculations are performed separately for
upper- and lower-half ranges of uncertainties):

FCsector_j =



−0.7200+ 1.0921 ·UCsector_j
−1.63× 10−3

·UC2
sector_j

+1.11× 10−5
·UC3

sector_j

UCsector_j



2

, (3)

(UCsector_j )corr ={
UCsector_j ·FCsector_j ,100%≤ UCsector_j ≤ 230%
UCsector_j ,UCsector_j < 100%∪UCsector_j > 230%,

(4)

where corrected uncertainties (UCsector_j )corr per sector j
were calculated to take into account large combined uncer-
tainty (100 %≤UCsector_j ≤ 230 %) and underestimation by
the error propagation method in comparison to a Monte Carlo
simulation; correction factor FCsector_j is computed based on
Frey (2003), and also log-normal adjustment of the emission
distribution is computed based on Frey (2003) as detailed in
the Supplement, Sect. S3;

UCgroup_k =

√√√√√√
({

(UCsector_1)corr
}

ln ·Esector_1
)2
+({

(UCsector_2)corr
}

ln ·Esector_2
)2
+ . . .

+
({

(UCsector_n)corr
}

ln ·Esector_n
)2

|Esector_1+Esector_2+ ·· ·+Esector_n|
, (5)

Egroup_k = Esector_1+Esector_2+ ·· ·+Esector_n, (6)

where the combined uncertainties UCgroup_k and total emis-
sions Egroup_k per group k were calculated taking into ac-
count specifically for that group sector log-normally trans-
formed uncertainties

{
(UCsector_1)corr

}
ln,
{
(UCsector_2)corr

}
ln,

. . .,
{
(UCsector_n)corr

}
ln in percent.

Group upper- and lower-half range values of uncertainty
are descriptive but not straightforward to use in numerical
modelling (e.g. emission perturbations in ensemble runs, flux
inversions), so mean µln and standard σ ln deviation of the
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group log-normal distribution are calculated starting from
Eq. (7):

Egroup_k = e
µln
+σ ln
·z, (7)

where z is a standard normal variable, and parameters µln

and σ ln represent a natural logarithm of group emissions, not
the emissions themselves. The lower and upper bounds of the
95 % probability range, which are the 2.5th and 97.5th per-
centiles, respectively, are calculated assuming a log-normal
distribution based on a corrected estimated half range of un-
certainty from the error propagation approach and are lower
and upper uncertainty values. Taking this into account and
using the Z table for 2.5th and 97.5th percentiles p (p2.5 =

−1.96,p97.5 = 1.96), meanµln and standard deviation σ ln of
log-normal distribution can be calculated following Eq. (8):

Zp =
ln
(
[Egroup_k]p

)
−µln

group_k

σ ln
group_k

, (8)

resulting in Eqs. (9) and (10).

µln
group_k = ln

(
Egroup_k

)
+

1
2

ln
(

1+
[UCgroup_k]low

100%

)
+

1
2

ln
(

1+
[UCgroup_k]high

100%

)
, (9)

σ ln
group_k =

ln
(

1+ [UCgroup_k ]low
100 %

)
− ln

(
1+ [UCgroup_k ]high

100 %

)
−3.92

, (10)

where [UCgroup_k]low and [UCgroup_k]high are in percent.
Figure 1 shows a simplified roadmap for yearly uncer-

tainty calculations.

2.2.3 Group monthly uncertainties

The group monthly uncertainties are calculated starting from
the yearly uncertainties, which can provide a more appropri-
ate variation than the yearly timescale for operational mod-
elling. In this way, yearly sector uncertainties are adjusted to
represent monthly variability (no correlation between months
is assumed) and further combined into group monthly uncer-
tainties by means of the following four steps.

1. The same steps as for annual uncertainty calculation are
used but based on monthly emission budgets (i.e. uncer-
tainties for IPCC activities are combined to sectors with
the error propagation method, corrected for systematic
underestimation by the error propagation method, and
adapted to have log-normal distribution).

2. The correlation α (an uncertainty-boosting parameter)
between yearly and monthly uncertainties is based on
an analysis of the variations over the different months
following Eq. (11). It is computed to enhance obtained
monthly uncertainties as they are the same or even

smaller than the yearly ones because empirical equa-
tions applied use emission budgets, which are smaller
for individual months compared to the yearly values:

(EYEAR ·UCYEAR)2
=

α2
·
(
(EMONTH1 ·UCMONTH1)2

+ (EMONTH2 ·UCMONTH2)2
+ . . .

+ (EMONTH12 ·UCMONTH12)2), (11)

where E and UC correspond to sector emission budget
and uncertainty in kilotonnes and percent, respectively;
YEAR, MONTH1, MONTH2, . . . , MONTH12 are
yearly and monthly (January, February, . . . , December)
values. Equation (11) is based on the rule for combin-
ing uncorrelated uncertainties under the addition of the
error propagation equation (see Eq. 5) and the assump-
tion that each month’s uncertainty should be enhanced
(boosted) by the same value.

3. The prior yearly sector uncertainties are multiplied by
the boosting parameter (specific per country and emis-
sion sector), and the results are used as a first guess of
prior month sector uncertainties.

4. The calculation steps (1) to (3) are iterated to find the
best boosting parameter as the best fit between yearly
and combined 12-month uncertainties, with the incre-
mental step below a given acceptable threshold from
Eq. (11) for each country and emission sector. With this
optimum boosting parameter, monthly uncertainties per
sector are calculated and then merged into groups, with
a log-normal distribution of CO2 emissions.

Detailed information on each Unix shell script included in
the anthropogenic CO2 emission uncertainty calculation tool
CHE_UNC_APP (Choulga et al., 2021) is provided in the
Supplement, Sect. S4.

2.2.4 Remarks about the fuel dependence and
assumptions concerning correlation

It should be noted that IPCC (2006) provides default emis-
sion factor values for different fuels in transport-related ac-
tivities (e.g. railways, aviation). Detailed fuel consumption
information per IPCC activity that results in a long-cycle car-
bon was not available, and instead the most typical and con-
sumed (common) fuel type (or its emission factor value) was
used:

– aviation cruise (1.A.3.a_CRS), climbing and de-
scent (1.A.3.a_CDS), and landing and take-off
(1.A.3.a_LTO) – jet kerosene;

– road transportation (1.A.3.b) and pipelines, off-road
transport (1.A.3.e) – most typical emission factor un-
certainty;
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Figure 1. Yearly uncertainty calculation simplified roadmap.

– shipping (1.A.3.d) – composition of 80 % diesel and
20 % residual fuel oil;

– railways (1.A.3.c) – diesel.

It should also be noted that some uncertainty ranges for
emission factors and/or activity data in IPCC (2006) and
its refinements (IPCC, 2019) are not symmetrical and have
higher uncertainty values for the lower-half range than for
the half-range (or vice versa) due to input from expert knowl-
edge or available in situ data, which then leads to the same
pattern in final prior uncertainty range.

It should finally be noted that according to the IPCC
(2006), all anthropogenic CO2 emissions are assumed to be
fully uncorrelated; hence the prior error correlations between
grid cell emissions from the same sector or group should be
assumed negligible if country- and/or sector-specific infor-
mation is lacking.

3 Uncertainty calculation application

The method explained above has been applied to the
EDGARv4.3.2_FT2015 dataset to prepare prior uncertainty
information for the ECMWF Integrated Forecasting System
(IFS) model.

3.1 Data input

In this example, 2015, the year of the Paris Agreement and
reference for several Nationally Determined Contributions,
is chosen as a base year to analyse anthropogenic CO2 bud-
gets (i.e. global, regional, national) from different sources
(i.e. global statistics, national reports), benefitting the avail-
ability of observations (both in situ ground and spaceborne)
as well as reported and verified emission inventories.

Following IPCC (2006) and its refinements (IPCC, 2019),
starting from the global fossil CO2 grid maps of EDGAR in-
ventory versions 4.3.2 (Janssens-Maenhout et al., 2019) and

4.3.2_FT2015 (Olivier et al., 2016a), for 2012 and 2015,
respectively, an updated emission dataset CHE_EDGAR-
ECMWF_20152 (Choulga et al., 2020) is derived. The
EDGARv4.3.2 dataset is improved by correcting the allo-
cation of the autoproducers to the manufacturing sector in-
stead of the energy sector. Autoproducers are defined by the
International Energy Agency (IEA) and include the energy
(electricity and heat) generated by an industry for its own
use, mostly for the manufacturing. An extra emission source
of fugitive CO2 from coal mines is also added, following
the recommendations from IPCC (2019). Even though this
emission source is not that large globally, usually the coal
seam gas is composed dominantly of methane (CH4), but
in some coal mines (in Australia and also in Brazil) seam
gas consists predominantly (> 95 %) of CO2 (Beamish and
Vance, 1992), leading to significant atmospheric CO2 con-
centration increases. An additional map for CHE_EDGAR-
ECMWF_2015 with coal mining emissions from under-
ground mines has been generated following the IPCC (2019)
default values and the coal mining activity of CH4 emis-
sion grid maps from hard and brown coal production in
EDGARv4.3.2 (for more information refer to the Supple-
ment, Sect. S2). For the update from 2012 to 2015 the fast-
track approach of Olivier et al. (2016b) is used. The initial 92
IPCC activity uncertainties are combined into 20 EDGAR
sectors for two distinct country types with well- and less
well-developed statistical infrastructures (i.e. country’s abil-
ity to register different emissions, meaning tabulate even very
small emissions or only major ones, respectively). For the
input to the IFS model the emission sectors are grouped
in seven groups, with one group devoted to super power
plants. Table 2 shows activity and sector grouping and emis-
sion budget differences between EDGARv4.3.2_FT2015 and
CHE_EDGAR-ECMWF_2015 datasets due to reallocation

2CHE stands for the CO2 Human Emissions project (CHE,
2021).
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Table 2. Grouping of anthropogenic long-cycle carbon CO2 emission sectors into groups. Note provides main information and typi-
cal fuel type; global emission budgets for 2015 in megatonnes provides values for EDGARv4.3.2_FT2015 (total sum 35 986.5 Mt) and
CHE_EDGAR-ECMWF_2015 (total sum 35 995.2). Italics represent values with the biggest differences; asterisks (∗) represent values that
were replaced from EDGARv4.3.2

No. Group name IPCC (2006) activities per
sector

Note Emission budget 2015, Mt

EDGARv4.3.2_FT2015 CHE_EDGAR-ECMWF_2015

1 ENERGY_S 1.A.1.a (subset) Power industry (without
autoproducers): super-
emitting power plants

13 704.0 13841.2 896.7 12705.5

2 ENERGY_A 1.A.1.a (rest) Power industry (without
autoproducers): standard-
emitting power plants

11 671.6

4.C Solid waste incineration 137.2 137.2

3 MANUFACTURING 1.A.2 Combustion
for manufacturing
(including autoproducers)

6182.8 8960.1 7320.4 10 096.0

2.C.1, 2.C.2 Iron and steel production 233.6 233.6

2.C.3, 2.C.4, 2.C.5, 2.C.6,
2.C.7

Non-ferrous metal
production

91.4 91.4

2.D.1, 2.D.2, 2.D.4 Non-energy use of fuels 24.7∗ 24.6

2.A.1, 2.A.2, 2.A.3, 2.A.4 Non-metallic minerals
production

1748.8 1749.0

2.B.1, 2.B.2, 2.B.3, 2.B.4,
2.B.5, 2.B.6, 2.B.8

Chemical processes 678.8∗ 677.0

4 SETTLEMENTS 1.A.4, 1.A.5.a, 1.A.5.b.i,
1.A.5.b.ii

Energy for buildings 3321.9 3321.9 3322.7 3322.7

5 AVIATION 1.A.3.a_CRS Aviation cruise; typical fuel:
jet kerosene

412.2 815.4 412.2 815.4

1.A.3.a_CDS Aviation climbing and
descent; typical fuel:
jet kerosene

305.5 305.5

1.A.3.a_LTO Aviation landing and take-
off;
typical fuel: jet kerosene

97.7 97.7

6 TRANSPORT 1.A.3.b Road transportation; typical
fuel: most typical emission
factor uncertainty

5530.2 6604.4 5530.6 6604.9

1.A.3.d Shipping; typical fuel:
composition of 80 % diesel
and 20 % residual fuel oil

819.0 819.1

1.A.3.c, 1.A.3.e Railways, pipelines, off-road
transport; typical fuel:
railways – diesel, off-road
transport – most typical
emission factor uncertainty

255.2 255.2

7 OTHER 1.A.1.b, 1.A.1.c, 1.A.5.b.iii,
1.B.1.c, 1.B.2.a.iii.4,
1.B.2.a.iii.6, 1.B.2.b.iii.3

Oil refineries and
transformation industry

1917.4 2443.5 1917.8 2450.6

1.B.2.a.ii, 1.B.2.a.iii.2,
1.B.2.a.iii.3, 1.B.2.b.ii,
1.B.2.b.iii.2, 1.B.2.b.iii.4,
1.B.2.b.iii.5, 1.C

Fuel exploitation 258.4 258.4

1.B.1.a Coal production 0.0 7.0

3.C.2, 3.C.3, 3.C.4, 3.C.7 Agricultural soils 99.0 99.1

2.D.3, 2.B.9, 2.E, 2.F, 2.G Solvent and product use 168.7∗ 168.3
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of the autoproducers from the energy sector (−8 %) to the
manufacturing sector (+18 %) and due to the extra emission
source of diffusive coal mine CO2.

3.2 Model constraints

The operational IFS model is used to provide global CO2
forecasts using the gridded prior emissions previously de-
scribed (Agusti-Panareda et al., 2014; Agusti-Panareda et al.,
2019). A prototype 4D-Var inverse modelling system is cur-
rently under development to monitor anthropogenic CO2
emission using the IFS. There is also an ongoing develop-
ment to extend the window length beyond 24 h using an
ensemble-based methodology.

The uncertainties derived for the seven groups described
here have been used to generate an ensemble of forecasts for
2015 based on the operational IFS ensemble system (McNor-
ton et al., 2020). This provides a representation of the model
uncertainty and an estimation of the expected signal-to-noise
ratio for a future inverse modelling system. Random seeds
for each group and country were applied to the normalized
log-normal mean µln and standard deviation σ ln to generate
emission scaling factors, which were then used for 50 ensem-
ble members.

Primarily, the derived emission uncertainties presented
here are envisaged for use as prior errors within atmospheric
inversion frameworks. Aggregation of emission sectors into
seven groups is required for computational efficiency and to
reduce the dimensions of the inverse problem. To resolve
collocated emissions, further information is required about
spatial correlations and/or co-emitted species (e.g. nitrogen
oxides, NOx). Within the IFS inversion prototype, the log-
normal normalized standard deviation outlined in the previ-
ous section is used to provide the uncertainty values to pre-
vent negative scaling factors.

3.3 CHE_EDGAR-ECMWF_2015 output

The new CHE_EDGAR-ECMWF_2015 dataset with anthro-
pogenic fossil CO2 emissions and their uncertainties was
compiled and tested at ECMWF. The fossil CO2 emissions
include all long-cycle carbon emissions from human activ-
ities, such as fossil fuel combustion, industrial processes
(e.g. cement), and product use, but excludes emissions from
land-use change and forestry. Human CO2 emission invento-
ries were processed into gridded 0.1◦× 0.1◦ resolution maps
to provide an estimate of prior CO2 emissions, aggregated
in seven main emissions groups: (1) energy production by
super-emitters, (2) energy production by standard emitters,
(3) manufacturing, (4) settlements, (5) aviation, (6) other
transport at ground level, and (7) others, with an estima-
tion of their uncertainty and covariance. Aggregation of the
IPCC activities and sectors into groups was based on simi-
larities between the magnitude of uncertainty, the spatiotem-
poral correlation, and co-emission factors of each sector. It is

assumed that each emission group is fully correlated with it-
self and fully uncorrelated with any other group (only diago-
nal values of the 7× 7 group covariance matrix for the atmo-
spheric transport model are non-zero and equal to log-normal
variance). The CHE_EDGAR-ECMWF_2015 data are freely
available (https://doi.org/10.5281/zenodo.3967439; Choulga
et al., 2020) and consist of 11 grid maps in NetCDF format
and one Excel file with information on anthropogenic CO2
emissions and their uncertainties. For detailed information
on each file see Table 3.

3.4 Example of uncertainty calculation

Table 4 shows a step-by-step example of how yearly uncer-
tainties are calculated, and Fig. 2 shows plotted probability
density functions based on computed log-normal parameters.
The example shows calculations for the TRANSPORT group
that consists of several emission sectors. The example shows
two countries with different statistical infrastructure devel-
opment levels (the country with well-developed statistical
infrastructure is Germany, and the country with less well-
developed statistical infrastructure is the Russian Federation)
and significant differences in emission budgets.

Calculated yearly and monthly uncertainties per country
and emission group were assigned to each grid box on the
global map. National uncertainties were applied uniformly
across each country. Figure 3 shows an example of the upper
and lower uncertainty limits of anthropogenic CO2 emission
flux for the TRANSPORT group. It should be noted that un-
certainties related to the spatial distribution (representative-
ness of the proxy data and their uncertainty) should be much
higher than the ones presented in this study. This research
does not address uncertainties related to the spatial distribu-
tion. In the future it is planned to address these uncertainties
too, for example by following Oda et al. (2019) to character-
ize spatial patterns of the disaggregation errors in the emis-
sion maps.

4 Comparison and sensitivity

4.1 Comparison of total uncertainty in global CO2
emission datasets

Calculated emissions and uncertainties in fossil CO2 have
been compared to other global datasets based on the
country-specific data reported to UNFCCC and on fuel-
specific data reported in the energy statistics of IEA. The
global values and their uncertainty at a 2σ range for the
CHE_EDGAR-ECMWF_2015 dataset show a lowest value
of−4.7 %/+9.6 %, or±7.1 %; see Table 5. This result might
be attributed to the methodology, in particular considering
that (i) all calculations were done at the country level and
then aggregated to the global level assuming no correlation
following IPCC (2006); (ii) all calculations were done sepa-
rately for upper- and lower-half ranges of uncertainty to pre-
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Table 3. Detailed information on CHE_EDGAR-ECMWF_2015 data.

General note Field/spreadsheet

Annual_Upper_Lower_Uncertainties_Percentage_0.1_0.1.nc

File has 2× 8 fields with annual upper-
and lower-half ranges of uncertainty in per-
cent per emission group and for all groups
summed together on a regular grid with
1800 pixels along the latitude and 3600 pix-
els along the longitude, where values repre-
sent centre of the grid cell.

“Lower” – lower-half range of uncertainty (2.5th percentile of log-normal distribution) for yearly emis-
sions, in percent

“Upper” – upper-half range of uncertainty (97.5th percentile of log-normal distribution) for yearly emis-
sions, in percent

Sector – emission sector numerical name; “0”: emission group ENERGY_S (with IPCC (2006) ac-
tivity 1.A.1.a (subset)) standing for power industry emissions from super-emitting power plants; “1”:
ENERGY_A (1.A.1.a (rest), 4.C) – power industry emissions from standard-emitting power plants and
solid waste incineration; “2”: MANUFACTURING (1.A.2, 2.C.1, 2.C.2, 2.C.3, 2.C.4, 2.C.5, 2.C.6,
2.C.7, 2.D.1, 2.D.2, 2.D.4, 2.A.1, 2.A.2, 2.A.3, 2.A.4, 2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8) –
combustion for manufacturing (including autoproducers), iron and steel production, non-ferrous metal
production, non-energy use of fuels, non-metallic mineral production, and chemical processes; “3”:
SETTLEMENTS (1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii) – energy for buildings, residential heating; “4”:
AVIATION (1.A.3.a_CRS, 1.A.3.a_CDS, 1.A.3.a_LTO) – aviation cruise, climbing and descent, and
landing and take-off; “5”: TRANSPORT (1.A.3.b, 1.A.3.d, 1.A.3.c, 1.A.3.e) – road transportation, ship-
ping, railways, pipelines, and off-road transport; “6”: OTHER (1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c,
1.B.2.a.iii.4, 1.B.2.a.iii.6, 1.B.2.b.iii.3, 1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 1.B.2.b.iii.2,
1.B.2.b.iii.4, 1.B.2.b.iii.5, 1.C, 1.B.1.a, 3.C.2, 3.C.3, 3.C.4, 3.C.7, 2.D.3, 2.B.9, 2.E, 2.F, 2.G) – oil
refineries and transformation industry, fuel exploitation, coal production, agricultural soils, and solvent
and product use; “7”: all groups summed together

Monthly_Upper_Lower_Uncertainties_Percentage_0.1_0.1.nc

File has 2× 8× 12 fields with monthly
upper- and lower-half ranges of uncertainty
in percent per emission group and for all
groups summed together on a regular grid
with 1800 pixels along the latitude and
3600 pixels along the longitude, where val-
ues represent centre of the grid cell.

File structure is identical to the file Annual_Upper_Lower_Uncertainties_Percentage_0.1_0.1.nc but
per month (1, 2, . . . , 12 correspond to January, February, . . . , December).

Annual_Upper_Lower_Uncertainties_0.1_0.1.nc

File has 3× 8 fields with annual emissions
and upper- and lower-half ranges of uncer-
tainty in kgm−2 s−1 per emission group
and for all groups summed together on a
regular grid with 1800 pixels along the lat-
itude and 3600 pixels along the longitude,
where values represent centre of the grid
cell.

“Sup_lower” – lower-half range of uncertainty (2.5th percentile of log-normal distribution) for yearly
emissions of ENERGY_S, in kgm−2 s−1,
“Sup_upper” – upper-half range of uncertainty (97.5th percentile of log-normal distribution) for yearly
emissions of ENERGY_S, in kgm−2 s−1,
“Sup_flux” – yearly emissions of ENERGY_S, in kgm−2 s−1

“Ene_lower”, “ene_upper”, “ene_flux” – same but for ENERGY_A, in kgm−2 s−1

“Man_lower”, “man_upper”, “man_flux” – same but for MANUFACTURING, in kgm−2 s−1

“Set_lower”, “set_upper”, “set_flux” – same but for SETTLEMENTS, in kgm−2 s−1

“Avi_lower”, “avi_upper”, “avi_flux” – same but for AVIATION, in kgm−2 s−1

“Tra_lower”, “tra_upper”, “tra_flux” – same but for TRANSPORT, in kgm−2 s−1

“Oth_lower”, “oth_upper”, “oth_flux” – same but for OTHER, in kgm−2 s−1

“All_lower”, “all_upper”, “all_flux” – same but for all groups summed together, in kgm−2 s−1

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc

file has 3× 12 fields with monthly emis-
sions, and upper- and lower-half ranges of
uncertainty in kgm−2 s−1 per ENERGY_S
emission group on a regular grid with
1800 pixels along the latitude and 3600 pix-
els along the longitude, where values repre-
sent centre of the grid cell

“Sup_lower” – lower-half range of uncertainty (2.5th percentile of log-normal distribution) for monthly
emissions of ENERGY_S, in kgm−2 s−1

“Sup_upper” – upper-half range of uncertainty (97.5th percentile of log-normal distribution) for
monthly emissions of ENERGY_S, in kgm−2 s−1

“Sup_flux” – monthly emissions of ENERGY_S, in kgm−2 s−1

“Month” – month numerical name, where 1, 2, . . . , 12 correspond to January, February, . . . , December
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Table 3. Continued.

General note Field/spreadsheet

Monthly_Ene_Upper_Lower_Uncertainties_0.1_0.1.nc

File has 3× 12 fields with monthly emis-
sions and upper- and lower-half ranges of
uncertainty in kgm−2 s−1 per ENERGY_A
emission group on a regular grid with
1800 pixels along the latitude and 3600 pix-
els along the longitude, where values repre-
sent centre of the grid cell.

File structure is identical to the file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc but with
“ene_lower”, “ene_upper”, “ene_flux” fields.

Monthly_Man_Upper_Lower_Uncertainties_0.1_0.1.nc

File has 3× 12 fields with monthly emis-
sions and upper- and lower-half ranges of
uncertainty in kgm−2 s−1 per MANUFAC-
TURING emission group on a regular grid
with 1800 pixels along the latitude and
3600 pixels along the longitude, where val-
ues represent centre of the grid cell.

File structure is identical to the file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc but with
“man_lower”, “man_upper”, “man_flux” fields.

Monthly_Set_Upper_Lower_Uncertainties_0.1_0.1.nc

File has 3× 12 fields with monthly emis-
sions and upper- and lower-half ranges of
uncertainty in kg m−2 s−1 per SETTLE-
MENTS emission group on a regular grid
with 1800 pixels along the latitude and
3600 pixels along the longitude, where val-
ues represent centre of the grid cell.

File structure is identical to the file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc but with
“set_lower”, “set_upper”, “set_flux” fields.

Monthly_Avi_Upper_Lower_Uncertainties_0.1_0.1.nc

File has 3× 12 fields with monthly emis-
sions and upper- and lower-half ranges
of uncertainty in kgm−2 s−1 per AVIA-
TION emission group on a regular grid with
1800 pixels along the latitude and 3600 pix-
els along the longitude, where values repre-
sent centre of the grid cell.

File structure is identical to the file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc but with
“avi_lower”, “avi_upper”, “avi_flux” fields.

Monthly_Tra_Upper_Lower_Uncertainties_0.1_0.1.nc

File has 3× 12 fields with monthly emis-
sions and upper- and lower-half ranges
of uncertainty in kgm−2 s−1 per TRANS-
PORT emission group on a regular grid with
1800 pixels along the latitude and 3600 pix-
els along the longitude, where values repre-
sent centre of the grid cell.

file structure is identical to the file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc but with
“tra_lower”, “tra_upper”, “tra_flux” fields.

Monthly_Oth_Upper_Lower_Uncertainties_0.1_0.1.nc

File has 3× 12 fields with monthly emis-
sions and upper- and lower-half ranges
of uncertainty in kgm−2 s−1 per OTHER
emission group on a regular grid with
1800 pixels along the latitude and 3600 pix-
els along the longitude, where values repre-
sent centre of the grid cell.

File structure is identical to the file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc but with
“oth_lower”, “oth_upper”, “oth_flux” fields.
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Table 3. Continued.

General note Field/spreadsheet

Monthly_All_Upper_Lower_Uncertainties_0.1_0.1.nc

File has 3× 12 fields with monthly emis-
sions and upper- and lower-half ranges of
uncertainty in kg m−2 s−1 for all groups
summed together on a regular grid with
1800 pixels along the latitude and 3600 pix-
els along the longitude, where values repre-
sent centre of the grid cell.

File structure is identical to the file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc but with
“all_lower”, “all_upper”, “all_flux” fields.

CHE_EDGAR_2015.xlsx

File has 16 spreadsheets with listed infor-
mation per country (metadata, emissions,
uncertainties, statistical parameters).

“COUNTRY” – ISO code (three-letter abbreviation of a geographical entity), geographical name (name
of a geographical entity), type (development level of country’s statistical infrastructure, meaning with
well- or less well-developed statistical infrastructure), main country (dependency, which country geo-
graphical entity in question belongs to), full information (full name of a geographical entity and what
territory it occupies on the map of this study)

GROUP – no. (number of anthropogenic CO2 emission group), group (group name), IPCC (2006) ac-
tivity (IPCC activities that are included in each group), note (short explanation of the group), global
emission budget 2015 (total global emissions per group in megatonnes), prior upper- and lower-half
ranges of uncertainty (in percent; initial, calculated purely based on assumptions from IPCC, lower-
and upper-half ranges of uncertainty for countries with well- or less well-developed statistical infras-
tructures)

“YEARLY” – ISO code (three-letter abbreviation of a geographical entity), group (group name), budget
(yearly anthropogenic CO2 emission budget per group and total per geographical entity in kilotonnes),
uncertainty range (in percent; calculated based on prior uncertainty range and yearly budgets per group
and total per geographical entity; lower- and upper-half ranges of uncertainty and averaged uncertainty),
contribution to country’s total uncertainty (in percent; share of each group in geographical entities’ total
yearly uncertainty; total contribution is always 100 %), parameters of log-normal distribution (anthro-
pogenic CO2 emission distribution is assumed to be log-normal, so additionally for modelling purposes
log-normal mean, log-normal standard deviation, and log-normal variance were calculated)

“MONTHLY_01”, “MONTHLY_02”, . . . , “MONTHLY_12” – same explanation as for spreadsheet
“YEARLY” but for a month (01, 02, . . . , 12 correspond to January, February, . . . , December)

Figure 2. Probability density functions (for Germany a and the Russian Federation b) based on computed log-normal mean and standard
deviation for the TRANSPORT group.

serve original information with asymmetric confidence inter-
vals for large uncertainties (not required for the Approach 1
described in IPCC (2006), in which only the higher uncer-
tainty value of the asymmetric interval should be used, lead-
ing to artificial inflation of uncertainty upper or lower limit);

and (iii) in this study proxy grid map uncertainties are not
considered.

The contribution of each emission group to the total uncer-
tainty per grid cell is assessed. Figures 4–7 show which group
contributes the most to the total uncertainty per grid cell. The
TRANSPORT group contributes most to the grid cell uncer-
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Table 4. Yearly uncertainty calculation steps. Example shows TRANSPORT group uncertainty calculations for Germany (DEU) and the
Russian Federation (RUS), countries with a well- (WDS) and less well-developed statistical infrastructure (LDS), respectively. (a) Prepara-
tory step (data collection) – same values are applied for all countries with the same development level of statistical infrastructure. (b) First
step – same values are applied for all countries with the same development level of statistical infrastructure. (c) Second step – values are
specific per geographical entity considering countries’ development level of statistical infrastructure and emission budget (values are from
CHE_EDGAR-ECMWF_2015); SD stands for standard deviation.

(a)

IPCC (2006)
activities per
sector

IPCC
(2006)
activity

Note Typical fuel Uncertainty (%)

Emission factor Activity data

DEU (WDS) RUS (LDS) DEU (WDS) RUS (LDS)

Low Up Low Up Low Up Low Up

1.A.3.b 1.A.3.b Road transportation Most typical emission factor 2.0 2.0 5.0 5.0 5.0 5.0 5.0 5.0

1.A.3.d 1.A.3.d Waterborne
navigation

Composition of 80 % diesel
and 20 % residual fuel oil

2.1 1.1 2.1 1.1 5.0 5.0 50.0 50.0

1.A.3.c,
1.A.3.e

1.A.3.c Railways Diesel 2.0 0.9 2.0 0.9 5.0 5.0 5.0 5.0

1.A.3.e Other transportation
– pipeline

None (suggested to neglect) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Other transportation
– off-road

Most typical emission factor 2.0 2.0 5.0 5.0 50.0 100.0 50.0 100.0

(b)

IPCC (2006)
activities per
sector

IPCC
(2006)
activity

Combined uncertainty per IPCC
(2006) activity (%; see Eq. 1)

Combined uncertainty per
sector (%; see Eq. 2)

Corrected combined uncertainty
per sector (%; see Eqs. 3 and 4)

DEU (WDS) RUS (LDS) DEU (WDS) RUS (LDS) DEU (WDS) RUS (LDS)

Low Up Low Up Low Up Low Up Low Up Low Up

1.A.3.b 1.A.3.b 5.4 5.4 7.1 7.1 5.4 5.4 7.1 7.1 5.4 5.4 7.1 7.1

1.A.3.d 1.A.3.d 5.4 5.1 50.0 50.0 5.4 5.1 50.0 50.0 5.4 5.1 50.0 50.0

1.A.3.c,
1.A.3.e

1.A.3.c 5.4 5.1 5.4 5.1 50.3 100.1 50.5 100.3 50.3 106.9 50.5 107.0

1.A.3.e 0.0 0.0 0.0 0.0

50.0 100.0 50.2 100.1

(c)

IPCC (2006)
activities per
sector

Emission
budget 2015
per sector
(× 103 kt)

Uncertainty with assumed
log-normal distribution
per sector (%)

Emission
budget 2015
per group
(× 103 kt;
see Eq. 6)

Grouped uncertainty
with assumed log-normal
distribution per group
(%; see Eq. 5)

Log-normal parameters of
grouped uncertainty with
assumed log-normal
distribution per group
(see Eqs. 9 and 10)

DEU
(WDS)

RUS
(LDS)

DEU (WDS) RUS (LDS) DEU
(WDS)

RUS
(LDS)

DEU (WDS) RUS (LDS) DEU (WDS) RUS (LDS)

Low Up Low Up Low Up Low Up Mean SD Mean SD

1.A.3.b 139.6 131.7 5.4 5.4 7.1 7.1 143.0 206.9 5.3 5.7 14.1 44.8 11.9 0.0 12.3 0.1

1.A.3.d 1.0 7.4 5.4 5.1 40.1 57.2

1.A.3.c,
1.A.3.e

2.3 67.9 40.3 135.5 40.5 135.7
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Figure 3. CO2 emission flux uncertainties (a lower- and b upper-half ranges of uncertainty) for the TRANSPORT group in kgm−2 s−1.

Table 5. Comparison of global anthropogenic CO2 emission uncertainty at 2σ associated with certain emission datasets.

Name Global uncertainty at 2σ (%) References

BP No quantitative assessment of uncertainty associated with its emissions dataset Andrew (2020)
CDIAC ±8.4 % Andres et al. (2016)
CEDS No quantitative assessment of uncertainty associated with its emissions dataset Hoesly et al. (2018)
CHE_EDGAR-ECMWF_2015 ±7.1 % (−4.7/+9.6 %) Current study
EDGAR ±9.0 % Janssens-Maenhout et al. (2019)
EIA No quantitative assessment of uncertainty associated with its emissions dataset Andrew (2020)
Global Carbon Project (GCP) ±10.0 % Friedlingstein et al. (2019)
IEA No quantitative assessment of uncertainty associated with its emissions dataset Andrew (2020)
ODIAC ±8.4 %∗ Oda et al. (2018)

∗ The difference between ODIAC and CDIAC gridded data is 3.3 %–5.7 % (Oda et al., 2018).

tainty over the Unites States of America (due to road and
off-road transport) and over the ocean (due to shipping). The
AVIATION group contributes most over main flight routes all
over the globe. The OTHER group contributes the most over
agricultural areas and regions with oil refineries and trans-
formation industry and fuel exploitation. The MANUFAC-
TURING group contributes most over industrial areas (e.g.
in Vietnam and Bangladesh). The ENERGY_A (and EN-
ERGY_S) group contributes the most over power plant (and
super power plant) location grid cells (e.g. South Africa). The
SETTLEMENTS group contributes the most to the grid cell
uncertainty over either very densely or very sparsely popu-
lated areas.

4.2 Dependence of the country-specific statistical
infrastructure

Also, some specific geographical areas are analysed: chosen
to be among the most emitting in total or per emission group
and the most typical or most influential for a certain region.
A list of these geographical entities and development levels
of their statistical infrastructures is presented in Table 6.

In order to see how the development level of country’s or
geographical entity’s statistical infrastructure influences the

emission uncertainty in that country or geographical entity
itself and (possibly) the globe, uncertainty calculations for
selected entities were performed twice – with their origi-
nal and switched types (i.e. a country with a well-developed
statistical infrastructure becomes a country with a less well-
developed statistical infrastructure and vice versa). More de-
tails on a geographical entity’s statistical infrastructure de-
velopment level (e.g. how it was determined) are given in
the Supplement, Sect. S5. Figure 8 shows sectoral emission
budgets, uncertainties, and contributions in percentage to the
total uncertainty in a country or geographical entity with its
original and switched statistical infrastructure development
levels. The biggest impact of development level change oc-
curs for countries with larger emission budgets. On average,
total uncertainties in selected countries (see Table 6) changed
by 1 %–2 %; group uncertainties changed in line with prior
uncertainties and countries’ emission budgets, as reported in
Table 7.

Alterations in some countries’ (e.g. Germany, France) sta-
tistical infrastructure’s development levels lead to changes
in uncertainties in Europe (28 members until end of 2019),
with the most substantial change for the SETTLEMENTS
group (e.g. 2.5 % and 1.0 %, respectively). Huge changes
(> 10.0 %) in Europe’s (28 members until end of 2019) AVI-
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Figure 4. Main emission group that contributes to the total uncertainty per grid cell – global region.

Figure 5. Main emission group that contributes to the total uncertainty per grid cell – European (a) and China (b) regions.

ATION group’s uncertainty percentage value can be due to
the variation in statistical infrastructure development level
for Germany, United Kingdom, France, or Spain, though this
group’s contribution to Europe’s total uncertainty remains
negligible. Alterations in statistical infrastructure develop-
ment levels for China or the United States of America mod-
ify even global uncertainties because these countries sub-
stantially contribute to the total global emission budget; e.g.
China emits ∼ 1/3 of the global anthropogenic CO2 budget
and can change global total uncertainty up to 0.5 %.

4.3 Effect of increasing temporal resolution from yearly
to monthly

To increase the emission temporal resolution, monthly
emissions and their uncertainties were calculated combin-
ing yearly emissions, monthly multiplication factors, and
adapted uncertainty calculation methodology (see Sect. 2.2).
Prior yearly uncertainties were multiplied by a dimension-
less uncertainty-boosting parameter α (same value for each

month) to compute prior monthly uncertainties, which were
further used together with monthly emission budgets for
countries’ monthly uncertainty calculation. Monthly uncer-
tainties (just like yearly uncertainties) are determined by
empirical formulas from IPCC (2006) with monthly emis-
sion budgets (weighted with the total number of days
in a month). The dimensionless uncertainty-boosting pa-
rameter α is applied; see Table 8 for most common
values for countries with well- and less well-developed
statistical infrastructures per sector. Boosting parameters
become active (α 6= 1) when absolute uncertainty val-
ues are ≥ 25.0 %, and α increases with the increase in
absolute uncertainty following a third-order polynomial.
For lower-half ranges of uncertainty, α has larger val-
ues and steeper growth than for upper-half ranges of un-
certainty (e.g. −25.0 % α= 1.5 and −124.0 % α= 2.6,
+25.0 % α= 0.8 and+124.0 % α= 1.2; means “cor-
responds to”), and α behaves in the same way for countries
with well- and less well-developed statistical infrastructures.
Discrepancies in a different geographical entity’s (country’s)
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Figure 6. Main emission group that contributes to the total uncertainty per grid cell – the Russian Federation (a) and the United States of
America (b) regions.

Figure 7. Main emission group that contributes to the total uncertainty per grid cell – Brazil (a), India (b), Indonesia (c), and Japan (d)
regions

boosting parameters might be for several reasons. The main
ones are (i) sector emissions were zero (e.g. super power
plant emissions of the energy sector had no emissions), and
(ii) sector uncertainties were ≥ 50.0 % and needed to be
adapted accordingly to log-normal distribution (this is the
case for the agricultural soils sector with prior uncertain-
ties −70.7/+0.0 % for countries with well- and less well-
developed statistical infrastructures; discrepancies from Ta-
ble 8 for agricultural soils are France – α= 1.8/3.1, UK –

1.8/7.2, China – 1.8/8.4, Japan – 1.8/10.8, Brazil – 1.8/0.0,
and the Russian Federation – 1.8/5.6, where the first value is
for the lower-half range of uncertainty, and the second value
is for the upper-half range of uncertainty).

In general, Brazil, Indonesia, and India have a very weak
yearly cycle with quite high monthly uncertainties through-
out the year. The globe, Europe (28 members until end of
2019), Germany, Spain, France, United Kingdom, Poland,
China, Japan, the Russian Federation, and the United States
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Table 6. List of selected geographical entities with their statistical infrastructure’s development levels.

ISO Code Geographical name Type

GLB All world countries Mixed-developed statistical infrastructure
E28 Europe (28 members until end of 2019) Well-developed statistical infrastructure
DEU Germany Well-developed statistical infrastructure
ESP Spain Well-developed statistical infrastructure
FRA France Well-developed statistical infrastructure
GBR United Kingdom Well-developed statistical infrastructure
POL Poland Well-developed statistical infrastructure
BRA Brazil Less well-developed statistical infrastructure
CHN China Well-developed statistical infrastructure
IDN Indonesia Less well-developed statistical infrastructure
IND India Well-developed statistical infrastructure
JPN Japan Well-developed statistical infrastructure
RUS Russian Federation Less well-developed statistical infrastructure
USA United States of America Well-developed statistical infrastructure

of America have more pronounced yearly cycles, most sig-
nificant for the SETTLEMENTS and ENERGY_A (and EN-
ERGY_S where present) groups and less significant for
the AVIATION, TRANSPORT, and MANUFACTURING
groups. This is in line with the monthly profiles applied in
EDGARv4.3.2 for northern and southern temperate zones
and the Equator; see Janssens-Maenhout et al. (2019). In the
summer months for the northern temperate zone, a strong
decrease in SETTLEMENTS and ENERGY_A (and EN-
ERGY_S where present) group emissions was observed,
with a light decrease in MANUFACTURING group emis-
sions and a light increase in AVIATION and TRANSPORT
group emissions. This corresponds rather well to the assump-
tion that most of the population in the Northern Hemisphere
heat their houses during winter and take holidays and travel
more during summer.

4.4 Comparison for selected European countries with
UNFCCC and TNO data

The CHE_EDGAR-ECMWF_2015 dataset containing seven
global gridded fossil CO2 emission flux maps and country-
and group-specific emission budgets and uncertainties have
been assessed with independent data. Global emission bud-
get values from different datasets are almost never the same;
therefore it is important to first identify why estimates differ
between datasets. Datasets might use the same country-level
information as primary input, though differences in inclu-
sion, interpretation, and treatment of that data lead to diverse
results in emissions. It is necessary to try to harmonize data
inclusion or omission across datasets to have more clarity in
the discrepancies.

For Europe (28 members until end of 2019), Germany,
Spain, France, United Kingdom, Poland, Japan, the Russian
Federation, and the United States of America, emission and
uncertainty data were collected from UNFCCC NIR. The ag-

gregation of the IPCC (2006) activity-specific emissions and
uncertainties into seven groups was done assuming no cor-
relation, following IPCC (2006). Although IPCC (2006) has
a standard table to report GHG emissions, uncertainties can
be reported in less detail by a more general category (e.g.
2.D only instead of 2.D.1, 2.D.2, 2.D.3, 2.D.4), meaning
information “harmonization” required lots of careful time-
consuming country-specific technical work by the authors of
this paper.

The Netherlands Organisation for Applied Scientific Re-
search (TNO) has prepared the first version of their GHG and
co-emitted species emission database (TNO_GHGco_v1.1)
that covers the entire European domain (at 0.1◦× 0.05◦ res-
olution), including CO2 (distinguishing between fossil fuel
and biofuel). Initial emission data are from the UNFCCC
(common reporting format, CRF, tables) and the European
Monitoring and Evaluation Programme (EMEP) of the Cen-
tre on Emission Inventories and Projections (CEIP) for air
pollutants. These data were harmonized; checked for gaps,
errors, and inconsistencies; and (where needed) replaced or
completed using emission data from the Greenhouse Gas
and Air Pollution Interactions and Synergies (GAINS) model
(Amann et al., 2011). Moreover, inland shipping emissions
were replaced with the TNO’s own estimates, and sea ship-
ping is based on automatic identification system (AIS)-based
tracks. Expert judgement is used to assess the quality of
each data source and to make choices on which source to
use. The resulting emissions were checked in detail regard-
ing their absolute value and trends (Kuenen et al., 2014). In
this study emission budgets from 30 TNO sectors (Ingrid Su-
per, Jeroen Kuenen, Antoon Visschedijk, and Hugo Denier
van der Gon, personal communication, February 2020), and
prior uncertainties calculated from IPCC (2006) and its re-
finements (IPCC, 2019) are used. In addition, the TNO has
provided Tier 2 (Monte Carlo approach) uncertainties based
on the same budgets and uncertainties from submitted NIR
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Table 7. Influence of country’s statistical infrastructure (countries with well- and less well-developed statistical infrastructures – WDSs and
LDSs, respectively) on emission uncertainty.

Impact on the
uncertainty

Group name Cause description

Most
substantial

SETTLEMENTS – Consists only of residential heating emissions

– High differences in prior uncertainties for WDS and LDS: ±12.2 % and ±26.0 %,
respectively

Strong MANUFACTURING – Budget usually makes a significant part of country’s total emission budget

– Globally mainly composed of combustion for manufacturing with rather low prior
uncertainty (±8.6 % and ±12.2 % for WDS and LDS, respectively) and non-metallic
mineral production with much higher uncertainties (±70.9 % and ±93.0 % for WDS
and LDS, respectively)

– Also contains emissions from very uncertain non-energy use of fuels (±121.7 % and
±124.0 % for WDS and LDS, respectively) and chemical processes (−107.8/+89.9 %
for both WDS and LDS) emissions, though their global share in this group is only
∼ 7.0 %

ENERGY_A – Budget usually makes a significant part of country’s total emission budget

– Composed of emissions from standard power plants with rather low uncertainties
(±8.6 % and ±12.2 % for WDS and LDS, respectively) and solid waste incineration
with much higher uncertainties (±40.3 % and ±41.2 % for WDS and LDS, respec-
tively)

– For the globe, the ratio of solid waste incineration to energy emissions is ∼ 1/100,
which keeps the total group prior uncertainty quite low (±3.5 %)

– Note: geographical entities with higher ratios will have higher uncertainties

ENERGY_S – Composed of emissions from super power plants only with rather low prior uncertain-
ties (−8.6/+3.0 % and −12.2/+3.0 % for WDS and LDS, respectively) for all geo-
graphical entities

Mild TRANSPORT – Globally mainly composed of road transportation with rather low uncertainty (±5.4 %
and ±7.1 % for WDS and LDS, respectively) and shipping emissions with low uncer-
tainties (−5.4/+5.1 %) for WDS and high uncertainties (±50.0 %) for LDS

– Also contains rather uncertain railways, pipelines, and off-road transport emissions
(∼−50.4/+107.0 % for both WDS and LDS), though their global share in this group
is ∼ 16.0 % only

– Note: all international shipping is included in “all world countries” geographical entity

Small AVIATION – Extremely high differences in prior uncertainties for WDS and LDS (−5.5/+6.4 %
and −50.1/+106.8 %, respectively), though this group’s share in global emissions is
only 2.3 %

– Note: all international aviation is included in “all world countries” geographical entity

Negligible OTHER – Composed of very uncertain components with usually almost the same prior uncer-
tainties for WDS and LDS

– Main composite globally (∼ 78.0 %) are emissions from oil refineries and the trans-
formation industry with prior uncertainties of −54.4/+149.3 % and −57.7/+151.4 %
for WDS and LDS, respectively

– Also usually has the highest contribution to the country’s total uncertainty
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Figure 8. Emission budgets, uncertainties, and contributions in percentage to the total uncertainty in the country with their original and
switched (inverse) types (countries with well- and less well-developed statistical infrastructures – WDSs and LDSs, respectively): impacting
mainly the country itself, e.g. the Russian Federation (RUS) and India (IND); impacting also Europe (E28), e.g. Germany (DEU); impacting
even global values, e.g. China (CHN).

reports based on a Tier 1 approach. The Monte Carlo simula-
tions were done at the highest detail level (nomenclature for
reporting (NFR) sector and fuel type) assuming correlations
between certain sectors (for more information see Super et
al., 2020), and then emissions were aggregated to groups as-
suming no correlation.

Figure 9 shows emission budgets and uncertainties in
megatonnes and contributions in percent to the total geo-
graphical entity’s uncertainty for Europe (28 members until
end of 2019), Germany, France, and United Kingdom with
their original statistical infrastructure development types

based on data from CHE_EDGAR-ECMWF_2015 (in pink),
UNFCCC (in yellow), and TNO_GHGco_v1.1 Tier 1 (in
blue) and Tier 2 (in green); plots for Spain and Poland are not
shown here. Out of the four different sources, usually UN-
FCCC and TNO_GHGco_v1.1 Tier 2 uncertainties are the
lowest ones and CHE_EDGAR-ECMWF_2015 the highest
one. It should be noted that (i) UNFCCC uncertainties were
aggregated to groups individually per country as uncertain-
ties are reported in a rather free form and thus could be aggre-
gated from different levels of precision; (ii) uncertainties for
Europe (28 members until end of 2019) from CHE_EDGAR-
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Table 8. Dimensionless (DN) lower- and upper-half-range boosting parameter for countries with well- and less well-developed statistical
infrastructures – WDSs and LDSs, respectively.

No. Group name IPCC (2006) activities per sector Uncertainty-boosting parameter (DN)

WDS countries LDS countries

Low Up Low Up

1 ENERGY_S 1.A.1.a (subset) 1.0 1.0 1.0 1.0

2 ENERGY_A 1.A.1.a (rest) 1.0 1.0 1.0 1.0

4.C 1.8 0.8 1.9 0.8

3 MANUFACTURING 1.A.2 1.0 1.0 1.0 1.0

2.C.1, 2.C.2 1.7 0.8 1.7 0.8

2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7 2.0 0.9 2.0 0.9

2.D.1, 2.D.2, 2.D.4 2.6 1.2 2.6 1.2

2.A.1, 2.A.2, 2.A.3, 2.A.4 2.0 0.9 2.3 1.0

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8 2.4 1.0 2.4 1.0

4 SETTLEMENTS 1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii 1.0 1.0 1.5 0.9

5 AVIATION 1.A.3.a_CRS 1.0 1.0 1.7 1.1

1.A.3.a_CDS 1.0 1.0 1.7 1.1

1.A.3.a_LTO 1.0 1.0 1.7 1.1

6 TRANSPORT 1.A.3.b 1.0 1.0 1.0 1.0

1.A.3.d 1.0 1.0 1.7 0.9

1.A.3.c, 1.A.3.e 1.7 1.1 1.7 1.1

7 OTHER 1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 1.B.2.b.iii.3 1.7 1.4 1.8 1.4

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 1.B.2.b.iii.2, 1.B.2.b.iii.4,
1.B.2.b.iii.5, 1.C

3.0 2.4 3.1 2.5

1.B.1.a 2.5 2.2 2.5 2.2

3.C.2, 3.C.3, 3.C.4, 3.C.7 1.8 0.0 2.0 0.0

2.D.3, 2.B.9, 2.E, 2.F, 2.G 1.5 0.8 1.7 0.9

ECMWF_2015 are rather low as they were calculated by
aggregating information from 28 countries; and (iii) dif-
ferences in uncertainties in CHE_EDGAR-ECMWF_2015
with other sources, especially in fuel-dependent emission
groups, might be due to biofuels or other fuels (e.g.
wood and/or coal for residential heating). Differences in
uncertainties between CHE_EDGAR-ECMWF_2015 and
TNO_GHGco_v1.1 Tier 1 show additional value in more de-
tailed emission budget knowledge (i.e. where absence of the
uncertain glass production activity in the non-metallic min-
eral production sector decreases overall uncertainty). Dif-
ferences in uncertainties between TNO_GHGco_v1.1 Tier 1
and TNO_GHGco_v1.1 Tier 2 show additional value in an
advanced calculation technique using a more sophisticated,
data-demanding Monte Carlo approach instead of simple er-
ror propagation. Overall, there is quite good agreement in
emission budgets and uncertainties from different sources of
emission data.

Emission budgets, Tier 1 uncertainties, and contributions
in percentage to the total geographical entity’s uncertainty
for Japan, the Russian Federation, and the United States of
America from CHE_EDGAR-ECMWF_2015 could be com-
pared only with UNFCCC data (plots not shown here). UN-
FCCC uncertainties are usually lower than the ones calcu-
lated in this study. The main reason for that is the use of
country-specific emission data and activity data uncertain-
ties, which are lower than default values suggested by IPCC
(2006) and its refinements (IPCC, 2019). Only for the fuel-
dependent groups (e.g. AVIATION) might UNFCCC un-
certainties be higher than in this study as rather uncertain
biofuels might be taken into account (note: CHE_EDGAR-
ECMWF_2015 does not take biofuels into account). Also,
emission budgets reported to the UNFCCC show some dif-
ferences from the ones from CHE_EDGAR-ECMWF_2015.
For Japan, group budgets agree rather well, and the total bud-
get difference is ∼ 1.0 %. For the Russian Federation, ma-
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Figure 9. Emission budgets, uncertainties, and contributions in percentage to the total uncertainty for Europe (E28), Germany (DEU), France
(FRA), and United Kingdom (GBR).

jor differences are in the ENERGY_A (and ENERGY_S)
and MANUFACTURING groups, which results in a∼ 6.0 %
higher total budget of CHE_EDGAR-ECMWF_2015. For
the United States of America, major differences are∼ 200 Mt
and ∼ 100 Mt for the SETTLEMENTS and OTHER groups,
respectively, which results in a ∼ 4.0 % higher total budget
than based on UNFCCC data. Recent comparison of differ-
ent gridded global datasets by Andrew (2020) pointed out
that only a few of these datasets provide quantitative uncer-
tainty assessment; see the summary in Table 5. Compared
to other global emission uncertainty values, CHE_EDGAR-
ECMWF_2015 shows the lowest values mainly due to the
aggregation technique.

4.5 Sensitivity to the fuel specificity

As mentioned above, for transport-related emission uncer-
tainty calculations only the most typical fuel type (for avia-
tion, railways, shipping) and emission factor uncertainty (for
road and off-road transport) were used because detailed fuel
consumption information per IPCC activity was not avail-
able for this study. The EDGAR dataset development team do
have specific fuel information globally, which could be used

for uncertainty calculation. The EDGAR dataset with incor-
porated fuel-specific activity data and emission factor uncer-
tainties and Tier 1 approach for uncertainty calculation (see
Supplement, Sect. S6) is hereinafter referred to as EDGAR-
JRC. Country budget uncertainties were calculated by con-
sidering “full fuel” splitting and by taking into consideration
the assumption that the emission factors, from sectors shar-
ing the same fuel, are fully correlated. This latter assumption
transformed the sum in quadrature of Eq. (2) into a linear
summation (Bond et al., 2004; Bergamaschi et al., 2015). The
uncertainty in activity data was set in accordance with IPCC
(2006) guidelines, in the range of 5.0 % to 10.0 % for com-
bustion activities; 10.0 % to 20.0 % for combustion in the res-
idential sector; 25.0 % for bunker fuels in marine transport;
and 35.0 % for industrial processes of cement, lime, glass,
and ammonia (the range of uncertainty values refers to the
95 % confidence interval of the mean, assigned separately to
countries with well- and less well-developed statistical in-
frastructures). Uncertainties from the EDGAR-JRC dataset
aggregated to the group level were compared with the ones
from CHE_EDGAR-ECMWF_2015; see Table 9 for Europe
(28 members until end of 2019) and all world countries and
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Table S8 from the Supplement, Sect. S6, for all the remaining
geographical entities from Table 6. Emission uncertainties
from EDGAR-JRC reflect the share of fuel composing the
emission of each country and are in line with the estimates
by CHE_EDGAR-ECMWF_2015 for those countries where
the fuel-composite uncertainty is closer to the average value
assigned. Uncertainties calculated with fuel-specific data are
usually smaller; when prevailing fuel coincides with a typi-
cal fuel type from CHE_EDGAR-ECMWF_2015, emission
group uncertainties from both sources are quite similar. It
should be noted that (i) countries’ total uncertainty is higher
in EDGAR-JRC due to the aggregation technique (full cor-
relation is assumed), and (ii) AVIATION group uncertain-
ties are higher in EDGAR-JRC due to prior aggregation of
all three aviation connected sectors (cruise, climbing and de-
scent, and landing and take-off).

The uncertainties derived in this study are an upper bound
of the uncertainty estimation compared to the uncertainties
calculated with more detailed information, as done by the
countries and reported to UNFCCC or to the uncertainties
calculated with fuel-specific data. Even though sometimes
differences might be quite high in percentage values, they
are usually quite small in megatonnes.

4.6 Atmospheric sensitivity to nationally disaggregated
emissions

The gridded emissions are required input to the ECMWF IFS
model used to simulate atmospheric CO2 globally (Agusti-
Panareda et al., 2014; Agusti-Panareda et al., 2019). Ideally,
uncertainties at a grid cell level would be preferred by the
models in general, which is a difficult time-consuming task.
To check the usefulness of the information-intensive deriva-
tion of uncertainties at a grid cell level, it was decided to
run some experiments. High-resolution (∼ 25 km horizontal
resolution, 137 vertical levels) simulations with the ECMWF
IFS model have been performed to assess the atmospheric
sensitivity to fully resolved emissions compared to nationally
smoothed (global emission budget is conserved); see Fig. 10.

Model simulations were performed for January 2015 with
3-hourly output. Anthropogenic, fire, ocean, and biogenic
fluxes (large-scale model bias mitigated by the biogenic CO2
flux adjustment scheme, BFAS) were considered. For the full
model configuration description see McNorton et al. (2020).
It was noted that point sources (e.g. power plants, factories)
can be easily detected if they comprise a substantial part of
countries’ total emission budget (e.g. in South Africa). If
point sources are distributed homogeneously over the coun-
try, and other areal sources are rather high as well, it becomes
difficult to detect one extra or missing emitting hotspot (e.g.
in Germany). China is a very good example for both cases
as its western part has very few hotspots, and they are easy
to detect over the low-emitting background. Its eastern part,
however, has lots of hotspots and high-emitting areal sources,
making it almost impossible to disentangle emissions from a

single power plant or factory from the high-emitting back-
ground. Differences of several parts per million are detected
over multiple regions, highlighting the importance of using
high-resolution spatially resolved emissions. With increase
in both flux and transport model resolutions, these differ-
ences are expected to increase further with steeper atmo-
spheric CO2 gradients.

5 Data availability

EDGARv4.3.2 data are open-access and available at http:
//data.europa.eu/89h/jrc-edgar-edgar_v432_ghg_gridmaps
(last access: 29 June 2021, Janssens-Maenhout et al., 2017)
and are documented in Janssens-Maenhout et al. (2019).
CHE_EDGAR-ECMWF_2015 data are freely available
https://doi.org/10.5281/zenodo.3967439 (Choulga et al.,
2020) and documented in this paper. The CHE_UNC_APP
anthropogenic CO2 emission uncertainty calculation tool
is freely available https://doi.org/10.5281/zenodo.5196190
(Choulga et al., 2021) and documented in this paper.

6 Recommendations and conclusion

A pre-processor has been created that allows derivation of
the upper- and lower-half range of uncertainty grid maps
while making use of an appropriate classification of more
certain and uncertain sectors. These grid maps allow assess-
ment of the error propagation of country emission budgets
following the IPCC 2006 Guidelines for National Green-
house Gas Inventories. It is a first step in evaluating where
to provide more effort in reducing the propagated error bud-
get that can be taken up in any global or regional atmo-
spheric model as a first step. The method has been ap-
plied using EDGARv4.3.2_FT2015 and was tested as in-
put to the ECMWF IFS ensemble spread to characterize
the carbon dioxide (CO2) atmospheric concentrations’ un-
certainties in the prototype of the Copernicus CO2 Monitor-
ing and Verification Support Capacity. At the country level
the CHE_EDGAR-ECMWF_2015 dataset provides gener-
ally larger uncertainty ranges, reduced when more detailed
information is available. In summary, using the information
uniformly available for all countries, a coherent uncertainty
representation is obtained.

The application in the ECMWF IFS Earth system model
sheds light on the spatial representativeness of the emis-
sions. While the emission-intensive point sources were
checked with reference to their spatial location, the dif-
fuse emission sources are gridded using spatial proxy data.
With CHE_EDGAR-ECMWF_2015 implemented in the IFS
model it was demonstrated that the choice of the spatial
proxy data has a strong influence on the model results. As
such, it is proposed that this is analysed in comparison to
other datasets, going beyond the evaluation of the probabil-
ity density of the spatial proxy itself. Contribution of repre-
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Table 9. Aggregated to the group level uncertainties (lower- and upper-half ranges of uncertainty) in percent and contributions in percent to
the total uncertainty (CV) for Europe (E28) and the globe (GLB) from EDGAR-JRC (with extra fuel type knowledge) and CHE_EDGAR-
ECMWF_2015 (with typical fuel only).

Country Group name EDGAR-JRC CHE_EDGAR-ECMWF_2015

Low (%) Up (%) CV (%) Low (%) Up (%) CV (%)

GLB ENERGY_S 0.0 0.0 0.0 −3.6 1.0 0.0
ENERGY_A −2.9 2.7 42.4 −3.5 3.5 11.0
MANUFACTURING −4.3 4.3 41.3 −5.7 8.6 34.0
SETTLEMENTS −2.5 2.5 1.9 −3.9 3.9 1.1
AVIATION −4.2 5.8 0.5 −17.3 58.1 6.1
TRANSPORT −2.5 2.6 7.7 −4.3 6.4 8.1
OTHER −5.9 6.2 6.2 −11.5 52.4 39.7

TOTAL −4.8 4.8 100.0 −2.3 4.8 100.0

E28 ENERGY_S 0.0 0.0 0.0 −5.4 1.9 0.2
ENERGY_A −2.0 2.4 56.4 −2.8 2.8 13.3
MANUFACTURING −2.2 2.2 12.6 −3.9 5.8 20.0
SETTLEMENTS −2.5 2.5 15.1 −4.2 4.2 8.8
AVIATION −2.4 2.8 0.0 −1.4 1.6 0.0
TRANSPORT −1.3 1.3 7.2 −1.6 1.8 2.8
OTHER −5.0 5.0 8.7 −10.1 45.3 54.9

TOTAL −3.3 3.6 100.0 −1.6 3.3 100.0

Figure 10. Anthropogenic CO2 flux source distribution at ∼ 25 km resolution – fully resolved (a), country aggregated (b).

sentativeness errors to uncertainties and time correlation will
need to be assessed in successive future studies, as foreseen
under the Prototype System for a Copernicus CO2 Service
(CoCO2) project, following up on the CO2 Human Emissions
(CHE) project.

The use of an ensemble technique to estimate CO2 uncer-
tainties is recommended. The optimal number of ensemble
members is bound by practical considerations on computa-
tional costs. Leutbecher (2018) found a minimum of an 8-
member ensemble can mimic some of the skill of larger en-
sembles, with a 20-member ensemble being a typical value
used by several modelling systems and with a 50-member
ensemble being a desirable target. Further grouping of an-

thropogenic emissions into, for example, one to reduce the
dimensions of the problem is also possible with the tool
CHE_UNC_APP (Choulga et al., 2021).

The estimation of global gridded emissions with their
spatially and temporally distributed uncertainties constitute
the backbone for atmospheric inversions to estimate anthro-
pogenic emissions from atmospheric concentrations (Pinty
et al., 2017). Dedicated satellite missions (e.g. Copernicus
anthropogenic CO2 monitoring mission CO2M described in
Janssens-Maenhout et al., 2020) are being planned to moni-
tor anthropogenic emissions from space and substantially re-
duce emission uncertainties. The developments in the emis-
sion uncertainty, based on computation of priors presented in
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this paper, are an important preparatory step for an ensemble-
based CO2 monitoring and verification system prototype,
such as the one developed within the CHE project.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-5311-2021-supplement.
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