Articles | Volume 17, issue 7
https://doi.org/10.5194/essd-17-3521-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3521-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global database of actual nitrogen loss rates in coastal and marine sediments
Yongkai Chang
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Ehui Tan
CORRESPONDING AUTHOR
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Dengzhou Gao
Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
Cheng Liu
Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, China
Zongxiao Zhang
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
Zhixiong Huang
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Jianan Liu
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Yu Han
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Zifu Xu
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Bin Chen
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
Shuh-Ji Kao
CORRESPONDING AUTHOR
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Related authors
No articles found.
Chuanjun Du, Naiwen Zheng, Shuh-Ji Kao, Minhan Dai, Zhimian Cao, Dalin Shi, Qiancheng Li, Hao Wang, and Xiaolin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-654, https://doi.org/10.5194/essd-2025-654, 2025
Preprint under review for ESSD
Short summary
Short summary
Nutrient levels govern oceanic primary production, but measuring them is labor-intensive and costly. To address this, we used machine learning models to learn the hidden relationships between easy-to-measure ocean properties (like temperature and salinity) and nutrient levels. Applying this model, we created ~ 470 million nutrient data points across the North Pacific from 1895 to 2024. This data will help to understand nutrient and marine ecosystem variability under climate change.
Xiaofeng Dai, Mingming Chen, Xianhui Wan, Ehui Tan, Jialing Zeng, Nengwang Chen, Shuh-Ji Kao, and Yao Zhang
Biogeosciences, 19, 3757–3773, https://doi.org/10.5194/bg-19-3757-2022, https://doi.org/10.5194/bg-19-3757-2022, 2022
Short summary
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
Cited articles
Adame, M. F., Roberts, M. E., Hamilton, D. P., Ndehedehe, C. E., Reis, V., Lu, J., Griffiths, M., Curwen, G., and Ronan, M.: Tropical Coastal Wetlands Ameliorate Nitrogen Export During Floods, Front. Mar. Sci., 6, 671, https://doi.org/10.3389/fmars.2019.00671, 2019.
Aelion, C. M. and Warttinger, U.: Sulfide Inhibition of Nitrate Removal in Coastal Sediments, Estuaries Coasts, 33, 798–803, https://doi.org/10.1007/s12237-010-9275-4, 2010.
Anschutz, P., Sundby, B., Lefrançois, L., Luther, G. W., and Mucci, A.: Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments, Geochim. Cosmochim. Ac., 64, 2751–2763, https://doi.org/10.1016/S0016-7037(00)00400-2, 2000.
Arroyave Gómez, D. M., Gallego Suárez, D., Bartoli, M., and Toro-Botero, M.: Spatial and seasonal variability of sedimentary features and nitrogen benthic metabolism in a tropical coastal area (Taganga Bay, Colombia Caribbean) impacted by a sewage outfall, Biogeochemistry, 150, 85–107, https://doi.org/10.1007/s10533-020-00689-0, 2020.
Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and Voss, M.: Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea, Limnol. Oceanogr., 62, S222–S238, https://doi.org/10.1002/lno.10644, 2017.
Bale, N. J., Villanueva, L., Fan, H., Stal, L. J., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea, FEMS Microbiol. Ecol., 89, 99–110, https://doi.org/10.1111/1574-6941.12338, 2014.
Bartoli, M., Nizzoli, D., Zilius, M., Bresciani, M., Pusceddu, A., Bianchelli, S., Sundbäck, K., Razinkovas-Baziukas, A., and Viaroli, P.: Denitrification, Nitrogen Uptake, and Organic Matter Quality Undergo Different Seasonality in Sandy and Muddy Sediments of a Turbid Estuary, Front. Microbiol., 11, 612700, https://doi.org/10.3389/fmicb.2020.612700, 2021.
Benelli, S., Bartoli, M., Magri, M., Brzana, R., Kendzierska, H., Styrcz-Olesiak, K., and Janas, U.: Spatial and seasonal pattern of microbial nitrate reduction in coastal sediments in the Vistula River plume area, Gulf of Gdańsk, Front. Mar. Sci., 11, 1333707, https://doi.org/10.3389/fmars.2024.1333707, 2024.
Bernard, R. J., Mortazavi, B., and Kleinhuizen, A. A.: Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon, Biogeochemistry, 125, 47–64, https://doi.org/10.1007/s10533-015-0111-6, 2015.
Blackburn, T. H., Hall, P. O. J., Hulth, S., and Landén, A.: Organic-N loss by efflux and burial associated with a low efflux of inorganic N and with nitrate assimilation in Arctic sediments (Svalbard, Norway), Mar. Ecol. Prog. Ser., 141, 283–293, https://doi.org/10.3354/meps141283, 1996.
Bohlen, L., Dale, A. W., and Wallmann, K.: Simple transfer functions for calculating benthic fixed nitrogen losses and regeneration ratios in global biogeochemical models, Global Biogeochem. Cy., 26, GB3029, https://doi.org/10.1029/2011GB004198, 2012.
Bonaglia, S., Bartoli, M., Gunnarsson, J. S., Rahm, L., Raymond, C., Svensson, O., Shakeri Yekta, S., and Brüchert, V.: Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism, Mar. Ecol. Prog. Ser., 482, 43–55, https://doi.org/10.3354/meps10232, 2013.
Bonaglia, S., Deutsch, B., Bartoli, M., Marchant, H. K., and Brüchert, V.: Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns, Biogeochemistry, 119, 139–160, https://doi.org/10.1007/s10533-014-9953-6, 2014a.
Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I., and Brüchert, V.: Meiofauna increases bacterial denitrification in marine sediments, Nat. Commun., 5, 5133, https://doi.org/10.1038/ncomms6133, 2014b.
Bonaglia, S., Hylén, A., Rattray, J. E., Kononets, M. Y., Ekeroth, N., Roos, P., Thamdrup, B., Brüchert, V., and Hall, P. O. J.: The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study, Biogeosciences, 14, 285–300, https://doi.org/10.5194/bg-14-285-2017, 2017.
Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S. C., Leblanc, K., Le Quéré, C., Luo, Y.-W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R., and Swan, C.: MAREDAT: towards a world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, 2013.
Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The Evolution and Future of Earth's Nitrogen Cycle, Science, 330, 192–196, https://doi.org/10.1126/science.1186120, 2010.
Canion, A., Kostka, J. E., Gihring, T. M., Huettel, M., van Beusekom, J. E. E., Gao, H., Lavik, G., and Kuypers, M. M. M.: Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude, Biogeosciences, 11, 309–320, https://doi.org/10.5194/bg-11-309-2014, 2014.
Chang, Y., Yin, G., Hou, L., Liu, M., Zheng, Y., Han, P., Dong, H., Liang, X., Gao, D., and Liu, C.: Nitrogen removal processes coupled with nitrification in coastal sediments off the north East China Sea, J. Soils Sediments, 21, 3289–3299, https://doi.org/10.1007/s11368-021-02964-5, 2021.
Chang, Y., Tan, E., Gao, D., Liu, C., Zhang, Z., Huang, Z., Liu, J., Han, Y., Xu, Z., Chen, B., and Kao, S.-J.: Global database of actual nitrogen loss rates in coastal and marine sediments, Figshare [data set], https://doi.org/10.6084/m9.figshare.27745770.v3, 2024.
Chen, J.-J., Erler, D. V., Wells, N. S., Huang, J., Welsh, D. T., and Eyre, B. D.: Denitrification, anammox, and dissimilatory nitrate reduction to ammonium across a mosaic of estuarine benthic habitats, Limnol. Oceanogr., 66, 1281–1297, https://doi.org/10.1002/lno.11681, 2021.
Cheung, H. L. S., Hillman, J. R., Pilditch, C. A., Savage, C., Santos, I. R., Glud, R. N., Nascimento, F. J. A., Thrush, S. F., and Bonaglia, S.: Denitrification, anammox, and DNRA in oligotrophic continental shelf sediments, Limnol. Oceanogr., 69, 621–637, https://doi.org/10.1002/lno.12512, 2024.
Crowe, S. A., Canfield, D. E., Mucci, A., Sundby, B., and Maranger, R.: Anammox, denitrification and fixed-nitrogen removal in sediments from the Lower St. Lawrence Estuary, Biogeosciences, 9, 4309–4321, https://doi.org/10.5194/bg-9-4309-2012, 2012.
Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H., and Zhu, Y.-G.: Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010), P. Natl. Acad. Sci. USA, 110, 2052–2057, https://doi.org/10.1073/pnas.1221638110, 2013.
Dai, M., Zhao, Y., Chai, F., Chen, M., Chen, N., Chen, Y., Cheng, D., Gan, J., Guan, D., Hong, Y., Huang, J., Lee, Y., Leung, K. M. Y., Lim, P. E., Lin, S., Lin, X., Liu, X., Liu, Z., Luo, Y.-W., Meng, F., Sangmanee, C., Shen, Y., Uthaipan, K., Wan Talaat, W. I. A., Wan, X. S., Wang, C., Wang, D., Wang, G., Wang, S., Wang, Y., Wang, Y., Wang, Z., Wang, Z., Xu, Y., Yang, J.-Y. T., Yang, Y., Yasuhara, M., Yu, D., Yu, J., Yu, L., Zhang, Z., and Zhang, Z.: Persistent eutrophication and hypoxia in the coastal ocean, Cambridge Prisms: Coastal Futures, 1, 1–28, https://doi.org/10.1017/cft.2023.7, 2023.
Dalsgaard, T. and Thamdrup, B.: Factors Controlling Anaerobic Ammonium Oxidation with Nitrite in Marine Sediments, Appl. Environ. Microb., 68, 3802–3808, https://doi.org/10.1128/AEM.68.8.3802-3808.2002, 2002.
Damashek, J. and Francis, C. A.: Microbial Nitrogen Cycling in Estuaries: From Genes to Ecosystem Processes, Estuaries Coasts, 41, 626–660, https://doi.org/10.1007/s12237-017-0306-2, 2018.
Deek, A., Dähnke, K., van Beusekom, J., Meyer, S., Voss, M., and Emeis, K.: N2 fluxes in sediments of the Elbe Estuary and adjacent coastal zones, Mar. Ecol. Prog. Ser., 493, 9-21, https://doi.org/10.3354/meps10514, 2013.
Deng, D., He, G., Ding, B., Liu, W., Yang, Z., and Ma, L.: Denitrification dominates dissimilatory nitrate reduction across global natural ecosystems, Glob. Change Biol., 30, e17256, https://doi.org/10.1111/gcb.17256, 2024.
Deng, F., Hou, L., Liu, M., Zheng, Y., Yin, G., Li, X., Lin, X., Chen, F., Gao, J., and Jiang, X.: Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary, J. Geophys. Res.-Biogeo., 120, 1521–1531, https://doi.org/10.1002/2015JG003007, 2015.
Deutsch, B., Forster, S., Wilhelm, M., Dippner, J. W., and Voss, M.: Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics, Biogeosciences, 7, 3259–3271, https://doi.org/10.5194/bg-7-3259-2010, 2010.
Devol, A. H.: Denitrification, Anammox, and N2 Production in Marine Sediments, Annu. Rev. Mar. Sci., 7, 403–423, https://doi.org/10.1146/annurev-marine-010213-135040, 2015.
Enrich-Prast, A., Figueiredo, V., Esteves, F. D. A., and Nielsen, L. P.: Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons, PloS One, 11, e0155586, https://doi.org/10.1371/journal.pone.0155586, 2016.
Erler, D. V., Eyre, B. D., and Davison, L.: The Contribution of Anammox and Denitrification to Sediment N2 Production in a Surface Flow Constructed Wetland, Environ. Sci. Technol., 42, 9144–9150, https://doi.org/10.1021/es801175t, 2008.
Erler, D. V., Trott, L. A., Alongi, D. M., and Eyre, B. D.: Denitrification, anammox and nitrate reduction in sediments of the southern Great Barrier Reef lagoon, Mar. Ecol. Prog. Ser., 478, 57–70, https://doi.org/10.3354/meps10040, 2013.
Erler, D. V., Welsh, D. T., Bennet, W. W., Meziane, T., Hubas, C., Nizzoli, D., and Ferguson, A. J. P.: The impact of suspended oyster farming on nitrogen cycling and nitrous oxide production in a sub-tropical Australian estuary, Estuarine, Coastal Shelf Sci., 192, 117–127, https://doi.org/10.1016/j.ecss.2017.05.007, 2017.
Fan, H., Bolhuis, H., and Stal, L. J.: Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments, Front. Microbiol., 6, 738, https://doi.org/10.3389/fmicb.2015.00738, 2015.
Farías, L., Graco, M., and Ulloa, O.: Temporal variability of nitrogen cycling in continental-shelf sediments of the upwelling ecosystem off central Chile, Deep-Sea Res. Pt. II, 51, 2491–2505, https://doi.org/10.1016/j.dsr2.2004.07.029, 2004.
Gardner, W. S. and McCarthy, M. J.: Nitrogen dynamics at the sediment–water interface in shallow, sub-tropical Florida Bay: why denitrification efficiency may decrease with increased eutrophication, Biogeochemistry, 95, 185–198, https://doi.org/10.1007/s10533-009-9329-5, 2009.
Gardner, W. S., McCarthy, M. J., An, S., Sobolev, D., Sell, K. S., and Brock, D.: Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries, Limnol. Oceanogr., 51, 558–568, https://doi.org/10.4319/lo.2006.51.1_part_2.0558, 2006.
Gihring, T. M., Lavik, G., Kuypers, M. M. M., and Kostka, J. E.: Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway), Limnol. Oceanogr., 55, 740–752, https://doi.org/10.4319/lo.2010.55.2.0740, 2010a.
Gihring, T. M., Canion, A., Riggs, A., Huettel, M., and Kostk, J. E.: Denitrification in shallow, sublittoral Gulf of Mexico permeable sediments, Limnol. Oceanogr., 55, 43–54, https://doi.org/10.4319/lo.2010.55.1.0043, 2010b.
Glover, D. M., Jenkins, W. J., and Doney, S. C.: Modeling Methods for Marine Science, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511975721, 2011.
Glud, R. N., Holby, O., Hoffmann, F., and Canfield, D. E.: Benthic mineralization and exchange in Arctic sediments (Svalbard, Norway), Mar. Ecol. Prog. Ser., 173, 237–251, https://doi.org/10.3354/meps173237, 1998.
Glud, R. N., Thamdrup, B., Stahl, H., Wenzhoefer, F., Glud, A., Nomaki, H., Oguri, K., Revsbech, N. P., and Kitazato, H.: Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan), Limnol. Oceanogr., 54, 723–734, https://doi.org/10.4319/lo.2009.54.3.0723, 2009.
He, G., Deng, D., Delgado-Baquerizo, M., Liu, W., and Zhang, Q.: Global Relative Importance of Denitrification and Anammox in Microbial Nitrogen Loss Across Terrestrial and Aquatic Ecosystems, Adv. Sci., 12, 2406857, https://doi.org/10.1002/advs.202406857, 2025.
Hellemann, D., Tallberg, P., Bartl, I., Voss, M., and Hietanen, S.: Denitrification in an oligotrophic estuary: a delayed sink for riverine nitrate, Mar. Ecol. Prog. Ser., 583, 63–80, https://doi.org/10.3354/meps12359, 2017.
Hellemann, D., Tallberg, P., Aalto, S. L., Bartoli, M., and Hietanen, S.: Seasonal cycle of benthic denitrification and DNRA in the aphotic coastal zone, northern Baltic Sea, Mar. Ecol. Prog. Ser., 637, 15–28, https://doi.org/10.3354/meps13259, 2020.
Hietanen, S. and Kuparinen, J.: Seasonal and short-term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea, Hydrobiologia, 596, 67–77, https://doi.org/10.1007/s10750-007-9058-5, 2008.
Hoffman, D. K., McCarthy, M. J., Newell, S. E., Gardner, W. S., Niewinski, D. N., Gao, J., and Mutchler, T. R.: Relative Contributions of DNRA and Denitrification to Nitrate Reduction in Thalassia testudinum Seagrass Beds in Coastal Florida (USA), Estuaries Coasts, 42, 1001–1014, https://doi.org/10.1007/s12237-019-00540-2, 2019.
Hou, E., Wen, D., Jiang, L., Luo, X., Kuang, Y., Lu, X., Chen, C., Allen, K. T., He, X., Huang, X., and Luo, Y.: Latitudinal patterns of terrestrial phosphorus limitation over the globe, Ecol. Lett., 24, 1420–1431, https://doi.org/10.1111/ele.13761, 2021.
Hsu, T.-C. and Kao, S.-J.: Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique, Biogeosciences, 10, 7847–7862, https://doi.org/10.5194/bg-10-7847-2013, 2013.
Jäntti, H. and Hietanen, S.: The Effects of Hypoxia on Sediment Nitrogen Cycling in the Baltic Sea, AMBIO, 41, 161–169, https://doi.org/10.1007/s13280-011-0233-6, 2012.
Jäntti, H., Stange, F., Leskinen, E., and Hietanen, S.: Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea, Aquat. Microb. Ecol., 63, 171–181, https://doi.org/10.3354/ame01492, 2011.
Kennedy, C. D.: Nitrogen Overload: Environmental Degradation, Ramifications, and Economic Costs, Groundwater, 59, 161–162, https://doi.org/10.1111/gwat.13066, 2021.
Kessler, A. J., Roberts, K. L., Bissett, A., and Cook, P. L. M.: Biogeochemical Controls on the Relative Importance of Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Estuaries, Global Biogeochem. Cy., 32, 1045–1057, https://doi.org/10.1029/2018GB005908, 2018.
Koop-Jakobsen, K. and Giblin, A. E.: The effect of increased nitrate loading on nitrate reduction via denitrification and DNRA in salt marsh sediments, Limnol. Oceanogr., 55, 789–802, https://doi.org/10.4319/lo.2010.55.2.0789, 2010.
Laffitte, B., Zhou, T., Yang, Z., Ciais, P., Jian, J., Huang, N., Seyler, B. C., Pei, X., and Tang, X.: Timescale Matters: Finer Temporal Resolution Influences Driver Contributions to Global Soil Respiration, Glob. Change Biol., 31, e70118, https://doi.org/10.1111/gcb.70118, 2025.
Li, N., Somes, C. J., Landolfi, A., Chien, C.-T., Pahlow, M., and Oschlies, A.: Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model, Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, 2024.
Ling, J., Dungait, J. A. J., Delgado-Baquerizo, M., Cui, Z., Zhou, R., Zhang, W., Gao, Q., Chen, Y., Yue, S., Kuzyakov, Y., Zhang, F., Chen, X., and Tian, J.: Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide, Nat. Commun., 16, 3009, https://doi.org/10.1038/s41467-025-57981-6, 2025.
Liu, C., Hou, L., Liu, M., Zheng, Y., Yin, G., Han, P., Dong, H., Gao, J., Gao, D., Chang, Y., and Zhang, Z.: Coupling of denitrification and anaerobic ammonium oxidation with nitrification in sediments of the Yangtze Estuary: Importance and controlling factors, Estuarine, Coastal Shelf Sci., 220, 64–72, https://doi.org/10.1016/j.ecss.2019.02.043, 2019.
Liu, C., Hou, L., Liu, M., Zheng, Y., Yin, G., Dong, H., Liang, X., Li, X., Gao, D., and Zhang, Z.: In situ nitrogen removal processes in intertidal wetlands of the Yangtze Estuary, J. Environ. Sci., 93, 91–97, https://doi.org/10.1016/j.jes.2020.03.005, 2020.
Magri, M., Benelli, S., Bonaglia, S., Zilius, M., Castaldelli, G., and Bartoli, M.: The effects of hydrological extremes on denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and mineralization in a coastal lagoon, Sci. Total Environ., 740, 140169, https://doi.org/10.1016/j.scitotenv.2020.140169, 2020.
McTigue, N. D., Gardner, W. S., Dunton, K. H., and Hardison, A. K.: Biotic and abiotic controls on co-occurring nitrogen cycling processes in shallow Arctic shelf sediments, Nat. Commun., 7, 13145, https://doi.org/10.1038/ncomms13145, 2016.
Meyer, R. L., Risgaard-Petersen, N., and Allen, D. E.: Correlation between Anammox Activity and Microscale Distribution of Nitrite in a Subtropical Mangrove Sediment, Appl. Environ. Microb., 71, 6142–6149, https://doi.org/10.1128/AEM.71.10.6142-6149.2005, 2005.
Middelburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R.: Denitrification in marine sediments: A model study, Global Biogeochem. Cy., 10, 661–673, https://doi.org/10.1029/96GB02562, 1996.
Na, T., Thamdrup, B., Kim, B., Kim, S.-H., Vandieken, V., Kang, D.-J., and Hyun, J.-H.: N2 production through denitrification and anammox across the continental margin (shelf–slope–rise) of the Ulleung Basin, East Sea, Limnol. Oceanogr., 63, S410–S424, https://doi.org/10.1002/lno.10750, 2018.
Neubacher, E. C., Parker, R. E., and Trimmer, M.: Short-term hypoxia alters the balance of the nitrogen cycle in coastal sediments, Limnol. Oceanogr., 56, 651–665, https://doi.org/10.4319/lo.2011.56.2.0651, 2011.
Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing, FEMS Microbiol. Lett., 86, 357–362, https://doi.org/10.1016/0378-1097(92)90800-4, 1992.
Nielsen, L. P. and Glud, R. N.: Denitrification in a coastal sediment measured in situ by the nitrogen isotope pairing technique applied to a benthic flux chamber, Mar. Ecol. Prog. Ser., 137, 181–186, https://doi.org/10.3354/meps137181, 1996.
Poulin, P., Pelletier, E., and Saint-Louis, R.: Seasonal variability of denitrification efficiency in northern salt marshes: An example from the St. Lawrence Estuary, Mar. Environ. Res., 63, 490–505, https://doi.org/10.1016/j.marenvres.2006.12.003, 2007.
Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogués-Bravo, D., Petri, S., Porkka, M., Rahmstorf, S., Schaphoff, S., Thonicke, K., Tobian, A., Virkki, V., Wang-Erlandsson, L., Weber, L., and Rockström, J.: Earth beyond six of nine planetary boundaries, Sci. Adv., 9, eadh2458, https://doi.org/10.1126/sciadv.adh2458, 2023.
Rios-Del Toro, E. E., Valenzuela, E. I., López-Lozano, N. E., Cortés-Martínez, M. G., Sánchez-Rodríguez, M. A., Calvario-Martínez, O., Sánchez-Carrillo, S., and Cervantes, F. J.: Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments, Biodegradation, 29, 429–442, https://doi.org/10.1007/s10532-018-9839-8, 2018.
Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.: Application of the isotope pairing technique in sediments where anammox and denitrification coexist, Limnol. Oceanogr. Meth., 1, 63–73, https://doi.org/10.4319/lom.2003.1.63, 2003.
Risgaard-Petersen, N., Meyer, R. L., Schmid, M., Jetten, M., S. M., Enrich-Prast, A., Rysgaard, S., and Revsbech, N. P.: Anaerobic ammonium oxidation in an estuarine sediment, Aquat. Microb. Ecol., 36, 293–304, https://doi.org/10.3354/ame036293, 2004.
Robertson, E. K., Bartoli, M., Brüchert, V., Dalsgaard, T., Hall, P. O. J., Hellemann, D., Hietanen, S., Zilius, M., and Conley, D. J.: Application of the isotope pairing technique in sediments: Use, challenges, and new directions, Limnol. Oceanogr. Meth., 17, 112–136, https://doi.org/10.1002/lom3.10303, 2019.
Rosales Villa, A. R., Jickells, T. D., Sivyer, D. B., Parker, E. R., and Thamdrup, B.: Benthic nitrogen cycling in the North Sea, Cont. Shelf Res., 185, 31–36, https://doi.org/10.1016/j.csr.2018.05.005, 2019.
Rysgaard, S., Finster, K., and Dahlgaard, H.: Primary production, nutrient dynamics and mineralisation in a northeastern Greenland fjord during the summer thaw, Polar Biol., 16, 497–506, https://doi.org/10.1007/BF02329069, 1996a.
Rysgaard, S., Risgaard-Petersen, N., and Sloth, N. P.: Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in Southern France, Hydrobiologia, 329, 133–141, https://doi.org/10.1007/BF00034553, 1996b.
Rysgaard, S., Fossing, H., and Jensen, M. M.: Organic matter degradation through oxygen respiration, denitrification, and manganese, iron, and sulfate reduction in marine sediments (the Kattegat and the Skagerrak), Ophelia, 55, 77–91, https://doi.org/10.1080/00785236.2001.10409475, 2001.
Rysgaard, S., Glud, R. N., Risgaard-Petersen, N., and Dalsgaard, T.: Denitrification and anammox activity in Arctic marine sediments, Limnol. Oceanogr., 49, 1493–1502, https://doi.org/10.4319/lo.2004.49.5.1493, 2004.
Salk, K. R., Erler, D. V., Eyre, B. D., Carlson-Perret, N., and Ostrom, N. E.: Unexpectedly high degree of anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique, Geochim. Cosmochim. Ac., 211, 64–78, https://doi.org/10.1016/j.gca.2017.05.012, 2017.
Samperio-Ramos, G., Hernández-Sánchez, O., Camacho-Ibar, V. F., Pajares, S., Gutiérrez, A., Sandoval-Gil, J. M., Reyes, M., De Gyves, S., Balint, S., Oczkowski, A., Ponce-Jahen, S. J., and Cervantes, F. J.: Ammonium loss microbiologically mediated by Fe(III) and Mn(IV) reduction along a coastal lagoon system, Chemosphere, 349, 140933, https://doi.org/10.1016/j.chemosphere.2023.140933, 2024.
Sokoll, S., Holtappels, M., Lam, P., Collins, G., Schlüter, M., Lavik, G., and Kuypers, M.: Benthic Nitrogen Loss in the Arabian Sea Off Pakistan, Front. Microbiol., 3, 395, https://doi.org/10.3389/fmicb.2012.00395, 2012.
Song, G., Liu, S., Zhu, Z., Zhai, W., Zhu, C., and Zhang, J.: Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea, Deep Sea-Res. Pt. II, 124, 53–63, https://doi.org/10.1016/j.dsr2.2015.04.012, 2016a.
Song, G., Liu, S., Zhang, J., Zhu, Z., Zhang, G., Marchant, H. K., Kuypers, M. M. M., and Lavik, G.: Response of benthic nitrogen cycling to estuarine hypoxia, Limnol. Oceanogr., 66, 652–666, https://doi.org/10.1002/lno.11630, 2021.
Song, G. D., Liu, S. M., Kuypers, M. M. M., and Lavik, G.: Application of the isotope pairing technique in sediments where anammox, denitrification, and dissimilatory nitrate reduction to ammonium coexist, Limnol. Oceanogr. Meth., 14, 801–815, https://doi.org/10.1002/lom3.10127, 2016b.
Steingruber, S. M., Friedrich, J., Gächter, R., and Wehrli, B.: Measurement of Denitrification in Sediments with the 15N Isotope Pairing Technique, Appl. Environ. Microb., 67, 3771–3778, https://doi.org/10.1128/AEM.67.9.3771-3778.2001, 2001.
Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K. T., Webb, R., Kuenen, J. G., and Jetten, M. S. M.: Missing lithotroph identified as new planctomycete, Nature, 400, 446–449, https://doi.org/10.1038/22749, 1999.
Susanna, H.: Anaerobic ammonium oxidation (anammox) in sediments of the Gulf of Finland, Aquat. Microb. Ecol., 48, 197–205, https://doi.org/10.3354/ame048197, 2007.
Tan, E., Zou, W., Jiang, X., Wan, X., Hsu, T.-C., Zheng, Z., Chen, L., Xu, M., Dai, M., and Kao, S.-J.: Organic matter decomposition sustains sedimentary nitrogen loss in the Pearl River Estuary, China, Sci. Total Environ., 648, 508–517, https://doi.org/10.1016/j.scitotenv.2018.08.109, 2019.
Tan, E., Zou, W., Zheng, Z., Yan, X., Du, M., Hsu, T.-C., Tian, L., Middelburg, J. J., Trull, T. W., and Kao, S.-J.: Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation, Nat. Clim. Change, 10, 349–355, https://doi.org/10.1038/s41558-020-0723-2, 2020.
Tan, E., Hsu, T.-C., Zou, W., Yan, X., Huang, Z., Chen, B., Chang, Y., Zheng, Z., Zheng, L., Xu, M., Tian, L., and Kao, S.-J.: Quantitatively deciphering the roles of sediment nitrogen removal in environmental and climatic feedbacks in two subtropical estuaries, Water Res., 224, 119121, https://doi.org/10.1016/j.watres.2022.119121, 2022.
Thamdrup, B.: New Pathways and Processes in the Global Nitrogen Cycle, Annu. Rev. Ecol. Evol. S., 43, 407–428, https://doi.org/10.1146/annurev-ecolsys-102710-145048, 2012.
Thamdrup, B. and Dalsgaard, T.: Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments, Appl. Environ. Microb., 68, 1312–1318, https://doi.org/10.1128/AEM.68.3.1312-1318.2002, 2002.
Torregrosa-Crespo, J., Miralles-Robledillo, J. M., Bernabeu, E., Pire, C., and Martínez-Espinosa, R. M.: Denitrification in hypersaline and coastal environments, FEMS Microbiol. Lett., 370, fnad066, https://doi.org/10.1093/femsle/fnad066, 2023.
Trimmer, M. and Nicholls, J. C.: Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic, Limnol. Oceanogr., 54, 577–589, https://doi.org/10.4319/lo.2009.54.2.0577, 2009.
Trimmer, M., Engström, P., and Thamdrup, B.: Stark Contrast in Denitrification and Anammox across the Deep Norwegian Trench in the Skagerrak, Appl. Environ. Microb., 79, 7381–7389, https://doi.org/10.1128/AEM.01970-13, 2013.
Trimmer, M., Nicholls, J. C., and Deflandre, B.: Anaerobic Ammonium Oxidation Measured in Sediments along the Thames Estuary, United Kingdom, Appl. Environ. Microb., 69, 6447–6454, https://doi.org/10.1128/AEM.69.11.6447-6454.2003, 2003.
Trimmer, M., Risgaard-Petersen, N., Nicholls, J. C., and Engström, P.: Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores, Mar. Ecol. Prog. Ser., 326, 37–47, https://doi.org/10.3354/meps326037, 2006.
Usui, T., Koike, I., and Ogura, N.: N2O Production, Nitrification and Denitrification in an Estuarine Sediment, Estuarine, Coastal Shelf Sci., 52, 769–781, https://doi.org/10.1006/ecss.2000.0765, 2001.
Uusheimo, S., Huotari, J., Tulonen, T., Aalto, S. L., Rissanen, A. J., and Arvola, L.: High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate, Environ. Sci. Technol., 52, 13343–13350, https://doi.org/10.1021/acs.est.8b03032, 2018.
Vance-Harris, C. and Ingall, E.: Denitrification pathways and rates in the sandy sediments of the Georgia continental shelf, USA, Geochem. T., 6, 12, https://doi.org/10.1186/1467-4866-6-12, 2005.
van de Graaf, A. A., Mulder, A., de Bruijn, P., Jetten, M. S., Robertson, L. A., and Kuenen, J. G.: Anaerobic oxidation of ammonium is a biologically mediated process, Appl. Environ. Microb., 61, 1246–1251, https://doi.org/10.1128/aem.61.4.1246-1251.1995, 1995.
Wan, R., Ge, L., Chen, B., Tang, J.-M., Tan, E., Zou, W., Tian, L., Li, M., Liu, Z., Hou, L., Yin, G., and Kao, S.-J.: Permeability decides the effect of antibiotics on sedimentary nitrogen removal in Jiulong River Estuary, Water Res., 243, 120400, https://doi.org/10.1016/j.watres.2023.120400, 2023.
Welsh, D. T., Bartoli, M., Nizzoli, D., Castaldelli, G., Riou, S. A., and Viaroli, P.: Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow, Mar. Ecol. Prog. Ser., 208, 65–77, https://doi.org/10.3354/meps208065, 2000.
Yang, J.-Y. T., Hsu, T.-C., Tan, E., Lee, K., Krom, M. D., Kang, S., Dai, M., Hsiao, S. S.-Y., Yan, X., Zou, W., Tian, L., and Kao, S.-J.: Sedimentary processes dominate nitrous oxide production and emission in the hypoxic zone off the Changjiang River estuary, Sci. Total Environ., 827, 154042, https://doi.org/10.1016/j.scitotenv.2022.154042, 2022.
Yin, G., Hou, L., Zong, H., Ding, P., Liu, M., Zhang, S., Cheng, X., and Zhou, J.: Denitrification and Anaerobic Ammonium Oxidization Across the Sediment–Water Interface in the Hypereutrophic Ecosystem, Jinpu Bay, in the Northeastern Coast of China, Estuaries Coasts, 38, 211–219, https://doi.org/10.1007/s12237-014-9798-1, 2015.
Short summary
Denitrification and anaerobic ammonium oxidation (anammox) are two important nitrogen removal pathways that convert reactive nitrogen into dinitrogen gas. Here, we construct a global database on actual nitrogen loss rates, covering over 30 years of observations, measured in coastal and marine sediments. This work provides a global overview of the biogeography and potential controlling factors of denitrification and anammox and highlights the potential applications of this database.
Denitrification and anaerobic ammonium oxidation (anammox) are two important nitrogen removal...
Altmetrics
Final-revised paper
Preprint