Articles | Volume 17, issue 7
https://doi.org/10.5194/essd-17-3521-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3521-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global database of actual nitrogen loss rates in coastal and marine sediments
Yongkai Chang
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Ehui Tan
CORRESPONDING AUTHOR
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Dengzhou Gao
Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
Cheng Liu
Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, China
Zongxiao Zhang
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
Zhixiong Huang
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Jianan Liu
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Yu Han
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Zifu Xu
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Bin Chen
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
Shuh-Ji Kao
CORRESPONDING AUTHOR
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, China
Related authors
No articles found.
Xiaofeng Dai, Mingming Chen, Xianhui Wan, Ehui Tan, Jialing Zeng, Nengwang Chen, Shuh-Ji Kao, and Yao Zhang
Biogeosciences, 19, 3757–3773, https://doi.org/10.5194/bg-19-3757-2022, https://doi.org/10.5194/bg-19-3757-2022, 2022
Short summary
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
Related subject area
Domain: ESSD – Ocean | Subject: Chemical oceanography
Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE)
A continual-learning-based multilayer perceptron for improved reconstruction of three-dimensional nitrate concentrations
An updated synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2023: the SNAPO-CO2-v2 dataset
A global monthly 3D field of seawater pH over 3 decades: a machine learning approach
Mapping the global distribution of lead and its isotopes in seawater with explainable machine learning
The high-resolution global shipping emission inventory by the Shipping Emission Inventory Model (SEIM)
A machine-learning reconstruction of sea surface pCO2 in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
A consistent ocean oxygen profile dataset with new quality control and bias assessment
CO2 and hydrography acquired by autonomous surface vehicles from the Atlantic Ocean to the Mediterranean Sea: data correction and validation
Exploring the CO2 fugacity along the east coast of South America aboard the schooner Tara
A consistent regional dataset of dissolved oxygen in the Western Mediterranean Sea (2004–2023): O2WMED
A 20-year (1998–2017) global sea surface dimethyl sulfide gridded dataset with daily resolution
Distributions of in situ parameters, dissolved (in)organic carbon, and nutrients in the water column and pore waters of Arctic fjords (western Spitsbergen) during a melting season
Climatological distribution of ocean acidification variables along the North American ocean margins
Updated climatological mean ΔfCO2 and net sea–air CO2 flux over the global open ocean regions
The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product
Synthesis Product for Ocean Time Series (SPOTS) – a ship-based biogeochemical pilot
French coastal network for carbonate system monitoring: the CocoriCO2 dataset
A global database of dissolved organic matter (DOM) concentration measurements in coastal waters (CoastDOM v1)
A decade-long cruise time series (2008–2018) of physical and biogeochemical conditions in the southern Salish Sea, North America
A regional pCO2 climatology of the Baltic Sea from in situ pCO2 observations and a model-based extrapolation approach
A 12-year-long (2010–2021) hydrological and biogeochemical dataset in the Sicily Channel (Mediterranean Sea)
A decade of marine inorganic carbon chemistry observations in the northern Gulf of Alaska – insights into an environment in transition
A novel sea surface pCO2-product for the global coastal ocean resolving trends over 1982–2020
A high-resolution synthesis dataset for multistressor analyses along the US West Coast
CMEMS-LSCE: a global, 0.25°, monthly reconstruction of the surface ocean carbonate system
A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset
A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020)
Database of nitrification and nitrifiers in the global ocean
GOBAI-O2: temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly 2 decades
Spatiotemporal variability in pH and carbonate parameters on the Canadian Atlantic continental shelf between 2014 and 2022
Barium in seawater: dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning
Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N2 fixation
High-frequency, year-round time series of the carbonate chemistry in a high-Arctic fjord (Svalbard)
OceanSODA-UNEXE: a multi-year gridded Amazon and Congo River outflow surface ocean carbonate system dataset
Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer
Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis
OceanSODA-MDB: a standardised surface ocean carbonate system dataset for model–data intercomparisons
Hyperspectral reflectance dataset of pristine, weathered, and biofouled plastics
A database of marine macronutrient, temperature and salinity measurements made around the highly productive island of South Georgia, the Scotia Sea and the Antarctic Peninsula between 1980 and 2009
GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product
Oil slicks in the Gulf of Guinea – 10 years of Envisat Advanced Synthetic Aperture Radar observations
Brendan R. Carter, Jörg Schwinger, Rolf Sonnerup, Andrea J. Fassbender, Jonathan D. Sharp, Larissa M. Dias, and Daniel E. Sandborn
Earth Syst. Sci. Data, 17, 3073–3088, https://doi.org/10.5194/essd-17-3073-2025, https://doi.org/10.5194/essd-17-3073-2025, 2025
Short summary
Short summary
We infer ocean gas exchange and circulation from ocean tracer measurements and use this to create code to estimate the amount of carbon dioxide dissolved in the ocean that is there due to human emissions of CO2 into the atmosphere. The code works across the ocean depths for the past, present, or future from information about the location, temperature, and salinity of the seawater. We produce a data product with estimates throughout the ocean throughout the last ~300 and the next ~500 years.
Xiang Yu, Huadong Guo, Jiahua Zhang, Yi Ma, Xiaopeng Wang, Guangsheng Liu, Mingming Xing, Nuo Xu, and Ayalkibet M. Seka
Earth Syst. Sci. Data, 17, 2735–2759, https://doi.org/10.5194/essd-17-2735-2025, https://doi.org/10.5194/essd-17-2735-2025, 2025
Short summary
Short summary
Mapping the 3D distribution of oceanic nitrate is challenging. We developed a continual-learning-based multilayer perceptron, integrating prior knowledge from numerical models and BGC-Argo validation to reconstruct a pan-European 3D nitrate field from 2010 to 2023 (0–2000 m depth, monthly, 0.25° horizontal resolution) using sea surface environmental features. This dataset helps bridge observational gaps and enhances understanding of the ocean's interior environment.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025, https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones, and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and includes the quality flag for each sample.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025, https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. This pH change has been globally documented in the surface ocean, but information is limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years from 1992 to 2020 and depths from 0 to 2000 m.
Arianna Olivelli, Rossella Arcucci, Mark Rehkämper, and Tina van de Flierdt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-17, https://doi.org/10.5194/essd-2025-17, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
In this study, we used machine learning models to produce the first global maps of Pb concentrations and isotope compositions in the ocean. We found that (i) the surface Indian Ocean has the highest levels of pollution, (ii) pollution from previous decades is sinking in the North Atlantic and Pacific Ocean, and (iii) waters carrying Pb pollution are spreading from the Southern Ocean throughout the Southern Hemisphere at intermediate depths.
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data, 17, 277–292, https://doi.org/10.5194/essd-17-277-2025, https://doi.org/10.5194/essd-17-277-2025, 2025
Short summary
Short summary
This study presents a detailed global dataset on ship emissions, covering the years 2013 and 2016–2021, using advanced modeling techniques. The dataset includes emissions data for four types of greenhouse gases and five types of air pollutants. The data, available for research, offer valuable insights into ship emission spatiotemporal patterns by vessel type and age, providing a solid data foundation for fine-scale scientific research and shipping emission mitigation.
Zelun Wu, Wenfang Lu, Alizée Roobaert, Luping Song, Xiao-Hai Yan, and Wei-Jun Cai
Earth Syst. Sci. Data, 17, 43–63, https://doi.org/10.5194/essd-17-43-2025, https://doi.org/10.5194/essd-17-43-2025, 2025
Short summary
Short summary
This study addresses the lack of comprehensive sea surface partial pressure of CO2 (pCO2) data in the North American Atlantic Coastal Ocean Margin (NAACOM) by developing the Reconstructed Coastal Acidification Database (ReCAD-NAACOM-pCO2). The product reconstructed sea surface pCO2 from 1993 to 2021 using machine-learning and environmental data, capturing seasonal cycles, regional variations, and long-term trends of pCO2 for coastal carbon research.
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, Fei Chai, and Zhetao Tan
Earth Syst. Sci. Data, 16, 5503–5530, https://doi.org/10.5194/essd-16-5503-2024, https://doi.org/10.5194/essd-16-5503-2024, 2024
Short summary
Short summary
High-quality observations are crucial to understanding ocean oxygen changes and their impact on marine biota. We developed a quality control procedure to ensure the high quality of the heterogeneous ocean oxygen data archive and to prove data consistency. Oxygen data obtained by means of oxygen sensors on autonomous Argo floats were compared with reference data based on the chemical analysis, and estimates of the residual offsets were obtained.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Christopher Hunt, Thomas Linkowski, Alison Chase, Nils Haentjens, Pedro C. Junger, Stephane Pesant, and Douglas Vandemark
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-452, https://doi.org/10.5194/essd-2024-452, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The air-sea CO2 flux in coastal waters plays a key role in the global carbon budget, yet remains poorly understood. In 2021, the Tara schooner collected 14,000 km of CO2 fugacity (fCO2) data along the South American coast. This dataset improves our understanding of fCO2 in the under-sampled Brazilian coastal region, and provides a unique insight into the complex biogeochemistry of the Amazon River-Ocean continuum.
Malek Belgacem, Katrin Schroeder, Siv K. Lauvset, Marta Álvarez, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-365, https://doi.org/10.5194/essd-2024-365, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Having consistent dissolved Oxygen (O2) data is crucial for understanding the health of our oceans. By monitoring O2 levels, we can spot changes in water quality. Reliable data helps scientist and policymakers make informed decisions to protect marine environments, ensuring practices that benefit both wildlife and people. The Mediterranean Sea is particularly sensitive to climate change. O2WMED dataset- a compilation of data that provides a clear picture of O2 changes over the past 20 years.
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
Li-Qing Jiang, Tim P. Boyer, Christopher R. Paver, Hyelim Yoo, James R. Reagan, Simone R. Alin, Leticia Barbero, Brendan R. Carter, Richard A. Feely, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 3383–3390, https://doi.org/10.5194/essd-16-3383-2024, https://doi.org/10.5194/essd-16-3383-2024, 2024
Short summary
Short summary
In this paper, we unveil a data product featuring ten coastal ocean acidification variables. These indicators are provided on 1°×1° spatial grids at 14 standardized depth levels, ranging from the surface to a depth of 500 m, along the North American ocean margins.
Amanda R. Fay, David R. Munro, Galen A. McKinley, Denis Pierrot, Stewart C. Sutherland, Colm Sweeney, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 2123–2139, https://doi.org/10.5194/essd-16-2123-2024, https://doi.org/10.5194/essd-16-2123-2024, 2024
Short summary
Short summary
Presented here is a near-global monthly climatological estimate of the difference between atmosphere and ocean carbon dioxide concentrations. The ocean's ability to take up carbon, both now and in the future, is defined by this difference in concentrations. With over 30 million measurements of surface ocean carbon over the last 40 years and utilization of an extrapolation technique, a mean estimate of surface ocean ΔfCO2 is presented.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Dana Greeley, Beth Curry, Julian Herndon, and Mark Warner
Earth Syst. Sci. Data, 16, 837–865, https://doi.org/10.5194/essd-16-837-2024, https://doi.org/10.5194/essd-16-837-2024, 2024
Short summary
Short summary
The Salish cruise data product provides 2008–2018 oceanographic data from the southern Salish Sea and nearby coastal sampling stations. Temperature, salinity, oxygen, nutrient, and dissolved inorganic carbon measurements from 715 oceanographic profiles will facilitate further study of ocean acidification, hypoxia, and marine heatwave impacts in this region. Three subsets of the compiled datasets from 35 cruises are available with consistent formatting and multiple commonly used units.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Francesco Placenti, Marco Torri, Katrin Schroeder, Mireno Borghini, Gabriella Cerrati, Angela Cuttitta, Vincenzo Tancredi, Carmelo Buscaino, and Bernardo Patti
Earth Syst. Sci. Data, 16, 743–752, https://doi.org/10.5194/essd-16-743-2024, https://doi.org/10.5194/essd-16-743-2024, 2024
Short summary
Short summary
Oceanographic surveys were conducted in the Strait of Sicily between 2010 and 2021. This paper provides a description of the time series of nutrients and hydrological data collected in this zone. The dataset fills an important gap in field observations of a crucial area where exchanges with the Mediterranean sub-basin take place, providing support for studies aimed at describing ongoing processes and at realizing reliable projections of the effects of these processes in the near future.
Natalie M. Monacci, Jessica N. Cross, Wiley Evans, Jeremy T. Mathis, and Hongjie Wang
Earth Syst. Sci. Data, 16, 647–665, https://doi.org/10.5194/essd-16-647-2024, https://doi.org/10.5194/essd-16-647-2024, 2024
Short summary
Short summary
As carbon dioxide is released into the air through human-generated activity, about one third dissolves into the surface water of oceans, lowering pH and increasing acidity. This is known as ocean acidification. We merged 10 years of ocean carbon data and made them publicly available for adaptation planning during a time of change. The data confirmed that Alaska is already experiencing the effects of ocean acidification due to naturally cold water, high productivity, and circulation patterns.
Alizée Roobaert, Pierre Regnier, Peter Landschützer, and Goulven G. Laruelle
Earth Syst. Sci. Data, 16, 421–441, https://doi.org/10.5194/essd-16-421-2024, https://doi.org/10.5194/essd-16-421-2024, 2024
Short summary
Short summary
The quantification of the coastal air–sea CO2 exchange (FCO2) has improved in recent years, but its multiannual variability remains unclear. This study, based on interpolated observations, reconstructs the longest global time series of coastal FCO2 (1982–2020). Results show the coastal ocean acts as a CO2 sink, with increasing intensity over time. This new coastal FCO2-product allows establishing regional carbon budgets and provides new constraints for closing the global carbon cycle.
Esther G. Kennedy, Meghan Zulian, Sara L. Hamilton, Tessa M. Hill, Manuel Delgado, Carina R. Fish, Brian Gaylord, Kristy J. Kroeker, Hannah M. Palmer, Aurora M. Ricart, Eric Sanford, Ana K. Spalding, Melissa Ward, Guadalupe Carrasco, Meredith Elliott, Genece V. Grisby, Evan Harris, Jaime Jahncke, Catherine N. Rocheleau, Sebastian Westerink, and Maddie I. Wilmot
Earth Syst. Sci. Data, 16, 219–243, https://doi.org/10.5194/essd-16-219-2024, https://doi.org/10.5194/essd-16-219-2024, 2024
Short summary
Short summary
We present a new synthesis of oceanographic observations along the US West Coast that has been optimized for multiparameter investigations of coastal warming, deoxygenation, and acidification risk. This synthesis includes both previously published and new observations, all of which have been consistently formatted and quality-controlled to facilitate high-resolution investigations of climate risks and consequences across a wide range of spatial and temporal scales.
Thi-Tuyet-Trang Chau, Marion Gehlen, Nicolas Metzl, and Frédéric Chevallier
Earth Syst. Sci. Data, 16, 121–160, https://doi.org/10.5194/essd-16-121-2024, https://doi.org/10.5194/essd-16-121-2024, 2024
Short summary
Short summary
CMEMS-LSCE leads as the first global observation-based reconstructions of six carbonate system variables for the years 1985–2021 at monthly and 0.25° resolutions. The high-resolution reconstructions outperform their 1° counterpart in reproducing horizontal and temporal gradients of observations over various oceanic regions to nearshore time series stations. New datasets can be exploited in numerous studies, including monitoring changes in ocean carbon uptake and ocean acidification.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Jean-Pierre Gattuso, Samir Alliouane, and Philipp Fischer
Earth Syst. Sci. Data, 15, 2809–2825, https://doi.org/10.5194/essd-15-2809-2023, https://doi.org/10.5194/essd-15-2809-2023, 2023
Short summary
Short summary
The Arctic Ocean is subject to high rates of ocean warming and acidification, with critical implications for marine organisms, ecosystems and the services they provide. We report here on the first high-frequency (1 h), multi-year (5 years) dataset of the carbonate system at a coastal site in a high-Arctic fjord (Kongsfjorden, Svalbard). This site is a significant sink for CO2 every month of the year (9 to 17 mol m-2 yr-1). The saturation state of aragonite can be as low as 1.3.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Yayoi Inomata and Michio Aoyama
Earth Syst. Sci. Data, 15, 1969–2007, https://doi.org/10.5194/essd-15-1969-2023, https://doi.org/10.5194/essd-15-1969-2023, 2023
Short summary
Short summary
The behavior of 137Cs in surface seawater in the global ocean was analyzed by using the HAMGlobal2021 database. Approximately 32 % of 137Cs existed in the surface seawater in 1970. The 137Cs released into the North Pacific Ocean by large-scale nuclear weapons tests was transported to the Indian Ocean and then the Atlantic Ocean on a 4–5 decadal timescale, whereas 137Cs released from nuclear reprocessing plants was transported northward to the Arctic Ocean on a decadal scale.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Giulia Leone, Ana I. Catarino, Liesbeth De Keukelaere, Mattias Bossaer, Els Knaeps, and Gert Everaert
Earth Syst. Sci. Data, 15, 745–752, https://doi.org/10.5194/essd-15-745-2023, https://doi.org/10.5194/essd-15-745-2023, 2023
Short summary
Short summary
This paper illustrates a dataset of hyperspectral reflectance measurements of macroplastics. Plastic samples consisted of pristine, artificially weathered, and biofouled plastic items and field plastic debris. Samples were measured in dry conditions and a subset of plastics in wet and submerged conditions. This dataset can be used to better understand plastic optical features when exposed to natural agents and to support the development of algorithms for monitoring environmental plastics.
Michael J. Whitehouse, Katharine R. Hendry, Geraint A. Tarling, Sally E. Thorpe, and Petra ten Hoopen
Earth Syst. Sci. Data, 15, 211–224, https://doi.org/10.5194/essd-15-211-2023, https://doi.org/10.5194/essd-15-211-2023, 2023
Short summary
Short summary
We present a database of Southern Ocean macronutrient, temperature and salinity measurements collected on 20 oceanographic cruises between 1980 and 2009. Vertical profiles and underway surface measurements were collected year-round as part of an integrated ecosystem study. Our data provide a novel view of biogeochemical cycling in biologically productive regions across a critical period in recent climate history and will contribute to a better understanding of the drivers of primary production.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Zhour Najoui, Nellya Amoussou, Serge Riazanoff, Guillaume Aurel, and Frédéric Frappart
Earth Syst. Sci. Data, 14, 4569–4588, https://doi.org/10.5194/essd-14-4569-2022, https://doi.org/10.5194/essd-14-4569-2022, 2022
Short summary
Short summary
Oil spills could have serious repercussions for both the marine environment and ecosystem. The Gulf of Guinea is a very active area with respect to maritime traffic as well as oil and gas exploitation (platforms). As a result, the region is subject to a large number of oil pollution events. This study aims to detect oil slicks in the Gulf of Guinea and analyse their spatial and temporal distribution using satellite data.
Cited articles
Adame, M. F., Roberts, M. E., Hamilton, D. P., Ndehedehe, C. E., Reis, V., Lu, J., Griffiths, M., Curwen, G., and Ronan, M.: Tropical Coastal Wetlands Ameliorate Nitrogen Export During Floods, Front. Mar. Sci., 6, 671, https://doi.org/10.3389/fmars.2019.00671, 2019.
Aelion, C. M. and Warttinger, U.: Sulfide Inhibition of Nitrate Removal in Coastal Sediments, Estuaries Coasts, 33, 798–803, https://doi.org/10.1007/s12237-010-9275-4, 2010.
Anschutz, P., Sundby, B., Lefrançois, L., Luther, G. W., and Mucci, A.: Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments, Geochim. Cosmochim. Ac., 64, 2751–2763, https://doi.org/10.1016/S0016-7037(00)00400-2, 2000.
Arroyave Gómez, D. M., Gallego Suárez, D., Bartoli, M., and Toro-Botero, M.: Spatial and seasonal variability of sedimentary features and nitrogen benthic metabolism in a tropical coastal area (Taganga Bay, Colombia Caribbean) impacted by a sewage outfall, Biogeochemistry, 150, 85–107, https://doi.org/10.1007/s10533-020-00689-0, 2020.
Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and Voss, M.: Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea, Limnol. Oceanogr., 62, S222–S238, https://doi.org/10.1002/lno.10644, 2017.
Bale, N. J., Villanueva, L., Fan, H., Stal, L. J., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea, FEMS Microbiol. Ecol., 89, 99–110, https://doi.org/10.1111/1574-6941.12338, 2014.
Bartoli, M., Nizzoli, D., Zilius, M., Bresciani, M., Pusceddu, A., Bianchelli, S., Sundbäck, K., Razinkovas-Baziukas, A., and Viaroli, P.: Denitrification, Nitrogen Uptake, and Organic Matter Quality Undergo Different Seasonality in Sandy and Muddy Sediments of a Turbid Estuary, Front. Microbiol., 11, 612700, https://doi.org/10.3389/fmicb.2020.612700, 2021.
Benelli, S., Bartoli, M., Magri, M., Brzana, R., Kendzierska, H., Styrcz-Olesiak, K., and Janas, U.: Spatial and seasonal pattern of microbial nitrate reduction in coastal sediments in the Vistula River plume area, Gulf of Gdańsk, Front. Mar. Sci., 11, 1333707, https://doi.org/10.3389/fmars.2024.1333707, 2024.
Bernard, R. J., Mortazavi, B., and Kleinhuizen, A. A.: Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon, Biogeochemistry, 125, 47–64, https://doi.org/10.1007/s10533-015-0111-6, 2015.
Blackburn, T. H., Hall, P. O. J., Hulth, S., and Landén, A.: Organic-N loss by efflux and burial associated with a low efflux of inorganic N and with nitrate assimilation in Arctic sediments (Svalbard, Norway), Mar. Ecol. Prog. Ser., 141, 283–293, https://doi.org/10.3354/meps141283, 1996.
Bohlen, L., Dale, A. W., and Wallmann, K.: Simple transfer functions for calculating benthic fixed nitrogen losses and regeneration ratios in global biogeochemical models, Global Biogeochem. Cy., 26, GB3029, https://doi.org/10.1029/2011GB004198, 2012.
Bonaglia, S., Bartoli, M., Gunnarsson, J. S., Rahm, L., Raymond, C., Svensson, O., Shakeri Yekta, S., and Brüchert, V.: Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism, Mar. Ecol. Prog. Ser., 482, 43–55, https://doi.org/10.3354/meps10232, 2013.
Bonaglia, S., Deutsch, B., Bartoli, M., Marchant, H. K., and Brüchert, V.: Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns, Biogeochemistry, 119, 139–160, https://doi.org/10.1007/s10533-014-9953-6, 2014a.
Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I., and Brüchert, V.: Meiofauna increases bacterial denitrification in marine sediments, Nat. Commun., 5, 5133, https://doi.org/10.1038/ncomms6133, 2014b.
Bonaglia, S., Hylén, A., Rattray, J. E., Kononets, M. Y., Ekeroth, N., Roos, P., Thamdrup, B., Brüchert, V., and Hall, P. O. J.: The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study, Biogeosciences, 14, 285–300, https://doi.org/10.5194/bg-14-285-2017, 2017.
Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S. C., Leblanc, K., Le Quéré, C., Luo, Y.-W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R., and Swan, C.: MAREDAT: towards a world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, 2013.
Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The Evolution and Future of Earth's Nitrogen Cycle, Science, 330, 192–196, https://doi.org/10.1126/science.1186120, 2010.
Canion, A., Kostka, J. E., Gihring, T. M., Huettel, M., van Beusekom, J. E. E., Gao, H., Lavik, G., and Kuypers, M. M. M.: Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude, Biogeosciences, 11, 309–320, https://doi.org/10.5194/bg-11-309-2014, 2014.
Chang, Y., Yin, G., Hou, L., Liu, M., Zheng, Y., Han, P., Dong, H., Liang, X., Gao, D., and Liu, C.: Nitrogen removal processes coupled with nitrification in coastal sediments off the north East China Sea, J. Soils Sediments, 21, 3289–3299, https://doi.org/10.1007/s11368-021-02964-5, 2021.
Chang, Y., Tan, E., Gao, D., Liu, C., Zhang, Z., Huang, Z., Liu, J., Han, Y., Xu, Z., Chen, B., and Kao, S.-J.: Global database of actual nitrogen loss rates in coastal and marine sediments, Figshare [data set], https://doi.org/10.6084/m9.figshare.27745770.v3, 2024.
Chen, J.-J., Erler, D. V., Wells, N. S., Huang, J., Welsh, D. T., and Eyre, B. D.: Denitrification, anammox, and dissimilatory nitrate reduction to ammonium across a mosaic of estuarine benthic habitats, Limnol. Oceanogr., 66, 1281–1297, https://doi.org/10.1002/lno.11681, 2021.
Cheung, H. L. S., Hillman, J. R., Pilditch, C. A., Savage, C., Santos, I. R., Glud, R. N., Nascimento, F. J. A., Thrush, S. F., and Bonaglia, S.: Denitrification, anammox, and DNRA in oligotrophic continental shelf sediments, Limnol. Oceanogr., 69, 621–637, https://doi.org/10.1002/lno.12512, 2024.
Crowe, S. A., Canfield, D. E., Mucci, A., Sundby, B., and Maranger, R.: Anammox, denitrification and fixed-nitrogen removal in sediments from the Lower St. Lawrence Estuary, Biogeosciences, 9, 4309–4321, https://doi.org/10.5194/bg-9-4309-2012, 2012.
Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H., and Zhu, Y.-G.: Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010), P. Natl. Acad. Sci. USA, 110, 2052–2057, https://doi.org/10.1073/pnas.1221638110, 2013.
Dai, M., Zhao, Y., Chai, F., Chen, M., Chen, N., Chen, Y., Cheng, D., Gan, J., Guan, D., Hong, Y., Huang, J., Lee, Y., Leung, K. M. Y., Lim, P. E., Lin, S., Lin, X., Liu, X., Liu, Z., Luo, Y.-W., Meng, F., Sangmanee, C., Shen, Y., Uthaipan, K., Wan Talaat, W. I. A., Wan, X. S., Wang, C., Wang, D., Wang, G., Wang, S., Wang, Y., Wang, Y., Wang, Z., Wang, Z., Xu, Y., Yang, J.-Y. T., Yang, Y., Yasuhara, M., Yu, D., Yu, J., Yu, L., Zhang, Z., and Zhang, Z.: Persistent eutrophication and hypoxia in the coastal ocean, Cambridge Prisms: Coastal Futures, 1, 1–28, https://doi.org/10.1017/cft.2023.7, 2023.
Dalsgaard, T. and Thamdrup, B.: Factors Controlling Anaerobic Ammonium Oxidation with Nitrite in Marine Sediments, Appl. Environ. Microb., 68, 3802–3808, https://doi.org/10.1128/AEM.68.8.3802-3808.2002, 2002.
Damashek, J. and Francis, C. A.: Microbial Nitrogen Cycling in Estuaries: From Genes to Ecosystem Processes, Estuaries Coasts, 41, 626–660, https://doi.org/10.1007/s12237-017-0306-2, 2018.
Deek, A., Dähnke, K., van Beusekom, J., Meyer, S., Voss, M., and Emeis, K.: N2 fluxes in sediments of the Elbe Estuary and adjacent coastal zones, Mar. Ecol. Prog. Ser., 493, 9-21, https://doi.org/10.3354/meps10514, 2013.
Deng, D., He, G., Ding, B., Liu, W., Yang, Z., and Ma, L.: Denitrification dominates dissimilatory nitrate reduction across global natural ecosystems, Glob. Change Biol., 30, e17256, https://doi.org/10.1111/gcb.17256, 2024.
Deng, F., Hou, L., Liu, M., Zheng, Y., Yin, G., Li, X., Lin, X., Chen, F., Gao, J., and Jiang, X.: Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary, J. Geophys. Res.-Biogeo., 120, 1521–1531, https://doi.org/10.1002/2015JG003007, 2015.
Deutsch, B., Forster, S., Wilhelm, M., Dippner, J. W., and Voss, M.: Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics, Biogeosciences, 7, 3259–3271, https://doi.org/10.5194/bg-7-3259-2010, 2010.
Devol, A. H.: Denitrification, Anammox, and N2 Production in Marine Sediments, Annu. Rev. Mar. Sci., 7, 403–423, https://doi.org/10.1146/annurev-marine-010213-135040, 2015.
Enrich-Prast, A., Figueiredo, V., Esteves, F. D. A., and Nielsen, L. P.: Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons, PloS One, 11, e0155586, https://doi.org/10.1371/journal.pone.0155586, 2016.
Erler, D. V., Eyre, B. D., and Davison, L.: The Contribution of Anammox and Denitrification to Sediment N2 Production in a Surface Flow Constructed Wetland, Environ. Sci. Technol., 42, 9144–9150, https://doi.org/10.1021/es801175t, 2008.
Erler, D. V., Trott, L. A., Alongi, D. M., and Eyre, B. D.: Denitrification, anammox and nitrate reduction in sediments of the southern Great Barrier Reef lagoon, Mar. Ecol. Prog. Ser., 478, 57–70, https://doi.org/10.3354/meps10040, 2013.
Erler, D. V., Welsh, D. T., Bennet, W. W., Meziane, T., Hubas, C., Nizzoli, D., and Ferguson, A. J. P.: The impact of suspended oyster farming on nitrogen cycling and nitrous oxide production in a sub-tropical Australian estuary, Estuarine, Coastal Shelf Sci., 192, 117–127, https://doi.org/10.1016/j.ecss.2017.05.007, 2017.
Fan, H., Bolhuis, H., and Stal, L. J.: Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments, Front. Microbiol., 6, 738, https://doi.org/10.3389/fmicb.2015.00738, 2015.
Farías, L., Graco, M., and Ulloa, O.: Temporal variability of nitrogen cycling in continental-shelf sediments of the upwelling ecosystem off central Chile, Deep-Sea Res. Pt. II, 51, 2491–2505, https://doi.org/10.1016/j.dsr2.2004.07.029, 2004.
Gardner, W. S. and McCarthy, M. J.: Nitrogen dynamics at the sediment–water interface in shallow, sub-tropical Florida Bay: why denitrification efficiency may decrease with increased eutrophication, Biogeochemistry, 95, 185–198, https://doi.org/10.1007/s10533-009-9329-5, 2009.
Gardner, W. S., McCarthy, M. J., An, S., Sobolev, D., Sell, K. S., and Brock, D.: Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries, Limnol. Oceanogr., 51, 558–568, https://doi.org/10.4319/lo.2006.51.1_part_2.0558, 2006.
Gihring, T. M., Lavik, G., Kuypers, M. M. M., and Kostka, J. E.: Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway), Limnol. Oceanogr., 55, 740–752, https://doi.org/10.4319/lo.2010.55.2.0740, 2010a.
Gihring, T. M., Canion, A., Riggs, A., Huettel, M., and Kostk, J. E.: Denitrification in shallow, sublittoral Gulf of Mexico permeable sediments, Limnol. Oceanogr., 55, 43–54, https://doi.org/10.4319/lo.2010.55.1.0043, 2010b.
Glover, D. M., Jenkins, W. J., and Doney, S. C.: Modeling Methods for Marine Science, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511975721, 2011.
Glud, R. N., Holby, O., Hoffmann, F., and Canfield, D. E.: Benthic mineralization and exchange in Arctic sediments (Svalbard, Norway), Mar. Ecol. Prog. Ser., 173, 237–251, https://doi.org/10.3354/meps173237, 1998.
Glud, R. N., Thamdrup, B., Stahl, H., Wenzhoefer, F., Glud, A., Nomaki, H., Oguri, K., Revsbech, N. P., and Kitazato, H.: Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan), Limnol. Oceanogr., 54, 723–734, https://doi.org/10.4319/lo.2009.54.3.0723, 2009.
He, G., Deng, D., Delgado-Baquerizo, M., Liu, W., and Zhang, Q.: Global Relative Importance of Denitrification and Anammox in Microbial Nitrogen Loss Across Terrestrial and Aquatic Ecosystems, Adv. Sci., 12, 2406857, https://doi.org/10.1002/advs.202406857, 2025.
Hellemann, D., Tallberg, P., Bartl, I., Voss, M., and Hietanen, S.: Denitrification in an oligotrophic estuary: a delayed sink for riverine nitrate, Mar. Ecol. Prog. Ser., 583, 63–80, https://doi.org/10.3354/meps12359, 2017.
Hellemann, D., Tallberg, P., Aalto, S. L., Bartoli, M., and Hietanen, S.: Seasonal cycle of benthic denitrification and DNRA in the aphotic coastal zone, northern Baltic Sea, Mar. Ecol. Prog. Ser., 637, 15–28, https://doi.org/10.3354/meps13259, 2020.
Hietanen, S. and Kuparinen, J.: Seasonal and short-term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea, Hydrobiologia, 596, 67–77, https://doi.org/10.1007/s10750-007-9058-5, 2008.
Hoffman, D. K., McCarthy, M. J., Newell, S. E., Gardner, W. S., Niewinski, D. N., Gao, J., and Mutchler, T. R.: Relative Contributions of DNRA and Denitrification to Nitrate Reduction in Thalassia testudinum Seagrass Beds in Coastal Florida (USA), Estuaries Coasts, 42, 1001–1014, https://doi.org/10.1007/s12237-019-00540-2, 2019.
Hou, E., Wen, D., Jiang, L., Luo, X., Kuang, Y., Lu, X., Chen, C., Allen, K. T., He, X., Huang, X., and Luo, Y.: Latitudinal patterns of terrestrial phosphorus limitation over the globe, Ecol. Lett., 24, 1420–1431, https://doi.org/10.1111/ele.13761, 2021.
Hsu, T.-C. and Kao, S.-J.: Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique, Biogeosciences, 10, 7847–7862, https://doi.org/10.5194/bg-10-7847-2013, 2013.
Jäntti, H. and Hietanen, S.: The Effects of Hypoxia on Sediment Nitrogen Cycling in the Baltic Sea, AMBIO, 41, 161–169, https://doi.org/10.1007/s13280-011-0233-6, 2012.
Jäntti, H., Stange, F., Leskinen, E., and Hietanen, S.: Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea, Aquat. Microb. Ecol., 63, 171–181, https://doi.org/10.3354/ame01492, 2011.
Kennedy, C. D.: Nitrogen Overload: Environmental Degradation, Ramifications, and Economic Costs, Groundwater, 59, 161–162, https://doi.org/10.1111/gwat.13066, 2021.
Kessler, A. J., Roberts, K. L., Bissett, A., and Cook, P. L. M.: Biogeochemical Controls on the Relative Importance of Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Estuaries, Global Biogeochem. Cy., 32, 1045–1057, https://doi.org/10.1029/2018GB005908, 2018.
Koop-Jakobsen, K. and Giblin, A. E.: The effect of increased nitrate loading on nitrate reduction via denitrification and DNRA in salt marsh sediments, Limnol. Oceanogr., 55, 789–802, https://doi.org/10.4319/lo.2010.55.2.0789, 2010.
Laffitte, B., Zhou, T., Yang, Z., Ciais, P., Jian, J., Huang, N., Seyler, B. C., Pei, X., and Tang, X.: Timescale Matters: Finer Temporal Resolution Influences Driver Contributions to Global Soil Respiration, Glob. Change Biol., 31, e70118, https://doi.org/10.1111/gcb.70118, 2025.
Li, N., Somes, C. J., Landolfi, A., Chien, C.-T., Pahlow, M., and Oschlies, A.: Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model, Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, 2024.
Ling, J., Dungait, J. A. J., Delgado-Baquerizo, M., Cui, Z., Zhou, R., Zhang, W., Gao, Q., Chen, Y., Yue, S., Kuzyakov, Y., Zhang, F., Chen, X., and Tian, J.: Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide, Nat. Commun., 16, 3009, https://doi.org/10.1038/s41467-025-57981-6, 2025.
Liu, C., Hou, L., Liu, M., Zheng, Y., Yin, G., Han, P., Dong, H., Gao, J., Gao, D., Chang, Y., and Zhang, Z.: Coupling of denitrification and anaerobic ammonium oxidation with nitrification in sediments of the Yangtze Estuary: Importance and controlling factors, Estuarine, Coastal Shelf Sci., 220, 64–72, https://doi.org/10.1016/j.ecss.2019.02.043, 2019.
Liu, C., Hou, L., Liu, M., Zheng, Y., Yin, G., Dong, H., Liang, X., Li, X., Gao, D., and Zhang, Z.: In situ nitrogen removal processes in intertidal wetlands of the Yangtze Estuary, J. Environ. Sci., 93, 91–97, https://doi.org/10.1016/j.jes.2020.03.005, 2020.
Magri, M., Benelli, S., Bonaglia, S., Zilius, M., Castaldelli, G., and Bartoli, M.: The effects of hydrological extremes on denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and mineralization in a coastal lagoon, Sci. Total Environ., 740, 140169, https://doi.org/10.1016/j.scitotenv.2020.140169, 2020.
McTigue, N. D., Gardner, W. S., Dunton, K. H., and Hardison, A. K.: Biotic and abiotic controls on co-occurring nitrogen cycling processes in shallow Arctic shelf sediments, Nat. Commun., 7, 13145, https://doi.org/10.1038/ncomms13145, 2016.
Meyer, R. L., Risgaard-Petersen, N., and Allen, D. E.: Correlation between Anammox Activity and Microscale Distribution of Nitrite in a Subtropical Mangrove Sediment, Appl. Environ. Microb., 71, 6142–6149, https://doi.org/10.1128/AEM.71.10.6142-6149.2005, 2005.
Middelburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R.: Denitrification in marine sediments: A model study, Global Biogeochem. Cy., 10, 661–673, https://doi.org/10.1029/96GB02562, 1996.
Na, T., Thamdrup, B., Kim, B., Kim, S.-H., Vandieken, V., Kang, D.-J., and Hyun, J.-H.: N2 production through denitrification and anammox across the continental margin (shelf–slope–rise) of the Ulleung Basin, East Sea, Limnol. Oceanogr., 63, S410–S424, https://doi.org/10.1002/lno.10750, 2018.
Neubacher, E. C., Parker, R. E., and Trimmer, M.: Short-term hypoxia alters the balance of the nitrogen cycle in coastal sediments, Limnol. Oceanogr., 56, 651–665, https://doi.org/10.4319/lo.2011.56.2.0651, 2011.
Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing, FEMS Microbiol. Lett., 86, 357–362, https://doi.org/10.1016/0378-1097(92)90800-4, 1992.
Nielsen, L. P. and Glud, R. N.: Denitrification in a coastal sediment measured in situ by the nitrogen isotope pairing technique applied to a benthic flux chamber, Mar. Ecol. Prog. Ser., 137, 181–186, https://doi.org/10.3354/meps137181, 1996.
Poulin, P., Pelletier, E., and Saint-Louis, R.: Seasonal variability of denitrification efficiency in northern salt marshes: An example from the St. Lawrence Estuary, Mar. Environ. Res., 63, 490–505, https://doi.org/10.1016/j.marenvres.2006.12.003, 2007.
Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogués-Bravo, D., Petri, S., Porkka, M., Rahmstorf, S., Schaphoff, S., Thonicke, K., Tobian, A., Virkki, V., Wang-Erlandsson, L., Weber, L., and Rockström, J.: Earth beyond six of nine planetary boundaries, Sci. Adv., 9, eadh2458, https://doi.org/10.1126/sciadv.adh2458, 2023.
Rios-Del Toro, E. E., Valenzuela, E. I., López-Lozano, N. E., Cortés-Martínez, M. G., Sánchez-Rodríguez, M. A., Calvario-Martínez, O., Sánchez-Carrillo, S., and Cervantes, F. J.: Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments, Biodegradation, 29, 429–442, https://doi.org/10.1007/s10532-018-9839-8, 2018.
Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.: Application of the isotope pairing technique in sediments where anammox and denitrification coexist, Limnol. Oceanogr. Meth., 1, 63–73, https://doi.org/10.4319/lom.2003.1.63, 2003.
Risgaard-Petersen, N., Meyer, R. L., Schmid, M., Jetten, M., S. M., Enrich-Prast, A., Rysgaard, S., and Revsbech, N. P.: Anaerobic ammonium oxidation in an estuarine sediment, Aquat. Microb. Ecol., 36, 293–304, https://doi.org/10.3354/ame036293, 2004.
Robertson, E. K., Bartoli, M., Brüchert, V., Dalsgaard, T., Hall, P. O. J., Hellemann, D., Hietanen, S., Zilius, M., and Conley, D. J.: Application of the isotope pairing technique in sediments: Use, challenges, and new directions, Limnol. Oceanogr. Meth., 17, 112–136, https://doi.org/10.1002/lom3.10303, 2019.
Rosales Villa, A. R., Jickells, T. D., Sivyer, D. B., Parker, E. R., and Thamdrup, B.: Benthic nitrogen cycling in the North Sea, Cont. Shelf Res., 185, 31–36, https://doi.org/10.1016/j.csr.2018.05.005, 2019.
Rysgaard, S., Finster, K., and Dahlgaard, H.: Primary production, nutrient dynamics and mineralisation in a northeastern Greenland fjord during the summer thaw, Polar Biol., 16, 497–506, https://doi.org/10.1007/BF02329069, 1996a.
Rysgaard, S., Risgaard-Petersen, N., and Sloth, N. P.: Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in Southern France, Hydrobiologia, 329, 133–141, https://doi.org/10.1007/BF00034553, 1996b.
Rysgaard, S., Fossing, H., and Jensen, M. M.: Organic matter degradation through oxygen respiration, denitrification, and manganese, iron, and sulfate reduction in marine sediments (the Kattegat and the Skagerrak), Ophelia, 55, 77–91, https://doi.org/10.1080/00785236.2001.10409475, 2001.
Rysgaard, S., Glud, R. N., Risgaard-Petersen, N., and Dalsgaard, T.: Denitrification and anammox activity in Arctic marine sediments, Limnol. Oceanogr., 49, 1493–1502, https://doi.org/10.4319/lo.2004.49.5.1493, 2004.
Salk, K. R., Erler, D. V., Eyre, B. D., Carlson-Perret, N., and Ostrom, N. E.: Unexpectedly high degree of anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique, Geochim. Cosmochim. Ac., 211, 64–78, https://doi.org/10.1016/j.gca.2017.05.012, 2017.
Samperio-Ramos, G., Hernández-Sánchez, O., Camacho-Ibar, V. F., Pajares, S., Gutiérrez, A., Sandoval-Gil, J. M., Reyes, M., De Gyves, S., Balint, S., Oczkowski, A., Ponce-Jahen, S. J., and Cervantes, F. J.: Ammonium loss microbiologically mediated by Fe(III) and Mn(IV) reduction along a coastal lagoon system, Chemosphere, 349, 140933, https://doi.org/10.1016/j.chemosphere.2023.140933, 2024.
Sokoll, S., Holtappels, M., Lam, P., Collins, G., Schlüter, M., Lavik, G., and Kuypers, M.: Benthic Nitrogen Loss in the Arabian Sea Off Pakistan, Front. Microbiol., 3, 395, https://doi.org/10.3389/fmicb.2012.00395, 2012.
Song, G., Liu, S., Zhu, Z., Zhai, W., Zhu, C., and Zhang, J.: Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea, Deep Sea-Res. Pt. II, 124, 53–63, https://doi.org/10.1016/j.dsr2.2015.04.012, 2016a.
Song, G., Liu, S., Zhang, J., Zhu, Z., Zhang, G., Marchant, H. K., Kuypers, M. M. M., and Lavik, G.: Response of benthic nitrogen cycling to estuarine hypoxia, Limnol. Oceanogr., 66, 652–666, https://doi.org/10.1002/lno.11630, 2021.
Song, G. D., Liu, S. M., Kuypers, M. M. M., and Lavik, G.: Application of the isotope pairing technique in sediments where anammox, denitrification, and dissimilatory nitrate reduction to ammonium coexist, Limnol. Oceanogr. Meth., 14, 801–815, https://doi.org/10.1002/lom3.10127, 2016b.
Steingruber, S. M., Friedrich, J., Gächter, R., and Wehrli, B.: Measurement of Denitrification in Sediments with the 15N Isotope Pairing Technique, Appl. Environ. Microb., 67, 3771–3778, https://doi.org/10.1128/AEM.67.9.3771-3778.2001, 2001.
Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K. T., Webb, R., Kuenen, J. G., and Jetten, M. S. M.: Missing lithotroph identified as new planctomycete, Nature, 400, 446–449, https://doi.org/10.1038/22749, 1999.
Susanna, H.: Anaerobic ammonium oxidation (anammox) in sediments of the Gulf of Finland, Aquat. Microb. Ecol., 48, 197–205, https://doi.org/10.3354/ame048197, 2007.
Tan, E., Zou, W., Jiang, X., Wan, X., Hsu, T.-C., Zheng, Z., Chen, L., Xu, M., Dai, M., and Kao, S.-J.: Organic matter decomposition sustains sedimentary nitrogen loss in the Pearl River Estuary, China, Sci. Total Environ., 648, 508–517, https://doi.org/10.1016/j.scitotenv.2018.08.109, 2019.
Tan, E., Zou, W., Zheng, Z., Yan, X., Du, M., Hsu, T.-C., Tian, L., Middelburg, J. J., Trull, T. W., and Kao, S.-J.: Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation, Nat. Clim. Change, 10, 349–355, https://doi.org/10.1038/s41558-020-0723-2, 2020.
Tan, E., Hsu, T.-C., Zou, W., Yan, X., Huang, Z., Chen, B., Chang, Y., Zheng, Z., Zheng, L., Xu, M., Tian, L., and Kao, S.-J.: Quantitatively deciphering the roles of sediment nitrogen removal in environmental and climatic feedbacks in two subtropical estuaries, Water Res., 224, 119121, https://doi.org/10.1016/j.watres.2022.119121, 2022.
Thamdrup, B.: New Pathways and Processes in the Global Nitrogen Cycle, Annu. Rev. Ecol. Evol. S., 43, 407–428, https://doi.org/10.1146/annurev-ecolsys-102710-145048, 2012.
Thamdrup, B. and Dalsgaard, T.: Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments, Appl. Environ. Microb., 68, 1312–1318, https://doi.org/10.1128/AEM.68.3.1312-1318.2002, 2002.
Torregrosa-Crespo, J., Miralles-Robledillo, J. M., Bernabeu, E., Pire, C., and Martínez-Espinosa, R. M.: Denitrification in hypersaline and coastal environments, FEMS Microbiol. Lett., 370, fnad066, https://doi.org/10.1093/femsle/fnad066, 2023.
Trimmer, M. and Nicholls, J. C.: Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic, Limnol. Oceanogr., 54, 577–589, https://doi.org/10.4319/lo.2009.54.2.0577, 2009.
Trimmer, M., Engström, P., and Thamdrup, B.: Stark Contrast in Denitrification and Anammox across the Deep Norwegian Trench in the Skagerrak, Appl. Environ. Microb., 79, 7381–7389, https://doi.org/10.1128/AEM.01970-13, 2013.
Trimmer, M., Nicholls, J. C., and Deflandre, B.: Anaerobic Ammonium Oxidation Measured in Sediments along the Thames Estuary, United Kingdom, Appl. Environ. Microb., 69, 6447–6454, https://doi.org/10.1128/AEM.69.11.6447-6454.2003, 2003.
Trimmer, M., Risgaard-Petersen, N., Nicholls, J. C., and Engström, P.: Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores, Mar. Ecol. Prog. Ser., 326, 37–47, https://doi.org/10.3354/meps326037, 2006.
Usui, T., Koike, I., and Ogura, N.: N2O Production, Nitrification and Denitrification in an Estuarine Sediment, Estuarine, Coastal Shelf Sci., 52, 769–781, https://doi.org/10.1006/ecss.2000.0765, 2001.
Uusheimo, S., Huotari, J., Tulonen, T., Aalto, S. L., Rissanen, A. J., and Arvola, L.: High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate, Environ. Sci. Technol., 52, 13343–13350, https://doi.org/10.1021/acs.est.8b03032, 2018.
Vance-Harris, C. and Ingall, E.: Denitrification pathways and rates in the sandy sediments of the Georgia continental shelf, USA, Geochem. T., 6, 12, https://doi.org/10.1186/1467-4866-6-12, 2005.
van de Graaf, A. A., Mulder, A., de Bruijn, P., Jetten, M. S., Robertson, L. A., and Kuenen, J. G.: Anaerobic oxidation of ammonium is a biologically mediated process, Appl. Environ. Microb., 61, 1246–1251, https://doi.org/10.1128/aem.61.4.1246-1251.1995, 1995.
Wan, R., Ge, L., Chen, B., Tang, J.-M., Tan, E., Zou, W., Tian, L., Li, M., Liu, Z., Hou, L., Yin, G., and Kao, S.-J.: Permeability decides the effect of antibiotics on sedimentary nitrogen removal in Jiulong River Estuary, Water Res., 243, 120400, https://doi.org/10.1016/j.watres.2023.120400, 2023.
Welsh, D. T., Bartoli, M., Nizzoli, D., Castaldelli, G., Riou, S. A., and Viaroli, P.: Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow, Mar. Ecol. Prog. Ser., 208, 65–77, https://doi.org/10.3354/meps208065, 2000.
Yang, J.-Y. T., Hsu, T.-C., Tan, E., Lee, K., Krom, M. D., Kang, S., Dai, M., Hsiao, S. S.-Y., Yan, X., Zou, W., Tian, L., and Kao, S.-J.: Sedimentary processes dominate nitrous oxide production and emission in the hypoxic zone off the Changjiang River estuary, Sci. Total Environ., 827, 154042, https://doi.org/10.1016/j.scitotenv.2022.154042, 2022.
Yin, G., Hou, L., Zong, H., Ding, P., Liu, M., Zhang, S., Cheng, X., and Zhou, J.: Denitrification and Anaerobic Ammonium Oxidization Across the Sediment–Water Interface in the Hypereutrophic Ecosystem, Jinpu Bay, in the Northeastern Coast of China, Estuaries Coasts, 38, 211–219, https://doi.org/10.1007/s12237-014-9798-1, 2015.
Short summary
Denitrification and anaerobic ammonium oxidation (anammox) are two important nitrogen removal pathways that convert reactive nitrogen into dinitrogen gas. Here, we construct a global database on actual nitrogen loss rates, covering over 30 years of observations, measured in coastal and marine sediments. This work provides a global overview of the biogeography and potential controlling factors of denitrification and anammox and highlights the potential applications of this database.
Denitrification and anaerobic ammonium oxidation (anammox) are two important nitrogen removal...
Altmetrics
Final-revised paper
Preprint